In accordance with the well known and accepted rule in the engineering field, the author sequence of all publications (1989 to present) is related to the FLAE system (first-last-author-emphasis system).

2025   2024   2023   2022   2021   2020   2019   2018   2017   2016   2015   2014   2013   2012   2011   2010   
2009   2008   2007   2006   2005   0000   2005   2004   2003   2002   2001   2000   1999   1998      1997   1996   
1995   früher   alle Jahre
Publikationsliste Univ.-Prof. Dr.-Ing. Dirk Söffker (1989-2011)

2024

Journal- and book contributions


Ameyaw, D. A.; Bejaoui, A.; Boschmann, W.; Donandt, K.; Shyshova, O.; Thind, N. S.; Söffker, D.: _Automation approaches making new generations of inland vessels safe: What is _(really) needed for realizing safe remote and autonomous operating ships?. Ship Technology Research Journal, Taylor & Francis Group, special issue title "Automation in Inland and Short Sea Shipping", 2024, submitted.

Bejaoui, A.; Söffker, D.: Behavior planning and prediction based on action spaces applied to human-guided vehicle systems. IEEE Access, 2024, submitted.

Kipchirchir, E.; Söffker, D.: IPC-based Robust Disturbance Accommodating Control for Load Mitigation and Speed Regulation of Wind Turbines. Wind Energy Journal, 2024.[PDF][LINK]

Rastin, Z.; Söffker, D.: Multi-Level Feature Extraction and Classification for Lane Changing Behavior Prediction and POD-Based Evaluation. MDPI Automation, 2024.[LINK]

Rastin, Z.; Söffker, D.: Advanced POD-Based Performance Evaluation of Classifiers Applied to Human Driver Lane Changing Prediction. IEEE Access, 2024, submitted.

Salighe, S.; Söffker, D.: Model complexity optimization of equivalent dynamical linearization data models used in model-free adaptive control. Proceedings in Applied Mathematics and Mechanics (PAMM), 2024, submitted.

Salighe, S.; Trivedi, N.; Bakhshande, F.; Söffker, D. : Decoupled model-free adaptive control with prediction features experimentally applied to a three-tank system as a nonlinear MIMO system following time-varying trajectories. MDPI Automation, 2024, submitted.

Söffker, D.; Bejaoui, A.; Shyshova, O.: Progress towards multidimensionally scalable assisted and/or automated ship navigation and control - part II: human in the interaction loop. Journal of Marine Engineering & Technology, Taylor & Francis Group, special issue title "Advances on Maritime Autonomous Surface Ships", 2024, submitted.

Söffker, D.; Boschmann, W.; Shyshova, O.: Progress towards multidimensionally scalable assisted and/or automated ship navigation and control - part I: reliable and autonomous guidance - a contradiction?. Journal of Marine Engineering & Technology, Taylor & Francis Group, special issue title "Advances on Maritime Autonomous Surface Ships", 2024, submitted.

Tanshi, F.; Söffker, D.: A quantitative model of takeover request time budget for conditionally automated driving. IEEE Access, 2024, submitted.

Tanshi, F.; Söffker, D.: A Lane Change Assistance System Based on Prediction of Driver Intention. IEEE Open Journal of Vehicular Technology, 2024, Submitted.

Referenzierbare und mehrfach referierte Konferenzbeiträge


Benrabia, I.; Söffker, D.: Energy management of residential buildings based on MPC across varied prediction horizons, price models, and storage configurations. IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, Oslo, Norway, 17-20 September, 2024, accepted.

Diepers, F.; Ahle, E.; Söffker, D.: Investigation of the Influence of Training Data and Methods on the Control Performance of MPC Utilizing Gaussian Processes. Lecture Notes in Control and Information Sciences - Proceedings, Stuttgart, Germany, 2024, accepted.

Donandt, K.; Söffker, D.: Incorporating Navigation Context into Inland Vessel Trajectory Prediction: A Gaussian Mixture Model and Transformer Approach. 27th IEEE International Conference on Information Fusion (FUSION 2024), Venice, Italy, July, 7-11, 2024, accepted.[LINK]

Liebeton, J.; Söffker, D.: Analysis of multiple reflected ultrasonic waves generated during a drilling process. 10th Asia-Pacific Workshop on Structural Health Monitoring, Sendai, Japan, December 8-10, 2024, submitted.

Rosenthal, R.; Gerz, F.; Al-Shrouf, L.; Jelali, M.: Innovative Machine Learning Based Approach for Reliable and Accurate Measurement of Guide Roll Alignment in Continuous Casting Plants. 11th European Workshop on Structural Health Monitoring, Potsdam, 2024.[LINK]

Rosenthal, R.; Koldorf, S.; Shvydkii, E.; Albersmann, N.; Al-Shrouf, L.; Jelali, M.: Improving Steel Quality in Continuous Casting: A Novel Machine Learning-based Framework for Guide Roll Alignment Control and Quality Prediction. 11th European Continuous Casting Conference, Essen, 2024, accepted.

Salighe, S.; Söffker, D.:  Model complexity optimization of equivalent dynamical linearization data models used in model-free adaptive control based on bias/variance trade-off. GAMM Fachausschuss "Dynamik und Regelungstheorie", Berlin, Germany, Februrary 5-6, 2024.

Salighe, S.; Söffker, D.: On the PID-structured model-free adaptive control: a comparison of different approaches. 22nd European Control Conference (ECC24), Stockholm, Sweden, 25-28 June, 2024, accepted.

Shyshova, O.; Boschmann, W.; Söffker, D.: Risk-Based Analysis of Autonomous System Guidance of Inland Waterway Vessels . ESREL 34th European Safety and Reliability Conference, Cracow, Poland, June 23-27, 2024.[LINK]

Shyshova, O.; Gadhavi, P.; Tenzer, M.; Söffker, D.: Preparation times: An experimental-based discussion about limits for take over in highly automated systems. 2024 IEEE Conference on Cognitive and Computational Aspectsof Situation Management (CogSIMA), Montreal, Canada, May 7-10, 2024.[LINK]

Shyshova, O.; Gadhavi, P.; Tenzer, M.; Tanshi, F.; Söffker, D.: Takeover time: Requirements for highly automated inland vessels: First experimental-based results. IEEE ICHMS, 4th IEEE International Conference on Human-Machine Systems, Toronto, Canada, May 15-17, 2024.[LINK]

Surjana, A.; Ahle, E.; Söffker, D.: Application of Event-based Cloud NMPC with Time Delay Compensation. ICPS2024, 2024.[LINK]

Weitere Konferenzbeiträge


Vorträge/Sonstiges


Salighe, S.; Söffker, D.:  Model complexity optimization of equivalent dynamical linearization data models used in model-free adaptive control based on bias/variance trade-off. The GAMM Annual Meeting 2024, Magdeburg, Germany, 18-22 March, 2024.

Shyshova, O.; Gadhavi, P.; Tenzer, M.; Tanshi, F.; Söffker, D.: Preparation for takeover: A discussion about limits for take over in highly automated systems using the experimental exam-ple of takeover situations on highly automated inland waterway vessels.  Autonomous Inland and Short Sea Shipping Conference (AISS 2024), Duisburg, Germany, September 10-11, 2024.[LINK]

Söffker, D.: Predicting and assistance of human decision behaviors: methods and application fields. Lecture Series 2024 - IEEE SMC , Italy Chapter, 31. May, 2024.[LINK]