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Abstract: Nowadays, patients with metallic implants under-
going radiotherapy may suffer from inaccuracy in the treat-
ment plan caused by the implant. To ensure a precise plan an
accurate relation between Hounsfield values of the computer
tomographic (CT) images and the electron density of the ele-
ments and material mixtures is indispensable. In order to ex-
tend the stoichiometric calibration approach known for tissues
to the regime of metallic materials, the basic physical equa-
tions as well as approximations in the parametrization and fit-
ting are carefully reviewed. CT images of a standard calibra-
tion phantom and pure metallic samples up to the atomic num-
ber 𝑍 = 29 were acquired for various energies. Hounsfield val-
ues were determined on an extended Hounsfield scale which
allows the mapping of material having high atomic number
𝑍. It is found that from basic physics an empirical factoriza-
tion of the cross–sections into a function of 𝑍 and a function
of photon energy 𝐸 is not allowed over a wide range of 𝑍.
Specifically, the parameterization for tissue like materials can-
not be prolonged to materials with high–𝑍. Thus, the calibra-
tion is subdivided into regions of materials and its accuracy
is quantified in each region. It depends, among others, on the
knowledge of the X–ray photon spectra, the segmentation of
the material samples and the empirical parameterization of the
linear–attenuation coefficient.

Keywords: computed tomography, calibration, extended
Hounsfield Units, stoichiometric calibration, electron density,
radio therapy

1 Introduction

The accuracy of radiotherapy treatment of patients with metal-
lic implants is still challenging as treatment plans rely on the
accuracy of the electron density 𝜌𝑒 of the tissue or implant ma-

*Corresponding author: Zehra Ese, Department of Electrical
Engineering and Applied Natural Science, Westphalian University,
Campus Gelsenkirchen, Germany, and Department of General
and Theoretical Electrical Engineering, University of
Duisburg-Essen and CENIDE – Center of Nanointegration
Duisburg-Essen, Bismarckstr. 81, 47048 Duisburg, Germany,
e-mail: zehra.ese@stud.uni-due.de
Waldemar Zylka, Department of Electrical Engineering and
Applied Natural Science, Westphalian University, Campus
Gelsenkirchen, Germany

terial. Typically, materials are mixtures of chemical elements
and 𝜌𝑒 must be determined using the stoichiometric or another
approach [7].

In a clinical environment, CT images, particularly
Hounsfield numbers representing the material or tissue, are
used to obtain 𝜌𝑒. The majority of commercial CT machines
implement a conventional 12–bit scale which is suitable for
soft tissue and bones. For metallic materials the use of an ex-
tended scale, e.g. 16–bit, is highly beneficial as it maps high–𝑍
materials, like metals, without an ambitious failure [1–3].

A stoichiometric calibration is usually based on the factor-
ization of the cross–section in terms of functions of 𝑍 and 𝐸.
This, however, conflicts with rigorous basic physics ab initio
calculations rendering such factorization impossible, at least
inaccurate [5]. Since the exact physics formulas are hard to
compute, particularly for material compounds and polychro-
matic X–ray distribution, an empirical parameterization pro-
cedure based on factorization is used for tissue like materials
in the (narrow) diagnostic energy range 𝐸 = 80 − 140 keV.
This approach is very convenient as the coefficients can be fit-
ted to measured CT numbers, thus coping with (vendor and
scanner dependent) spectral X–ray energy distribution. Once
fitted to a calibration–material set, one is able to predict the
electron density or CT numbers of other materials.

In this work, we apply the stoichiometric calibration used
for biological tissues to mixtures of 𝑍 ≤ 29 materials, thus,
potentially violating some of its assumptions. One objective is
to systematically review all assumptions imposed on the sto-
ichiometric calibration used in the clinical environment. The
results of a standard calibration procedure for 𝐸 = 80 kV and
𝐸 = 120 kV are presented in detail, the validity and accuracy
are investigated for high 𝑍 materials.

2 Methods and Materials

Extended Hounsfield scale. In CT imaging the spatial distri-
bution of the linear x-ray attenuation coefficients 𝜇 represent-
ing the tissues is reconstructed into a matrix of voxels. The at-
tenuation coefficient 𝜇 of a particular image voxel is expressed
in (Hounsfield or) CT numbers 𝐻 using the linear function

𝐻(𝑢) = 𝑠𝑢+ 𝑖 , (1)

where 𝑢 = 1000𝜇/𝜇𝑤 is dimensionless with 𝜇𝑤 being the at-
tenuation coefficient of water, 𝑠 is the slope and 𝑖 the intercept.
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We denote the unit of 𝐻, 𝑠 and 𝑖 by HU. Note, that 𝑠, 𝑖 and 𝑢

are stored in the DICOM file. Equation (1) can be used to rep-
resent various scales, e.g. setting 𝑠 = 1 and 𝑖 = −1000 the
traditional Hounsfield definition is found. Often CT scanners
use 12–bit when storing CT measurements. It has been found
in [1, 2] that with this scale metallic materials provoke errors in
dose calculations since they are incorrectly mapped to scale’s
maximum. An extended scale, e.g. 16–bit, allows correct map-
ping [2].

X–ray attenuation-coefficient and electron density.
The linear attenuation coefficient of a mixture of 𝑀 chemical
elements can be expressed, as a function of energy 𝐸, by:

𝜇(𝐸,𝑍𝑖) = 𝜌𝑒
𝑀∑︁
𝑖=1

𝜌𝑒𝑖
𝜌𝑒

𝜎𝑒
𝑖 (𝐸,𝑍𝑖) , (2)

where 𝜌𝑒𝑖 = 𝜌𝑁𝐴𝑤𝑖𝑍𝑖/𝐴𝑖 is the volume electron density
(electrons per unit volume) of the 𝑖–th element and 𝜌𝑒 =

∑︀
𝑖 𝜌𝑖

the total electron density of the mixture (here and in the fol-
lowing the 𝑖–summation runs from 1 to 𝑀 ). The mass den-
sity of the mixture is 𝜌, 𝑁𝐴 is Avogadro’s number, 𝜎𝑒

𝑖 , 𝑍𝑖

and 𝐴𝑖 are, respectively, the total scattering cross–section per
electron, the atomic number and atomic weight of the 𝑖–th el-
ement and 𝑤𝑖 is its proportion by weight. For pure elements
𝑀 = 𝑤𝑖 = 1. The total cross-section per atom is 𝜎𝑖 = 𝑍𝑖𝜎

𝑒
𝑖 .

A CT system must at least be described as a polychro-
matic beam of photons (potentially) undergoing filtration be-
fore crossing the material and being detected by an energy sen-
sitive detector. As in a clinical setting, we assume the X–ray
spectrum 𝑆(𝐸) to be unknown, but normalized (to 1); for sin-
gle energy beams 𝑆(𝐸) = 𝛿(𝐸 − 𝐸′) holds. All monochro-
matic quantities in (2) must be averaged over 𝑆(𝐸) and will
be denoted by a hat (̂︀), e.g.

̂︀𝜇(𝑆,𝑍𝑖) =

𝐸𝑚𝑎𝑥∫︁
0

𝑑𝐸𝑆(𝐸)𝜇(𝐸,𝑍𝑖) . (3)

While passing an object the beam of a polychromatic spectrum
is shifted to higher energies since the cross–sections 𝜎𝑒(𝐸,𝑍𝑖)

are larger for low–energy photons. This beam–hardening ef-
fect is position dependent and particularly prominent for high–
𝑍 materials. In other words, if beam–hardening is not ac-
counted for, the spectrum must be seen as dependent on po-
sition �⃗� in the material, i.e. 𝑆(𝐸, �⃗�).

The total X–ray cross–section per atom 𝜎𝑖 in the energy
range 80–140 keV is a sum of cross–sections of three phys-
ical processes: photoelectric absorption, 𝜎𝑝ℎ(𝐸,𝑍), coherent
(Rayleigh) scattering, 𝜎𝑐𝑜ℎ(𝐸,𝑍), and incoherent (Compton)
scattering, 𝜎𝑖𝑛𝑐𝑜ℎ(𝐸,𝑍). For monochromatic beams exact for-
mula for each of these cross–sections were calculated from
fundamental physics and found that neither a cross–section nor
their sum factorize into a function 𝐾(𝐸) and a function 𝐹 (𝑍)

[5]. Specifically, none of the cross–section can be written as
𝜎∘(𝐸,𝑍𝑖) = 𝐾∘(𝐸)𝐹 ∘(𝑍𝑖), where ∘ denotes one of the phys-
ical processes mentioned above. Such factorization, however,
is (frequently) assumed to hold as it is very beneficial when
calculating ̂︀𝜇(𝑆,𝑍𝑖).

By restricting 𝑍 to the vicinity of a reference element in a
mixture, e.g. carbon, a (potentially non-integer) Taylor expan-
sion of 𝐹 ∘(𝑍𝑖) is admissible at some level of accuracy [5, 6, 9].
Thus, by utilizing (3), ̂︀𝜇(𝑆,𝑍𝑖) can be parameterized in 𝑍 di-
rection by spectrum dependent expansion coefficients ̂︀𝐾∘(𝑆).
The primary benefit of a parameterization scheme is that its
coefficients could be obtained by a least square regression (fit)
to Hounsfield values of calibration materials measured with a
particular spectrum 𝑆(𝐸). This allows a subsequent prediction
of CT numbers and electron densities of new materials for the
particular energy spectrum.

Simplifying the Taylor expansion in 𝑍 to one single power
law, i.e. 𝐹 ∘(𝑍𝑖) ∝ 𝑍𝑠

𝑖 , one recovers the parameterization orig-
inally introduced in [4] for elements near to oxygen and for
spectra of the EMI scanner at 60 keV and 80 keV:

𝜎𝑒
𝑖 (𝐸,𝑍𝑖) = 𝐾𝑝ℎ𝑍𝑝−1

𝑖 +𝐾𝑐𝑜ℎ𝑍𝑞−1
𝑖 +𝐾𝑖𝑛𝑐𝑜ℎ𝑍𝑟−1

𝑖 . (4)

The coefficients 𝐾∘ depend on energy only, 𝐾∘ = 𝐾∘(𝐸),
the non-integer exponents 𝑝 = 4.62, 𝑞 = 2.86 were obtained
from fitting to tabulated cross–sections and 𝑟 = 1 originates
from Compton scattering physics at 𝐸 ≫ 1 MeV. With the aid
of (2)–(4) it follows:

̂︀𝜇(𝑆,𝑍𝑖) = 𝜌𝑒
(︁ ̂︀𝐾𝑝ℎ ̃︀𝑍𝑝−1 + ̂︀𝐾𝑐𝑜ℎ ̃︀𝑍𝑞−1 + ̂︀𝐾𝑖𝑛𝑐𝑜ℎ ̃︀𝑍𝑟−1

)︁
,

(5)
where ̃︀𝑍 =

(︀∑︀
𝑖(𝜌

𝑒
𝑖 /𝜌

𝑒)𝑍𝑠
𝑖

)︀1/𝑠 is a weighted (effective)
atomic number. The coefficients ̂︀𝐾∘ are functions of the spec-
trum, i.e. ̂︀𝐾∘ = ̂︀𝐾∘(𝑆). In practice, each scanning proto-
col uses its own energy spectrum and algorithms, potentially
including additional corrections, e.g. during reconstruction,
which affect the energy spectrum and are included in 𝑆(𝐸)

in this paper.
The parameterization coefficients ̂︀𝐾∘(𝑆) must be de-

termined for the particular 𝑆(𝐸) by a fitting procedure to
Hounsfield values, via (1), of calibration materials measured
with a calibration phantom (with known densities and elemen-
tal compositions). Among others, the least square regression
procedure in [7] and [8] can be used. The former is a three pa-
rameter polynomial fit to (5) with ̂︀𝐾∘ normalized to the (a pri-
ori known) attenuation coefficient ̂︀𝜇𝑤 of water. In the approach
from [8], which was used in this investigation, ̂︀𝐾∘ of the cal-
ibration material are normalized by ̂︀𝐾𝑖𝑛𝑐𝑜ℎ

𝑤 of water forminĝ︀𝑘∘(𝑆) = ̂︀𝐾∘/ ̂︀𝐾𝑖𝑛𝑐𝑜ℎ
𝑤 to be obtained from a non–linear fit to

̂︀𝜇̂︀𝜇𝑤
(̂︀𝑘𝑝ℎ,̂︀𝑘𝑐𝑜ℎ) = 𝜌𝑒

𝜌𝑒𝑤

(︂̂︀𝑘𝑝ℎ ̃︀𝑍𝑝−1 + ̂︀𝑘𝑐𝑜ℎ ̃︀𝑍𝑞−1 + ̃︀𝑍𝑟−1̂︀𝑘𝑝ℎ ̃︀𝑍𝑝−1
𝑤 + ̂︀𝑘𝑐𝑜ℎ ̃︀𝑍𝑞−1

𝑤 + ̃︀𝑍𝑟−1
𝑤

)︂
.

(6)
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Note that this implies ̂︀𝐾∘ ≈ ̂︀𝐾∘
𝑤 which might be inaccurate

for elements or mixtures with atomic number or electron den-
sity well away from that of water. Once the scanner–specific
coefficients ̂︀𝑘∘ are known for each energy spectrum, the values
of the relative electron density 𝜌𝑟𝑒𝑙 = 𝜌𝑒/𝜌𝑒𝑤 of other materi-
als and mixtures with known elemental composition can be
computed and look–up–tables for X–ray radiotherapy created
using (6).

We employed a tissue characterization phantom model
467 (Gammex) phantom containing known tissue equivalent
materials in cylindrical design (𝑑 = 28mm, ℎ = 70mm)
which was scanned using 80 keV and 120 keV spectra of the
Siemens Somatom Force scanner. Additionally, four metal-
lic coin–shaped samples provided by umicore®(𝑑 = 20mm,
ℎ = 5mm) from Al (𝑍 = 13), Cr (𝑍 = 24), Ti (𝑍 = 22), Cu
(𝑍 = 29) were scanned being in a self-constructed cubic wa-
ter phantom (ℎ = 350mm) made of polystyrene material. The
samples were fixed at a water equivalent plate made from RW3
(PTW Freiburg GmbH) and submerged in the water phantom
to make sure, that the samples are fully covered by water. The
samples were positioned in a water depth of 3 cm, measured
from the sample surfaces to the waterline. All materials were
subdivided into two segments separated by a relative electron
density 𝜌𝑠𝑟𝑒𝑙. The least square fit was separately done in the
𝜌𝑟𝑒𝑙 ≤ 𝜌𝑠𝑟𝑒𝑙 and in the 𝜌𝑟𝑒𝑙 > 𝜌𝑠𝑟𝑒𝑙 region. We used 𝜌𝑠𝑟𝑒𝑙 = 1.0

and 𝜌𝑠𝑟𝑒𝑙 = 1.69 representing water and SB3 cortical bone,
respectively.

3 Results

At 80 kV and 120 kV, respectively, the following mean CT
numbers 𝐻𝑚 are determined from images: Al 2587 HU and
2071 HU, for Ti 8186 HU and 7273 HU, for Cr 9263 HU and
9085 HU and for Cu 10916 HU and 12168 HU. The effect
of decreasing CT numbers with increasing tube voltage can
be observed for almost all metal samples. The expression of
cupping artifacts becomes stronger with increasing tube volt-
age, as well as with increasing atomic number 𝑍, mainly due
to beam hardening effects [1–3]. Since, we use a ROI of size
1.8 mm x 6.6 mm at the central part of a material to determine
the mean CT number 𝐻𝑚 and its error 𝜎𝑒𝑟𝑟.

The ̂︀𝑘∘ values were calculated segmentally for two sep-
aration points 𝜌𝑠𝑟𝑒𝑙 given above. Figure 1 shows the relative
electron densities 𝜌𝑟𝑒𝑙 along all materials versus the corre-
sponding CT numbers. Figure 1a vs. Fig. 1c and Fig. 1b
vs.Fig. 1d display the comparison of the fits in two regions
separated by the separation points 𝜌𝑠𝑟𝑒𝑙 and obtained at 80 kV
and 120 kV, respectively. In each sub–figure the measured CT
numbers and those calculated by the stoichiometric calibration

method, i.e. Eq. (6), are displayed. To quantify the error, mea-
sured CT numbers were additionally set to 𝐻𝑚 ± 𝜎𝑒𝑟𝑟. The
calculated CT number is expected to be within [𝐻𝑚 − 𝜎𝑒𝑟𝑟,
𝐻𝑚 + 𝜎𝑒𝑟𝑟].

For material regions in the range 𝜌𝑟𝑒𝑙 = 3.7−8.0 a consid-
erable mismatch between measured and calculated CT num-
bers is observed. This cannot be explained by the statistical
errors 𝜎𝑒𝑟𝑟 and must be seen as a systematic error steaming,
e.g. from CT image artefacts and an incorrect parametrisation
of the cross–section.

Discrepancies between the calculated and the measured
CT numbers due to the choice of the material segments can
be found in the region of tissue equivalent materials. This is
shown in the inset in Fig. 1 for 𝜌𝑟𝑒𝑙 = 1 − 2. While for
𝜌𝑟𝑒𝑙 ≤ 𝜌𝑠𝑟𝑒𝑙 the calculated CT numbers are comparable, dis-
crepancies are noted for 𝜌𝑟𝑒𝑙 ≥ 𝜌𝑠𝑟𝑒𝑙. For the 𝜌𝑠𝑟𝑒𝑙 = 1

separation point Δ𝐻80𝑘𝑉
𝑚𝑖𝑛 = 42HU, Δ𝐻80𝑘𝑉

𝑚𝑎𝑥 = 630HU
and Δ𝐻120𝑘𝑉

𝑚𝑖𝑛 = 44HU, Δ𝐻120𝑘𝑉
𝑚𝑎𝑥 = 251HU. For 𝜌𝑠𝑟𝑒𝑙 =

1.69 we observed Δ𝐻80𝑘𝑉
𝑚𝑖𝑛 = 0HU, Δ𝐻80𝑘𝑉

𝑚𝑎𝑥 = 1HU and
Δ𝐻120𝑘𝑉

𝑚𝑖𝑛 = 10HU, Δ𝐻120𝑘𝑉
𝑚𝑎𝑥 = 11HU. Separating mate-

rials at 𝜌𝑠𝑟𝑒𝑙 = 1 shows an increasing improvement with in-
creasing energy for the whole material area. In contrast, for
𝜌𝑠𝑟𝑒𝑙 = 1.69 we observe almost energy independence, espe-
cially for tissue equivalent materials.

4 Discussion and Summary

While former stoichiometric calibration for relative electron
density focused on human tissue substitutes, the present study
extends the approach to metallic materials. Moving to high–𝑍
materials requires review of basic physics and approximations
traditionally used. Consequently, the parameterization of the
cross–sections for metals apparently differs from that for ma-
terials nearby human tissue. As metallic materials do not nec-
essarily obey the calibration curve of tissues, the calibration
should be done for various material regions. The computation
of Hounsfield values of metallic materials from CT images is
susceptible to beam hardening artifacts. Even if the statistical
error is small, the systematic error due to that artifact requires
additional quantification.

The applicability of the stoichiometric calibration based
on parametrization from [4] is limited in the presence of metal-
lic materials. Among others, accuracy and robustness relies on
the division of materials in segments and the knowledge of the
X–ray photon spectra. Specific spectra can, however, be incor-
porated into the approach. A one power–law parameterization
for wide 𝑍 ranges remains in conflict with rigourous physics
and must be replaced by an improved expression.
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(a) 𝐸 = 80 kV, separation at 𝜌𝑠
𝑟𝑒𝑙 = 1 (b) 𝐸 = 120 kV, separation at 𝜌𝑠

𝑟𝑒𝑙 = 1

(c) 𝐸 = 80 kV, separation at 𝜌𝑠
𝑟𝑒𝑙 = 1.69 (d) 𝐸 = 120 kV, separation at 𝜌𝑠

𝑟𝑒𝑙 = 1.69

Fig. 1: The relative electron density 𝜌𝑟𝑒𝑙 versus measured and calculated CT numbers at 80 kV and 120 kV for Gammex 467 phan-
tom materials and metals. Measured CT numbers are displayed with the error of the means (bars). The least square fits are shown as
dashed lines. At each energy, two different fittings are compared (a) vs (c) and (b) vs (d), they differ in separation point 𝜌𝑠𝑟𝑒𝑙.
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