Universität Duisburg-Essen Fachbereich Mathematik Prof. Dr. Günter Törner Dipl.-Math. Miriam Dieter

Übungen zur Linearen Algebra II Blatt 6

Aufgabe 21 (6 Punkte)

Ist $A \in Mat_{n \times n}(\mathbb{C})$ hermite'sch und $x \in \mathbb{C}^n \setminus \{0\}$, so heißt $R_A(x) := \frac{x^H A x}{x^H x}$ der Rayleigh-Quotient von A. Zeigen Sie, dass für die Eigenwerte λ_i von A mit $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ und zugehörigen Eingenvektoren $x_1, \ldots, x_n \in \mathbb{C}^n \setminus \{0\}$ gilt:

- a) $R_A(x) \in \mathbb{R}$ für alle $x \in \mathbb{C}^n \setminus \{0\}$.
- b) $\lambda_i = R_A(x_i)$ für $1 \le i \le n$.
- c) $\lambda_1 = \max_{x \in \mathbb{C}^n \setminus \{0\}} R_A(x)$ und $\lambda_n = \min_{x \in \mathbb{C}^n \setminus \{0\}} R_A(x)$

Aufgabe 22 (6 Punkte)

Beweisen Sie die folgenden drei Aussagen:

- a) Die Determinante einer hermite'schen Matrix ist eine reelle Zahl.
- b) Für alle Matrizen $M \in Mat_{n \times n}(\mathbb{C})$ ist die Matrix $\overline{M}M^T$ hermite'sch.
- c) Eine hermite'sche Matrix $H \in Mat_{n \times n}(\mathbb{C})$ besitzt genau dann lauter nicht-negative Eigenwerte, wenn es ein $M \in Mat_{n \times n}(\mathbb{C})$ gibt mit $H = \overline{M}M^T$.

Aufgabe 23 (6 Punkte)

Bestimmen Sie die Spektralzerlegung der Matrix

$$A = \left(\begin{array}{rrr} 0 & -2 & 8 \\ -2 & 10 & -2 \\ 8 & -2 & 0 \end{array}\right).$$

Aufgabe 24 (6 Punkte)

Es sei $n \in \mathbb{N}$ und $X \in Mat_{n \times n}(\mathbb{R})$ schiefsymmetrisch. Zeigen Sie:

- a) $(I_n X)$ ist invertierbar.
- b) $(I_n + X)$ und $(I_n X)$ sind normal.
- c) $A = (I_n X)^{-1} \cdot (I_n + X)$ ist eine orthogonale Matrix mit det A = 1.

Abgabe: Bis Donnerstag, 04.06.2009, 12:00 Uhr, Briefkästen LE 4.Etage