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ABSTRACT In this article, a uniform helically arranged dielectric resonator array can generate Orbital
Angular Momentum waves (OAM) causing a conversion of OAM mode orders m from an incoming mode
min to an outgoing mode mout . The operating frequency is set as 10 GHz to facilitate the measuring process.
This new approach provides additional OAMvalues per digit in the RFID technology according to the excited
OAM modes mn ∈ {. . . ,−2,−1, 0, 1, 2, . . .} instead of the conventional binary values bn ∈ {0, 1}. Thus,
more information content is revealed. Through theOAMconcept, am1m2 2-digits OAMcoded tag is obtained
upon the employment of two uniform helically arranged cylindrical dielectric resonator arrays operating at
two different frequencies f1 = 10 GHz, and f2 = 11 GHz. Each array has 8 DRs but with different radius
yielding a reduction of the mutual coupling between the varied circular arrays. The interaction between the
phase delayed radiation of each DR element in the array generates different vortex waves with corresponding
OAM mode orders. In order to achieve the correct phase delay, the elevation of each DR is specified by the
desirable OAMmode order, the number of elements and the propagation wavelength. At first, the generation
of OAMmode orders−1, 2, and−3 is carried out. Then, mode conversion from 0 to−1,+1 to−2,−1 to 0,
+2 to −3, and −2 to +1 are depicted. After that, two simulated examples of 2-digits OAM coded tags with
the code {−1, 1} and {−2, 0} are presented. A conversion of mode 0 to mode 1 has been simulated and also
measured, where an additional metal sheet is used to evaluate the distortion in the OAM modes. As a result,
this study demonstrates that the uniform helically arranged DR arrays can convert the incoming OAMmode
order into another one, where the clutter from broadside direction is rejected due to the Butler matrix (BM),
which interferes the clutter destructively.

INDEX TERMS Orbital angular momentum OAM, vortex waves, spiral waves, OAM mode conversion,
OAM lens, dielectric resonator, clutter rejection, RFID tags, passive chipless RFID.

I. INTRODUCTION
Radio Frequency Identification Technology (RFID) offers
a solution to the issue of the difficult distinction and

The associate editor coordinating the review of this manuscript and
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identification of many articles where it can detect, locate,
identify and track these items using radio waves. An RFID
system consists of an RFID reader and a transponder
device (radio receiver and transmitter). When an electromag-
netic (EM) interrogation pulse ejected from a nearby RFID
reader triggers the transponder part, it responds back and
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sends out signals that are characterized by a specific code
known to the reader. Furthermore, there are two kinds of
RFID tags, namely passive and active. The active tags require
an extra battery power to operate, as opposed to the passive
tags which are powered by the electromagnetic field via the
RFID reader having much lower production costs [1]. In
addition, the passive dielectric resonators (DRs) designed
in this study are composed of a dielectric material with a
high permittivity. At certain resonance frequencies and cor-
responding EM field distribution (modes) which correspond
to the eigen-frequencies, the passive DR shows the largest
radar cross section (RCS). The corresponding quality factor
and the mode’s operating frequency depend mainly on the
relative permittivity, the size and the loss tangent (tanδ) of the
DR [2]. By illuminating a conventional RFID tag (1-bit tag)
with plane waves, the backscattered signal may contain infor-
mation in form of a sensed value [3]–[5] or frequency iden-
tification [6]. The modes of a DR can be frequency shifted
by altering the dimensions of the DR. Through this manner,
an N -digit coded tag can be formed with N differently sized
DRs. Nevertheless, the number of digits is limited by the
spectral mode spacing between the two adjacent modes thus
avoiding the distortion between the different DRs resonating
at different frequencies [7].

Electro-magnetic (EM) waves can carry an angular
momentum, which can be divided into a spin angular momen-
tum and an orbital angular momentum (OAM) in paraxial
beams. The spin angular momentum is well known as the
circular polarization that describes the intrinsic property of
the spin characteristics of the EM rotational degrees of free-
dom. In contrast, the OAM of the EM wave is an extrin-
sic property that describes the orbital characteristics of its
rotational degrees of freedom, which has a helical transverse
phase structure of exp(−jϕm), where ϕ is the transverse
azimuthal angle and m is an unbounded integer that indicates
the OAM mode order [8]. Containing an infinite number of
mutually orthogonal states m (i.e. the OAM mode order),
the OAM waves present a new degree of freedom in signal
coding, enabling a new spatial division multiplexing (SDM)
procedure scheme with independent data streams at the same
operating frequency [9]. Hence, an improvement of both
capacity and spectral efficiency could be gained. The OAM
mode division multiplexing (OAM-MDM) is a new physical
transmission technology which can also be used in combi-
nation with the other multiplexing methods (time, frequency,
polarization and code) yielding an enormous improvement in
data transmission [10]. The OAMwaves are characterized by
a doughnut-shaped radiation pattern with the helical phase
front and with a singularity, where the zero is centered in the
doughnut-shaped radiation pattern. Concerning the genera-
tion of vortex waves, there are many available ways such as
metasurfaces [11], spiral phase plates (SPP) [12], holographic
plates (HP) [13], elliptical patch antennas which excite two at
the same time orthogonally oriented resonant mode patterns
[14], [15], reflectors [16] or uniform circular patch arrays
(UCA) [17]. However, these approaches do not discuss the

limitations compared to MIMO systems [18]. Furthermore,
the vortex waves are advantageous for the field of imag-
ing [19] and particularly for spinning objects, which can still
be used even when the line of sight (LOS) is orthogonal to
the object [20]. By means of tailored phased-array antenna
concepts [21], theOAMbeam is steered inwhich the typically
large beam divergence inherent to the vortex waves can be
reduced upon the usage of a lens [22]–[24], or a reflector [16],
[25], [26].

In this work, not only the zeroth mode order is converted,
but the rest of the modes also undergo certain conversion
as introduced presenting its novelty. The initial idea is pro-
posed in [27], whose RFID codes are increased by means
of helically arranged DRs arrays in addition to the novelty of
the clutter rejection’s possibility. In contrast, the conventional
arrangement of DRs suffers from the strong clutter leading
to a loss in the transmitted data. This article is classified
into the following sections. At first, Section II reveals the
reflection coefficient and the far-field radiation pattern of
a rectangular patch antenna in addition to the transmission
coefficient of a cylindrical dielectric resonator. Then, the radi-
ation pattern and the phase front of the converted OAM
mode are depicted in proceeding Section III. Followed by
Section IV, where the concept of N -digits coded tag enabling
OAM coding of frequency tags with two digits with values
{−3,−2,−1, 0, 1, 2, 3} according to the realizedOAMmode
order. Furthermore, in Section V, the measured transmis-
sion coefficient of an eight cylindrical dielectric resonator
array with and without a metal plate is introduced. Finally,
Section VI is presented as a conclusion of this study.

II. DESIGN OF RECTANGULAR PATCH ANTENNA AND
CYLINDRICAL DIELECTRIC RESONATOR
With the aid of the MoM-solver FEKO, a rectangular
patch antenna operating at 10 GHz is simulated to simplify
the experimental studies. This y-polarized patch antenna is
designed on a Rogers RO4003C substrate with a relative
permittivity of 3.55 and a height of 1.524 mm. While the
simulated patch antenna is specified by 7.53 mm length
(about λeff/2) and 10.8 mm width. In Fig. 1 (a, b, and c), the
patch antenna and its radiation pattern are illustrated in 2D
and 3D.When the directional antenna is matched to 50�, the
gain is maximized through avoiding reflections at the antenna
port hence yielding a gain of about 6.1 dBi (Fig. 1 (c)).
Moreover, the simulated return loss S11 is about −28 dB
unlike the measured one which is about −12.7 dB at the
operating frequency of 10 GHz (Fig. 1 (d)). This is due to the
changing of the antenna’s characteristic impedance causing
more reflections and a shift of the resonance frequency to
10.2 GHz. The underlying printed circuit board (PCB) board
is characterized by a size of 30 mm × 30 mm. A cylindrical
dielectric resonator reacts and resonates once illuminated by
incident plane waves. This DR supports three kinds of mode
(Transverse Electric (TE), Transverse Magnetic (TM) and
Hybrid Modes (HE)) whose eigen frequency and correspond-
ing quality factor depend mainly on the relative permittivity
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FIGURE 1. The top view of rectangular patch antenna (a), the simulated
radiation pattern (dBi) in 3D at 10 GHz (b), the simulated radiation
pattern (dBi) in 2D at ϕ = 0◦ (H-plane) (c), and the return loss S11 (d).

εr , the size, the loss tangent (tanδ), and on the orientation of
the DR. To be more specific, the 10 GHz operated DR has
a 3.2 mm radius, a 3 mm height, and a relative permittivity
εr = 37 (ceramic) thus leading the DR to radiate with the
mode HE11. In Fig. 2 (a, and b), the simulated and measured
setup is shownwith a separation of about 100mmbetween the
two horn antennas on one hand and between the horn antennas
and the DR on the other hand. In Fig. 2 (c), the simulated
and the measured insertion loss S21 of the two horn antennas
including and excluding DR are presented within 9.6 GHz
and 10.4 GHz. However, an increased S21 of about 5 dB
appears specifically between 10 GHz and 10.3 GHz indicat-
ing the presence of the DR. The measured S21 is in good
agreement with the full-wave MoM simulation calculated
with Feko.

III. OAM MODE CONVERSION
The cylindrical DR mentioned in the previous section is used
to form a helically arranged cylindrical DR array in order
to re-radiate vortex waves once illuminated by an antenna.
These helically arranged DR array radiates into two opposite
directions (forward and backward) based on the asymmetric
doughnut radiation pattern of each DR. The forward transmit-
ted OAM mode order propagates in the same direction of the
incident OAM mode order thus having the same OAM mode
ordermin. Whereas, the backward reflected OAMmode order
propagates in the opposite direction of the incident OAM
mode order thus having a different OAM mode order mout
depending on the DRs arrangement. The phase shift between
each pair of the adjacent DRs, which is essential to OAM
waves, is defined by the following equation:

1ϕ =
2πm
N

, (1)

where N is the number of single DR, and m is the
mode order of the vortex waves. Thus, the height h

FIGURE 2. The simulation setup of the cylindrical DR (a),
the measurement setup of the cylindrical DR in an anechoic chamber (b),
and the simulated and measured S21 (dB) of two standard gain horn
antennas without and with DR from 9.6 GHz till 10.4 GHz.

(cf. Fig. 3 (a, b, and c)) between each azimuthally adjacent
DR, due to the twofold path length of the electromagnetic
waves, is determined by

h =
mλ
2N

. (2)

If the DRs exceed the phase shift of 2π , the pitch p (cf. Fig. 3
(a, b, and c)), which is the total height between the lowest
and the highest DR, can be shifted vertically downwards by
λ/2 along the propagation-axis. In Fig. 3 (a, b, and c), three
helically arranged cylindrical DRs array with three different
OAM mode orders −1, +2, and −3 are illuminated by a
rectangular patch antenna operating at 10 GHz, providing an
incident OAMmode order of 0. Please note, that the different
colors of the DRs are only to simplify the understand of
the concept. Regarding equation (2), the height h between
the adjacent DRs are 1.875 mm, 3.75 mm, and 5.625 mm
with respect to the OAM mode orders −1, +2, and −3,
respectively. The highest gain values of the backscattered
direction of the DRs concerning the modes −1, +2, and −3
(cf. Fig. 3 (d)) are −17 dBi, −15.2 dBi, and −14.3 dBi
at 154◦, 154◦, and 219◦, respectively. Note that the dia-
gram actually does not depict true side lobes but rather
cross sections of doughnut shaped radiation patterns. In addi-
tion, the orders of the backscattered OAM mode depend
on the quantity of DRs, on the incident OAM mode order
and on the spacing between each pair of adjacent DRs.
Fig. 3 (e, f, and g) shows the conversion of the zeroth OAM
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FIGURE 3. The generation of OAM mode orders −1, +2 and −3 (a, b,
and c), the simulated radiation pattern (dBi) in 2D at ϕ = 0◦ (H-plane) for
the OAM mode orders −1, +2 and −3 at 10 GHz (d), and the simulated
phase distribution (x = −100 till 100 mm, y = −100 till 100 mm, z =
200 mm) at 10 GHz for the OAM mode orders −1 (e), +2 (f), and −3 (g).

mode order into the OAM mode orders of −1, 2, and −3,
respectively, where the phase distribution is a distribution of
one helix, two helices and three helices. Further, the posi-
tive OAM modes are specified by the right-handed thread
whereby the rotation of the vortex waves is clockwise, in con-
trary to the negative OAM modes that rotate counterclock-
wise. Moving to Fig. 4, the conversion of vortex beams from
different OAMmode orders [0 (a),+1 (b),−1 (c),+2 (d), and
−2 (e)] is demonstrated. A lensed patch antenna array [22]
emits towards the structured target that is configured

FIGURE 4. The different simulated scenarios for the OAM mode order
conversion at an OAM coded tag with mDR = +1 from the incident OAM
mode order min to the reflected OAM mode order mout showing reflected
and transmitted beams only: 0 to −1 (a), +1 to −2 (b), −1 to 0 (c), +2 to
−3 (distorted) (d), and −2 to +1 (e).

according to the OAMmode order+1. The lens is crucial for
the beam divergence compensation otherwise the OAMmode
conversion will not be performed well. In case (a), the OAM
mode order 0 is transmitted and converted to OAMmode−1.
While the cases (b) and (c) undergo OAM mode orders +1
and −1 conversion into the mode orders −2 and 0, respec-
tively. Similar to the previous cases, the cases (d) and (e)
transmit the mode orders +2 and −2 and convert them into
the OAM mode orders −3 and +1. Moreover, the converted
mode order mout is equal to the opposite sign of the sum of
the incident OAM mode order min and the DRs OAM mode
order mDR.

mout = −(min + mDR). (3)

However, the case (d) with the+2mode exhibits slight distor-
tion because of the strong divergence of the doughnut-shaped
OAM beamwith the mode order 2. In Fig. 4, all of the 5 cases
are displayed with the forward (transmitted) and backward
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FIGURE 5. The simulated radar cross section (RCS) (dBm2) for two
different DRs with two different radii and heights from 9 GHz to 12 GHz.

(reflected) scattered beam without taking into account the
strong beam of the UCA antennas for reason of clarity.

IV. N-DIGITS CODED TAG
Converting the OAMmode order from mode 0 (plane waves)
to anothermodemay have a new advantagewith respect to the
application of RFID. The conventional RFID application is
based on the illumination of the DR with plane waves where
the backscattered signal carries information in the form of
frequency identification or a sensed value. The DR element’s
absence leads to understanding the value of 0, and its presence
leads to understanding the value of 1. Upon the usage of
N different DR elements in one tag, the number of codes
increase to 2N in which each DR is operating at a different
frequency. However, the high demand of labeled products
is greater than the limited capacity of the number of codes
which encourages the search for new methods to increase
the number of tags/codes. Two different cylindrical DRs with
different radii and heights are simulated to operate at 10 GHz,
and 11 GHz separately. The first DR is characterized with
radius and height of 3.2 mm/3 mm value, while the second
one 2.9 mm/2.72 mm. In Fig. 5, the radar cross section (RCS)
of the two DRs is illustrated from 9 GHz to 12 GHz in
which the maximum RCS is shown to be about −32 dBm2.
In addition, the difference between the DRs is about 20 dB
which is enough to reduce the interference between the dif-
ferent DRs. The same helically DRs arrangement is applied
as in Section (III) so that a 2-digits OAM coded tag is
formed (cf. Fig. 6). A desirable enhancement of the isolation
between the two helically arranged dielectric resonator arrays
is accomplished through the usage of different radii for each
helix. To be more specific, 20 mm, and 30 mm radii are
applied for the frequencies 11GHz, and 10GHz, respectively.
As noted, upon the usage of the same or closer frequencies,
the sequence of codes is missing in a way that the receiver
can not anymore distinguish between the codes, e.g. 12 or 21.
Therefore, many codes become absent due to redundancy.
The maximum number of values per digit D in one circular
array is based on the number of the DRs N , which determines
the number of possible mode orders [27]. This is defined by

D = 2 · b(
N − 1

2
)c + 1. (4)

FIGURE 6. Two helically arranged DR arrays of 2× 8 (Top and Side view).

FIGURE 7. The simulated radiation pattern (dBi) in 2D at ϕ = 0◦ (H-plane)
for the 2-digits OAM coded tag {−1, 1} at 10 GHz, and 11 GHz (a), and the
simulated phase distribution (x = −100 till 100 mm, y = −100 till
100 mm, z = 200 mm) at 10 GHz for m = −1 (b), and 11 GHz for m = 1 (c).

Adding +1 in (4) considers the zeroth mode order, which
can be reached if the pitch is zero. A helically arranged
DR array composed of 8 elements can provide D = 7
values per digit {−3,−2,−1, 0, 1, 2, 3}. So, the equation (4)
generates Dk = 49 OAM codes in case of k = 2 and
D = 7, where k is the number of DR helical arrays. While
for k = 3 and D = 7, the number of codes will be increased
to 343 codes, so it is better to use a spherical DR due to
the more equidistant resonance frequencies. The initial idea
has been presented in [27], where two examples {−1,1,0}
and {−2,1,0} of 3-digits OAM-coded RFID Tags have been
carried out by the aid of spherical dielectric resonator arrays.
In Figs. 7 and 8 (a), the simulated radiation pattern of the
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FIGURE 8. The simulated radiation pattern (dBi) in 2D at ϕ = 0◦ (H-plane)
for the 2-digits OAM coded tag {−2, 0} at 10 GHz, and 11 GHz (a), and the
simulated phase distribution (x = −100 till 100 mm, y = −100 till
100 mm, z = 200 mm) at 10 GHz for m = −2 (b), and 11 GHz for m = 0 (c).

FIGURE 9. The schematic view of the measurement setup between a
patch antenna, a helically arrangend DR array, and a metal sheet.

2-digits OAM coded tags {−1, 1} and {−2, 0} are displayed.
The simulated phase distribution is presented at two different
frequencies in Figs. 7 and 8 (b, and c). The digit 0 corresponds
to the OAM mode order 0, which shows a constant phase
distribution corresponding to the digit 1 in the conventional
RFID tags. These two examples confirm the validity of the
increasing RFID codes.

V. MEASUREMENT
In order to avoid undesirable reflections and distortions, the
measurement is carried out in an anechoic chamber. A vector
network analayzer (VNA) ZVA 40 from Rohde & Schwarz is
utilized and calibrated with coaxial cables between 9 GHz
till 11 GHz with 201 points. A transmit patch antenna is
mounted in the middle of the UCA. The UCA task is to
receive the reflected signal from the helically arranged DRs
(cf. Figs. 9 and 10). The UCA has a radius of about 40 mm,
so that the transmitting antenna can be placed easily. Variable
receiving OAM mode orders are provided by a 8 × 8 Butler
matrix (BM) which operates at 10 GHz and is connected to

FIGURE 10. The measurement setup of patch antenna, UCA, BM and DRs
in an anechoic chamber.

the UCAby eight coaxial cables of identical length (200mm).
Further, the whole system is suspended on a large piece of
Rohacell with a permittivity of almost 1 in purpose to prevent
the distortion and other undesirable side effects. Otherwise,
the measurements would be manipulated if permittivity is
higher. As a start, in Fig. 11 (a), the simulated and measured
S21 between the patch antenna and the UCA representing the
mutual coupling, non-ideality of the BM, and reflections from
the room are presented and taken as reference for the next
scenarios yielding a transmission of−58.3 dB for simulation
and −51.85 dB for measurement at 10 GHz. Moving on
to Fig. 11 (b), the simulated and the measured S21 with
the existence of the helically arranged DRs assembled on
cylindrical Rohacell is depicted, where the distance between
each pair of adjacent DRs is about 15 mm (λ/2) in purpose
to achieve the highest gain towards the UCA. The height
h of the helically arranged DRs, which consist of 8 DRs,
is adjusted according to equation (2) in order to convert the
zeroth OAM mode order into the first OAM mode order.
Consequently, the pitch equals seven times the height h, hence
the pitch value of 13.125 mm. Due to the OAM divergence,
the helically arranged DRs are separated from the UCA for a
short distance, which is l = 100 mm. Increasing the number
of the DRs can solve this divergence issue, and so can a
lens. Very good agreement is shown between the simulated
and the measured S21 on one side and about a 20 dB gain
enhancement at 10 GHz compared to the case without DRs
on the other side. The gain enhancement starts from 9.6 GHz
up to about 11 GHz, because the DRs work well within this
bandwidth. In Fig. 11 (c, d, and e), the same configuration
is applied but with a metal sheet for three varied distances
d of 300 mm, 400 mm, and 500 mm, in order to reveal the
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FIGURE 11. The simulated and measured S21 (dB) between the
rectangular patch antenna and the UCA without DRs and without metal
sheet (a), with DRs and without metal sheet (b), with DRs and with metal
sheet for a distance d of 30 cm (c), 40 cm (d), and 50 cm (e).

influence as well as the distortion of a metal sheet on the
S21. The S21 results at 10 GHz show that the metal sheet
has almost no effect on the transmission with the presence

TABLE 1. The insertion loss S21 (dB) for the five scenarios for the first
OAM mode order at 10 GHz.

of the helically arranged DRs announcing a novel method
to reject the clutter with the exception of the zeroth mode
order. Such clutter rejection belonging to the BM is caused
by different phase shifts resulting in destructive interference
for the clutter, but constructive interference for the DR-coded
OAM-signal. Table 1 summarizes the S21 at 10 GHz accord-
ing to the five different scenarios. One can notice, there are
some notches in the measurement results, particularly two
fixed notches and one movable notch. The two fixed notches
(about 9.7 GHz, and 10.6 GHz) appear due to the mutual
coupling between the transmitter and the receiver (UCA).
While, the moving notch occurs as a result of the following
issues. At first, the patch antenna is not accurately positioned
in the middle of the UCA as well as the height between the
DRs is not exactly accurate resulting in a non-ideal phase
shift between the DRs. Then, the BM has shown phase shift
errors of about±5◦. Moreover, the distance between the DRs
and the antennas is neither exactly 100 mm nor accurately
oriented with the antennas. Finally, the metal sheet is not
precisely parallel to the antennas. However, the measurement
is well accomplished and agrees well with the simulation,
noting that this clutter rejection works well, if the interferer
is orthogonal to the main beam direction.

VI. CONCLUSION
In this article, a new approach concerning the generation and
conversion of OAM mode orders through helically arranged
cylindrical dielectric resonator arrays is introduced. The inter-
action of the phase delayed radiation of each DR element
in the array submits different vortex wave modes. How-
ever, the proposed tag design is scalable to operate in the
mm-wave/THz range yielding smaller structures with low
radar cross-sections (RCS). This RCS can be mitigated
with the aid of a larger number of DRs. Furthermore,
the RFID tag technology can provide larger codes with new
multi-valued digits instead of the two conventional binary
codings (0 and 1). Three mode orders −1, 2 and −3 are
exemplarity converted from the zeroth OAM mode order.
Moreover, the OAM mode order conversions of 0 to −1, +1
to −2, −1 to 0, +2 to −3, and −2 to +1 are presented. Two
examples of 2-digits OAM coded tags with the code {−1, 1}
and {−2, 0} have been simulated. Furthermore, the simulated

VOLUME 8, 2020 218735



M. Haj Hassan et al.: OAM Mode Order Conversion and Clutter Rejection With OAM-Coded RFID Tags

and measured S21 of the mode conversion 0 to 1 are in good
agreement demonstrating the very low efficacy and distortion
of an orthogonal metal sheet on the receiving OAM antenna
due to the different phase shifts in the Butler matrix. This
article has shown that the OAM waves are very useful for
the RFID application by increasing the RFID codes and by
rejecting the clutter from broadside direction.
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