-2/19-

March 13, 2019 / Comprehensive Heart Failure Center (CHFC) / University Hospital Würzburg

Multi-functional RF coils for 7T MRI based on 1D/2D electromagnetic metamaterial engineering

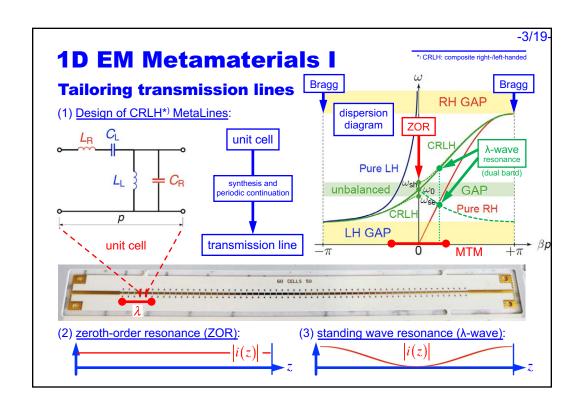
<u>Daniel Erni</u>, Andreas Rennings, Jan Taro Svejda, Benedikt Sievert, Zhichao Chen, Thorsten Liebig, and Jürg Fröhlich⁽¹⁾

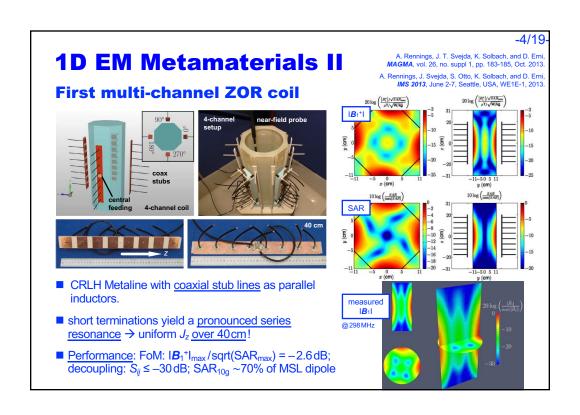
General and Theoretical Electrical Engineering (ATE), Department of Electrical Engineering and Information Technology, Faculty of Engineering, University of Duisburg-Essen, D-4748 Duisburg, Germany

www.ate.uni-due.de

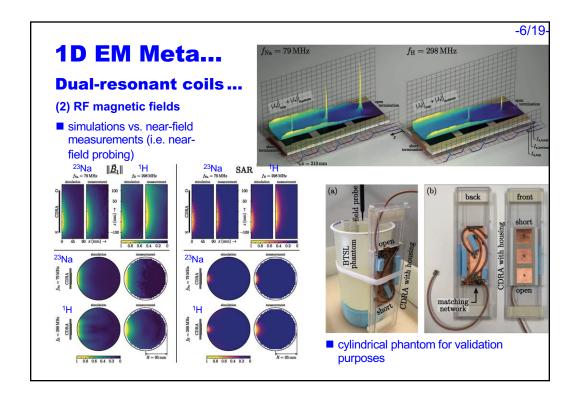
(1) Visiting Scientist, Fields at Work GmbH, CH-8006 Zurich, Switzerland.

Agenda




■ 1D EM Metamaterials – CRLH «MetaLines»:

- ZOR coil elements
- dual-resonant coil elements
- traveling-wave coil system «MetaBore»


■ <u>2D EM Metamaterials – HIS «MetaSurfaces»</u>:

- elongated dipole elements on HIS ground plane
- 8-channel HIS coil system

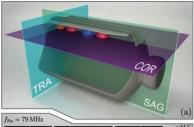
-5/19-J. T. Svejda, A. Rennings, D. Erni, tm – Technisches Messen, vol. 84, no. 1, pp. 2-12, Jan. 2017, MAGMA, vol. 29, no. suppl 1, pp. S309, Oct. 2016. **1D EM Metamaterials III** Dual-resonant coils for ²³Na/¹H high-field MRI (1) Composite right-/left-handed (CRLH) MetaLine ■ multi-layer topology ■ $\lambda/4$ resonance $L_{\rm R}/2$ 2 $C_{\rm L}$ $2C_{\rm L}$ $L_{\rm R}/2$ ■ excitation of ²³Na/¹H ¹H: $f_{\rm H} = 298 \, {\rm MHz}$ triple-layer metallization unit cell: varying LL to meet the 2 resonances 0 open termination of CRLH-TL $\lambda/4$ short open CRLH-TL with 3 unit cells right-handed 23 Na: $f_{Na} = 79 \, \text{MHz}$ ZOF left-handed $|\beta| \cdot p$ 90° termination of CRLH-TL $\overline{N_{ m cells}}$ $\lambda/4$ dispersion curve $\lambda/4$ resonant coil element consisting of a 3 section meta-line open (CRLH meta-line)

1D EM Metamaterials V

J. T. Svejda, A. Rennings, D. Erni, tm – Technisches Messen, vol. 84, no. 1, pp. 2-12, Jan. 2017, MAGMA, vol. 29, no. suppl 1, pp. S309, Oct. 2016.

Dual-resonant coils for ²³Na/¹H high-field MRI

(3) Verification within a functional MRI scan


- There is an apparent selectivity between hydrogen and sodium images.
- <u>Hydrogen images:</u> reproduce the ping-pong ball insets due to the high SNR.
- <u>Sodium images:</u> are much less selective due to the low SNR (→ increase Q_{unload} @ 79 MHz).
- Sodium images are inhomogeneous due to the standingwave nature of the quarterwave resonance (in conjunction with the low SNR).

BTSL phantom with filled pingpong ball insets (NaCl solution or NaCl agar mixtures)

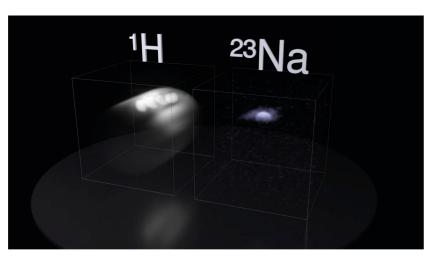
Sodium images @ 79 MHz (still low SNR)

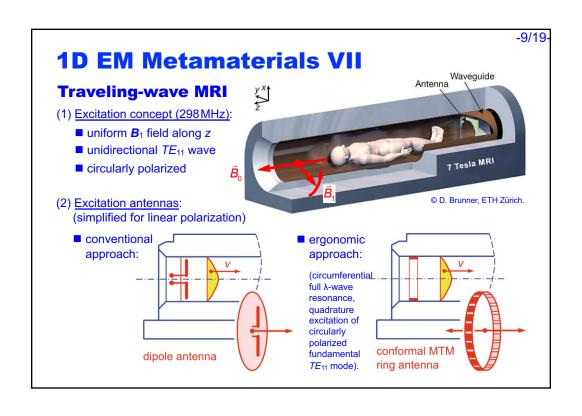
Hydrogen images @ 298 MHz

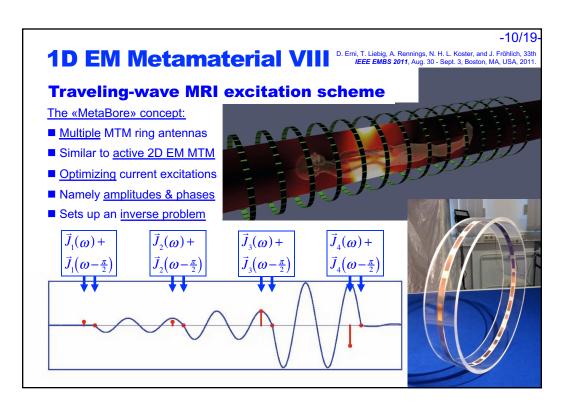
(high SNR)

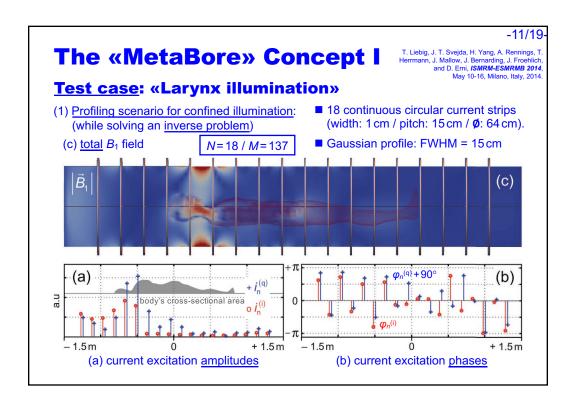
3D gradient echo sequences $f_{\rm H}=298\,{
m MHz}$ (4) ≈ 200 ③ ≈ 400 ② ≈ 200 ① ≈ 400

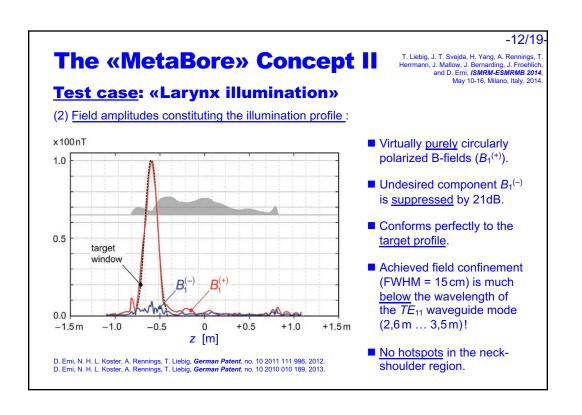
-8/19-

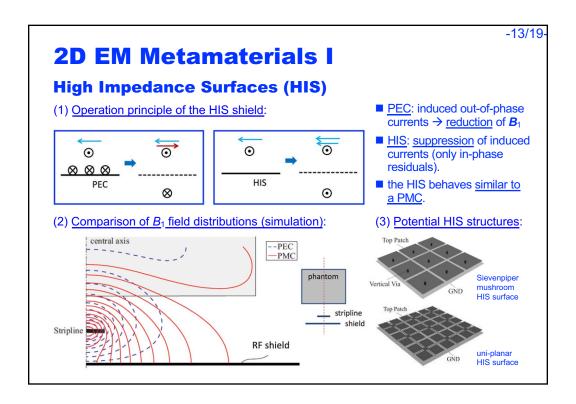

1D EM Metamaterials VI

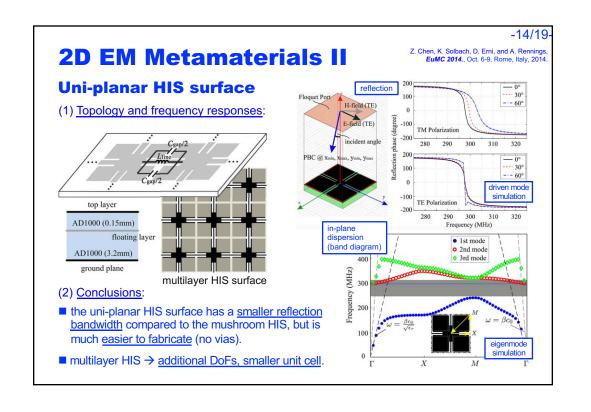

Jan Taro Svejda, Dual-frequente CRLH-Metaleitungs-Resonatoren für simultane ¹H/X-Kern MRT bei 7 Tesla.

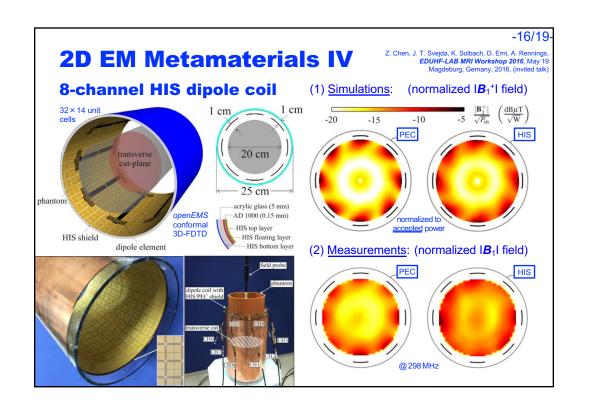

PhD Thesis, University of Duisburg-Essen, Duisburg, Feb. 4, 2019.


Dual-resonant coils for ²³Na/¹H high-field MRI


(3) Verification within a functional MRI scan



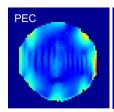


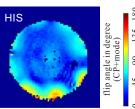


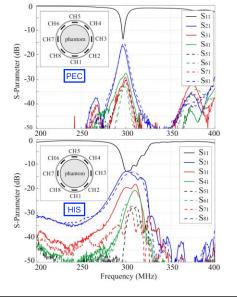
-15/19Z. Chen, K. Solbach, D. Erni, and A. Rennings, *IEEE Trans. Microw. Theory Techn.*, vol. 64, no. 3, pp. 972-983, 2016. **2D EM Metamaterials III Dipole-based RF coil element** (3) Elongated dielectric-loaded dipole: (2) HIS shielded dipole coil element: PEC dBµT VW/kg 15 cm (peak SAR)1/ HIS «normalized» flux density HIS Shield lipole coil @298 MHz ■ transversal flux profile broadening: 40% dipole $\rightarrow \frac{1}{d}$ ■ peak flux enhancement: 1.4% (d = 20 mm) 26% (d = 5 mm)25 cm (1) Elongated dielectrically-loaded dipole: lumped port ■ Meander: geometrical compression/masking of the decreasing current distribution at the dipole end. high dielectrics ($\varepsilon_r = 11.2$) ■ Dielectric: increases the electrical length of the meander.

-17/19

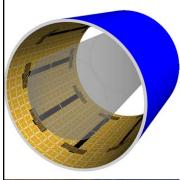
2D EM Metamaterials V

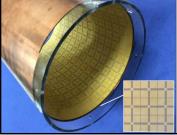

Zhichao Chen, *Ph.D. Dissertation*, University of Duisburg-Essen, December 2016.
Z. Chen, K. Solbach, D. Emi, and A. Rennings, *IEEE Trans. Biomed. Eng.*, vol. 64, no. 6, pp. 1297-1304, June. 2017.


Coupling in 8-ch dipole coils


(2) 8-Channel HIS dipole coils - coupling:

- Measurement: the HIS coil system shows the expected <u>higher overall</u> coupling compared to the PEC coil system.
- Measurement: the HIS coil system shows a 3dB stronger nearest neighbor element coupling compared to the PEC coil system (HIS: -13dB, PEC: -16dB).


(1) 8-Channel HIS dipole coils - Flip-angle images:



Summary

■ Functionalizing CRLH MetaLines:

- zeroth-order resonance (ZOR) that aims at
 - → large uniform, longitudinal field-of-views (FoVs)
 - → whole-body MRI
 - → lower peak electrical field *E*_{max} and peak SAR.
- <u>standing-wave resonances</u> of tailored extent (i.e. wavelength λ via dispersion engineering).
- intrinsic dual-band features for combined sodium/proton MRI.

■ Functionalizing HIS MetaSurfaces:

HIS: suppression of image currents,
 Dipole (PEC → HIS): ΔIB₁I_{aν} = +20%; ΔCoV = -18%
 8-ch (PEC → HIS): ΔIB₁I_{aν} = +10%; ΔCoV = -13%
 azimuthal homogenization, better field penetration,
 but: higher cross-coupling.

■ Future work:

- exploring <u>multi-band</u> MetaLine-based coil elements (2H, ¹⁹F, ²³Na, ³¹P).
- Leaky-wave antenna-based broadband coil elements.

-18/19-

-19/19-

That's all - Thanks.

www.ate.uni-due.de

Dr.-Ing. Andreas Rennings

- project leader MRI
- EM Metamaterials for high-field MRI

Dr.-Ing. Zhichao Chen

- former Ph.D. student
- elongated dipole elements over metamaterial ground planes, 8-channel coils

Dr.-Ing. Jan Taro Svejda

- scientist, MRI research
- dual-band metamaterial coils for X-nuclei MRI

Dipl.-Ing. Thorsten Liebig

- Ph.D. student
- MetaBore concept for traveling-wave MRI, openEMS (3D-EC-FDTD)

B.Sc. Benedikt Sievert

- M.Sc./Ph.D. student
- optimization of highimpedance surfaces (HIS)

Dr. sc. techn. Jürg Fröhlich

- visiting scientist, Fields at Work GmbH, ETH Zürich
- <u>has pioneered</u> the travelingwave MRI approach