Übung Funktionalanalysis

Blatt 8

Hausaufgabe

Abgabe: Dienstag, 31.05.2011 (in der Übung)

Aufgabe 1

Sei X ein reeller normierter Raum und f ein lineares Funktional auf X.

- (a) Für jede Folge $\{x_n\}_{n\in\mathbb{N}}\subset X$ mit $x_n\to 0,\ n\to\infty$ gelte: Die Menge der Zahlen $\langle x_n,f\rangle_D$ ist beschränkt. Zeigen Sie: $f\in X^*$.
- (b) Ist f unbeschränkt, so nimmt f in jeder Umgebung von 0 alle reellen Werte an.

(4 Punkte)

Aufgabe 2

Sei X ein linearer, normierter Raum und $Y \subset X$ ein abgeschlossener Unterraum mit $Y \neq X$. Man zeige: Zu jedem $x \in X \setminus Y$ gibt es ein $f \in X^*$ so, dass gilt f(x) = 1 und $Y \subset ker(f)$.

(4 Punkte)

Aufgabe 3

Sei X ein linearer, normierter Raum. Zeigen Sie:

(a) Ist X unendlichdimensional, so gilt dies auch für X^* .

(b) Für
$$x \in X$$
 gilt $||x||_X = \sup_{||f||_{X^*}=1} |\langle x, f \rangle_D|$. (4 Punkte)

Aufgabe 4

Man zeige:

- (a) $(c_0)^*$ (c_0 ist der Raum der Nullfolgen versehen mit der Supremumsnorm) ist isometrisch isomorph zu l^1 .
- (b) $(l^1)^*$ ist isometrisch isomorph zu m (Raum der beschränkten Zahlenfolgen versehen mit der Supremumsnorm). (4 Punkte)

Homepage der Veranstaltung ist:

http://www.uni-due.de/mathematik/agroesch/LV_feldhordt_SS11.shtml

Termine und Räume:

		Zeit	Raum	
VL	Di	08-10	LE 103	Arnd Rösch
	Do	08-10	LE 103	
Ü	Di	12-14	LE 103	Hendrik Feldhordt