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ABSTRACT Most calibration schemes for reflection-based tissue spectroscopy in the mm-wave/
THz-frequency range are based on homogenized, frequency-dependent tissue models where macroscopic
material parameters have either been determined by measurement or calculated using effective material
theory. However, as the resolution of measurement at these frequencies captures the underlying microstruc-
ture of the tissue, we will investigate the validity limits of such effective material models over a wide
frequency range (10 MHz - 200 GHz). Embedded in a parameterizable virtual workbench, we implemented
a numerical homogenization method using a hierarchical multiscale approach to capture both the dispersive
and tensorial electromagnetic properties of the tissue, and determined at which frequency this homogenized
model deviated from a full-wave electromagnetic reference model within the framework of a Monte-Carlo
analysis. Simulations were carried out using a generic hypodermal tissue that emulated the morphology of
the microstructure. Results showed that the validity limit occurred at surprisingly low frequencies and thus
contradicted the traditional usage of homogenized tissue models. The reasons for this are explained in detail
and thus it is shown how both the lower ““allowed” and upper “‘forbidden” frequency ranges can be used
for frequency-selective classification/identification of specific material and structural properties employing
a supervised machine-learning approach. Using the implemented classifier, we developed a method to
identify specific frequency bands in the forbidden frequency range to optimize the reliability of material
classification.

INDEX TERMS Material classification, multiscale modelling, homogenization, mm-wave applications,

machine learning.

I. INTRODUCTION

Contactless, non-invasive  material  characterization/
classification based on reflectometry at mm-wave up to THz
frequencies is currently gaining a great deal of interest due
its potential to resolve both material and structural prop-
erties together with the increasing availability of mobile
integrated electronic systems in these particular frequency
ranges [1]. Recent progress in mm-wave/THz reflectom-
etry has led, e.g., to high-precision bulk material char-
acterization of various dielectrics in the mm-wave range
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of 200 GHz - 250 GHz using, e.g., a model-based calibration
scheme [2], [3]. Broadband THz time-domain spectroscopy
(THz-TDS) systems operating in reflection mode in the range
of 60 GHz up to 4 THz have been successfully employed
to, e.g., analyze delamination in glass fiber-reinforced com-
posite [4], [5], or in food inspection to reliably distinguish
transgenic from non-transgenic rice seeds using machine
learning-based classification of spectral fingerprints [6], [7].
An important field of application, which has been thor-
oughly investigated in recent years, is the extensive use of
mm-wave/THz reflectometry for non-invasive tissue diag-
nostics [8], [9]. Most of the described approaches retrieve
dielectric spectroscopy data using calibration schemes based
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on homogenized, frequency-dependent tissue models. Such
model-based refinement becomes increasingly important
when the proper structure of complex tissue morphologies
is under consideration [10]. A comprehensive review of
the current progress of e.g. mm-wave/THz-based diagnosis
of tumorous tissue and neoplasms (beyond the abnormal
tissue’s water signature) is given in [11]. The biological
tissue can thus be viewed as a bona fide benchmark problem
for reflectometry-based material characterization especially
at mm-wave/THz frequencies with respect to the structural
complexity at different length scales, the large variety of its
constituents with associated losses and material contrasts,
and the inherent anisotropy at the cell level up to the layer
structure.

In the mm-wave/THz reflectometry scenarios mentioned,
the role of holistic multiscale tissue models based on com-
putational electromagnetics (EM) is therefore becoming
increasingly important to maximize the sensitivity and selec-
tivity achieved by machine learning and regression analysis
approaches. The major challenge in developing such a tissue
model concerns the complex multiscale morphology of the
skin, which determines its macroscopic EM properties. Most
of the current EM skin models follow a heuristic repre-
sentation of the skin topology as a multi-layer structure as
proposed by Alekseev et al. [12] containing typically 3 to
4 homogenized dispersive layers. The material parameters of
the latter are retrieved either from fitting models to experi-
mental data [12] or in the framework of the effective material
theory (EMT) using extended analytic mixing rules with asso-
ciated multipole Debye models (e.g. the Havriliak-Negami
relationship [13]) to account for the corresponding frequency
dependence. A more rigorous approach builds upon a hierar-
chically organized multiscale EM model that is rooted in the
skin’s proper cellular structure. This is used in conjunction
with a numerical homogenization procedure of the tissue’s
microstructure with the aim of determining both the disper-
sive and tensorial EM material properties. Such a multiscale
approach has been pioneered by Huclova et al. [14] for human
tissue analysis up to 1 GHz including the full skin layer
morphology together with macroscopic textures like, e.g.,
the upper and deeper vessel plexus [15] to determine sen-
sitivity and specificity of changes in skin components [16].
An extension to this model up to 1 THz has been provided
by Saviz et al. [17] using classical mixing rules for the
homogenization of the various tissue layers, and was later
complemented by Spathmann et al. [18] to include macro-
scopic features such as hair follicles and skin wrinkles for
frequencies in the range of 100 GHz — 10 THz.

In this paper, we investigate the validity limits of effective
material properties of multiphase composites in the context
of an EM tissue model. In particular, we discuss the fre-
quency ranges where commonly used homogenized models
for these tissue composites based on the effective material
theory start deviating from corresponding hierarchical mul-
tiscale full-wave EM reference models. We explicitly focus
on hypodermal tissues (HYP) as a generic representation of
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the tissue composite because of their suitably parametriz-
able morphology, low absorption and high material con-
trast among intracellular and extracellular constituents. The
multiscale modeling of the HYP tissue starts at the small-
est length scale with the microstructure of the randomized
cell arrangement confined to a computational supercell with
dimensions based on the corresponding correlation lengths.
This is done in order to grasp the stochastic properties of
the underlying composite structure. Our study consists of a
systematic two-dimensional (2D) computational EM analysis
of HYP tissue surfaces within a generic reflectometry setup
for operating frequencies ranging from 10 MHz to 200 GHz.
The simulation encompasses 2780 random realizations of
HYP tissues for varying structural parameters thus providing
a comprehensive Monte-Carlo analysis of the reflectome-
try scenario. It is worth mentioning that this 2D showcase
was only chosen to keep the numerical study manageable
within given computer resources. Yet an extension to three
dimensions (3D) is straightforward as will be shown in the
appendix. The results revealed that, compared to a full-wave
analysis of the corresponding cell composites, the validity
limits of the homogenized tissue models (EMT) appear at
astonishingly low frequencies, typically in the low mm-wave
range [19]. This s in contrast to the traditional use of homog-
enized layer models in tissue analysis/diagnostics [12], [17]
and forces any hierarchically organized multiscale model
topology to become strongly tied to a corresponding oper-
ating frequency bandwidth.

The remainder of the paper is organized as follows: after
an introduction into the methodology and implementation
of our multiscale EM simulation workbench for the skin
reflectometry scenario in Sec. II, we present a comprehensive
Monte-Carlo analysis in Sec. III for the validity limits of
various homogenized HYP tissues, given by the operating
frequencies above which any effective material representa-
tion breaks down. In Sec. IV we show that both the lower
“allowed” frequency band and the upper “forbidden™ fre-
quency range (where the EMT loses its validity) can be
equally exploited for material classification/identification.
Using a measure based on the local behavior of the differ-
ence between the electric and magnetic energy density we
can prove that the spectral fingerprints of the tissues in the
forbidden range are particularly apt for predicting features
of the tissue’s microstructure such as the expected values of
cell sizes. The subsequent tissue classification is presented in
Sec. V using a machine learning approach based on artificial
neural networks (ANN). In addition, we show that ANNSs
can also be used to identify specific bands in the forbidden
frequency range with spectral signatures that can be assigned
to specific structural properties of the underlying microstruc-
ture, as demonstrated in Sec. V-C. Sec. VI concludes the study
by summarizing the main findings and gives an overview
of upcoming research. Additional information on classical
mixing rules and how they relate to the numerical homog-
enization procedure implemented in this study is given in
Appendix A. In Appendix B, we indicate the transferability of
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the research results to three dimensions through correspond-
ing 3D simulations.

Il. SIMULATION SETUP AND METHODOLOGY

The numerical study of material composites presented here
has two aims. The first aim is to reliably explore the validity
limits of their homogenized material representation based
on EMT using statistical measures retrieved from a corre-
sponding Monte-Carlo analysis. This implies the numerical
analysis of a large number of appropriately parameterized,
statistically independent implementations of a given compos-
ite. The second aim is to show that the validity limit can
be exploited to characterize and classify (bio-)composites.
This is performed by looking at signatures in the frequency
response of reflected EM waves, which can be attributed to
the underlying morphology of the material structures.

To achieve this, a three-stage methodology is applied and
implemented in the framework of a multiscale EM simulation
workbench whose workflow is shown in Fig. 1.

The methodology starts with @) an initial homogenization
step of the heterogeneous composite using a quasi-static
computational EM analysis of a representative composite
volume (i.e. the microstructure) yielding the corresponding
anisotropic, dispersive EMT representation of the composite.
In the next step labelled as the macroscopic effective
material properties are then introduced into a computational
EM model with a generic reflectometry setup. The focus of
this step is on the comparison of the frequency-dependent
backscattering from the effective material surface with com-
parable data from the underlying heterogeneous composite
when irradiated by an EM plane wave. A validity limit is
then defined as the frequency from which a threshold value
in the deviation of the two frequency responses (e.g. 2 %)
is exceeded. The last step labelled as (© encompasses a
comprehensive numerical analysis of reflectometry data from
large sets of different stochastically generated composites.
This type of Monte-Carlo analysis yields reliable statistical
measures regarding the validity limits of the underlying effec-
tive material representations and is used as the foundation of
our material classification with ANNSs.

A. RANDOMIZED REPRESENTATION OF THE COMPOSITE
MICROSTRUCTURE

In our study we focused on a 2D analysis of HYP as a generic
representation of a complex tissue composite. This simpli-
fied 2D approach is chosen in order to enable the extensive
Monte-Carlo analysis, where an extension to three dimen-
sions (3D) is straightforward as discussed in Appendix B.
The 2D representation of the HYP microstructure is depicted
in Fig. 2 as a small computational supercell having monodis-
perse spherical inclusions (i.e. adipose cells) with a diameter
dinc = 50 um, &r1 = 80,and o1 = 0.53 % that are embedded
in a homogeneous extracellular material with &2 = 50,
and o = 0.12 % The minimum separation distance dg
defines the minimum radius around an inclusion where no
further adjacent inclusion may be placed. dg is implemented
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FIGURE 1. Pictogram of the applied methodology. Abbreviations:
effective material theory (EMT); artificial neural network (ANN).
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FIGURE 2. Random sequential addition algorithm for the generation of
heterogeneous material structures: (a) overview of the adjustable
parameters; (b) generic example for a generic parameter setup. In this
study: dipc = 50 um, ¢, 1 = 80, 07 =0.53 5, ¢, =50 and 5 =0.12 5.

as a dimensionless coefficient greater than 1, which must
be multiplied by the inclusion diameter to determine the
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prohibited area around an inclusion. The material parameters
remain constant over the entire frequency range, even though
the dispersive nature of extracellular and intracellular media
would have to be considered for a more realistic tissue rep-
resentation. The reason for this is a lack of dispersive mate-
rial parameters in the investigated frequency interval. Thus
we considered the parameter estimations provided by [20].
Since the main objective is the evaluation of validity limits
in the context of multiscale modelling, the constant material
parameters help to ascribe the validity limits more clearly to
volume scattering. The implementation of dispersive mate-
rial parameters to properly consider molecular dispersion,
however, would be straightforward using the homogenization
procedure proposed in the next subsection.

The dimensions of the computational supercell are Ix =
1 mm and /y = 1 mm and chosen accordingly to cover the
smallest representative set of inclusions for a given volume
fraction ¢y = Vsupen,ell In order to mimic a realistic HYP
microstructure, a stochastic representation of the supercell is
chosen. In this, the placement of the inclusions is automat-
ically performed by the random sequential addition (RSA)
algorithm [21] for a given volume fraction ¢y and a distance
parameter dg to omit touching and merging of inclusions. The
algorithm is modified to enable the periodic continuation of
the supercell according to corresponding periodic boundary
conditions as illustrated in Fig. 3, which reduces the later
numerical backscattering analysis to a single supercell.

B. HOMOGENIZATION

For the homogenization, the 2D supercell containing the
heterogenous 2D microstructure of the tissue composite
(cf. Fig. 2(b)) is placed into an idealized parallel plate capac-
itor setup. As depicted in Fig. 3, a time-harmonic voltage
with constant amplitude & = 9, — 9, is applied between
two opposing supercell edges that are designed as electrodes
(i.e Dirichlet boundary conditions).

The two remaining edges are defined as periodic boundary
conditions (PBC) in order to suppress fringing fields and to
reduce the memory resources of the subsequent quasi-static
EM simulation. This approach, which has been implemented
with different boundary conditions, has been used in the
past to investigate and quantify the influence of interfacial
polarization (Maxwell-Wagner) in composite materials com-
pared to calculations based on classical mixing rules [22].
A detailed comment on how these mixing rules may be asso-
ciated to our estimation of validity limits based on numerical
multiscale analysis is elucidated in Appendix A. In order to
cope with the anisotropy of the underlying microstructure the
supercell is then excited in the other (orthogonal) direction
while swapping the electrodes with the PBCs (and vice versa)
as shown in Fig. 3. The capacitor setup is implemented
in the finite-element-method-based (FEM) software package
COMSOL Multiphysics [23]. Each 2D simulation model can
therefore be interpreted as an infinitely extended 3D capacitor
of finite thickness due to two extensions, namely in the
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FIGURE 3. Schematic of the homogenization procedure: For the tensorial
acquisition of the material parameters, the effective material properties
are determined successively with respect to the individual spatial
directions.

direction of the periodic continuation and along the trans-
lationally invariant direction normal to the 2D plane. From
the time-harmonic quasi-static EM analysis of the supercell
in the form of the capacitor setup, an effective admittance
is retrieved that is represented by the equivalent electrical
parallel circuit consisting of the elements G* and C°'. This
is given by

A()

where the applied voltage & and the resulting current z(a)) are
directly accessible via COMSOL Multiphysics. The effec-
tive material properties £°f and o' are thus easily deduced
according to

l(a)) d et

eff_
Y (w4 = A=

(@) + joeoe (@)  (2)

()

where d is the parallel plate distance and A stands for the
area of the electrode. In Eq. 2, the right-hand term can be
interpreted as the complex effective conductivity o *f(w) of
the homogenized effective material from which the required
material parameters directly follow:

oM(w) = R{c) A3)
and
~ eff
() = 1 @)
we(

In order to consider anisotropies in the effective material the
quasi-static capacitor analysis is performed with excitation in
both the x and y-directions (cf. Fig. 3) yielding corresponding
frequency-dependent second-rank tensors for the effective
permittivity and effective conductivity, respectively.

223809



IEEE Access

K. Jerbic et al.: Limits of Effective Material Properties in the Context of an Electromagnetic Tissue Model

~
T
-
~
()
~

Port $ ~
v 3

0

=]

et S
o1 5
€2 3
oo &
EMT 5

@ (w) e é

T (w)

0.9

0.85

EMT Valid
0.8 \ - —
; ‘EMT Validity Range
—_— he{::eir éneoﬁs mo el
*=* homogeneous model '
107 108 10° 10'° 10't

f (Hz)

FIGURE 4. Comparison between the heterogeneous and homogenized (EMT) model of a generic HYP model: (a) heterogeneous
simulation setup; (b) homogeneous simulation setup; (c) spectral responses of the reflectance (showing the typical Maxwell-Wagner
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For the conductivity

eff
7w = (T ) )

0 os(w)

and for the permittivity

eff
T = (7 ) ©)

0 ()

These are the homogenized, frequency-dependent effective
material representations that are later introduced (in accor-
dance with the multiscale-modeling approach) into the simu-
lation model of the generic reflectometry setup.

C. REFLECTOMETRY

The generic reflectometry setup is used to analyze the reflec-
tion of an impinging EM plane wave from a surface system
that is defined by a plane boundary between air and either a
heterogeneous composite material or its homogenized EMT
representation (cf. Fig. 4). The plane wave is excited from a
non-reflective port under the angle of incidence ajpc (here 0 ©)
having either s or p-polarization with respect to the reflection
plane (i.e. x-y plane). The amplitude of the incident plane
wave is assigned to a constant input power Py whereas the
reflected power PR is detected by the same non-reflective port
from which the desired measure, namely the power reflection
coefficient R = };—’;, is calculated. The absorption coefficient
A= f,—‘g is determined by a corresponding volume integration
of the material losses P5 within the material structure. The
top and bottom of the computational domain are terminated
with perfectly matched layers (PML), which are assigned
the effective material parameters defined by (?fff(a)) and
o ff(w) and the material parameters of the air respectively.
Similar to the capacitor setup, PBCs are also introduced into
the reflectometry model to omit fringing fields while extend-
ing the randomized super cell to a periodic representation of
the composite surface layer.

223810

A first example for analyzing the breakdown of the effec-
tive material representation is given in Fig. 4(c) for HYP
tissue with a cell volume fraction of ¢y = 0.45. The
simulation has been performed on a PC equipped with an
Intel 17-6700k processor (4 cores) and 64 GB DDR4 RAM.
In the given frequency interval, 260 frequency points
have been simulated with a MUMPS solver where the
density of the frequency points increases for higher fre-
quencies. The increasing density can be interpreted as a
frequency-dependent sampling rate to cover interference pat-
terns within the forbidden range correctly. The simulation for
each frequency point lasts 21 s and includes the simulation
of the heterogeneous microstructure and its homogenized
representation in s and p-polarization. The blue curve rep-
resents the power reflection coefficient of the heterogeneous
composite model and the dotted red curve that of the homo-
geneous EMT model for p-polarized excitation in a frequency
range from 10 MHz to 200 GHz. Since in s-polarization the
electric field points in the translation-invariant direction of
the composite and therefore homogenization is not defined,
the comparison between the reflectance of the heterogeneous
material structure and its homogenized representation is only
done for p-polarization. The validity limit of the EMT repre-
sentation for a deviation of 2 % between the two frequency
responses is located at fy;; = 78 GHz for this particular
HYP tissue realization. The validity range of the homoge-
nized EMT representation therefore extends below the valid-
ity limit. However, the forbidden range found above this
limit is characterized by strong variations in the frequency
response. These are associated with the heterogenous tissue
model which defines a characteristic fingerprint which can be
exploited for material classification.

IIl. MONTE-CARLO ANALYSIS OF VALIDITY LIMITS

Since the analysis of a single HYP tissue structure has
only minor significance for the reliable determination of
the associated EMT representation’s validity limit, the
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FIGURE 5. Validity limits for several generic HYP derivatives: (a) spectral responses of the reflectance (showing the typical Maxwell-Wagner roll-off in
the MHz range) of 220 implementations (for ¢, ; = 80; 07 = 0.53 S/m; & = 50; 05 = 0.12 S/m; dj,c = 50 um; and volume fraction ¢y = 0.45); (b) Validity
limits of the derivatives of a heterogeneous material structure (here the HYP tissue), the blue line indicates the expected validity limit based on classical
considerations; (c), (d), (e) examples of the electric field distribution |E| at various frequencies (i.e. at 10 GHz, 100 GHz, 200 GHz, respectively);

(f), (g) examples of the analyzed microstructures (i.e. for cy = 0.45 and cy = 0.05 respectively). The validity range of the EMT material model is colored in

green while the forbidden range is marked red.

procedure presented in Sec. II is thus performed for a large
number of randomly generated realizations of the same HYP
tissue based on a corresponding structural parameter set
labelled as P;. Each set P; contains fixed values for both the
minimal separation distance dg 1.05 and the diameter
dinc = 0.05 mm of the HYP’s spherical inclusions together
with a specific volume fraction ¢y; € {0.05,0.1, ..., 0.45}.
In this sense, 9 different HYP tissue types are addressed
corresponding to the parameter sets Py, ..., Py with altered
volume fractions cy,1,...,cy9 (cf. Table 1). Within the
framework of a Monte-Carlo analysis 220, statistically inde-
pendent microstructures with randomly distributed inclusions
were created for each P; and corresponding cy ;. These are
considered in the following as realizations of the param-
eter set P;. Examples of such microstructures are shown
in Fig. 5(f) and 5(g) for the parameter sets P9 := (dg = 1.05,
dinc = 0.05, ¢y = 0.45) and P; := (dq4 1.05, dinc =
0.05, ¢y = 0.05) respectively. As an example, the statis-
tical analysis for the HYP sample Py (cy 0.45) with
220 randomly generated realizations of the heterogeneous
composite is illustrated in Fig 5(a). The frequency responses
of the simulated power reflection coefficient of all realiza-
tions are confined to the gray shaded area between the top
and bottom envelope, with the blue curve labeling a single
representation of this spectral set which has already been
depicted in Fig. 4(c). The red-dotted curve shows the perfor-
mance of the HYP tissues’ homogenized EMT model. The
validity limits of the EMT homogenization are determined
as the frequency above which the power reflection of the
homogeneous EMT model and the heterogeneous composite
model deviate by more than 2 %. For the example of Py,
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TABLE 1. Overview of the material and structural parameters of
parameter sets P; to Pg.

er,1 = 80; o0y = 0.53S/m; er2 = 50; 0n = 0.12S/m
260 sampled frequency points (10 MHz to 200 GHz)
P; dg dine cy realizations
P, 1.05 0.05 mm 0.05 220
P, 1.05 0.05 mm 0.1 220
P3 1.05 0.05 mm 0.15 220
Py 1.05 0.05 mm 0.2 220
Ps 1.05 0.05 mm 0.25 220
Pe 1.05 0.05 mm 0.3 220
Py 1.05 0.05 mm 0.35 220
Pg 1.05 0.05 mm 0.4 220
Py 1.05 0.05 mm 0.45 220

this yields a corresponding data set of 220 values with a
mean frequency fpean = 76 GHz, which in the following
is defined as the representative value for the validity limit.
The associated standard deviation is of 20 GHz lead-
ing to a first upper and lower bound of f5 min = 66 GHz
and fs max = 86 GHz whereas an absolute minimum and
maximum of this limit corresponds to fmin = 33 GHz and

Jmax = 132 GHz as depicted in Fig. 5(a). The validity range

of the EMT material model is colored in green while the for-
bidden range, in which the EMT representation breaks down,
is marked red. In the following, the overall Monte-Carlo anal-
ysis has been carried out for all parameter sets Py, ..., Pg and
their respective volume fractions ¢y 1, . . ., ¢y 9 (cf. Fig. 5(b)).
This revealed validity limits for HYP tissues at astonishingly
low frequencies around 60 — 80 GHz. The classical esti-
mation of validity limits according to EMT [24] by means
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of é—‘; > dinc, Where A denotes the wavelength within
the material, is significantly higher between 110 GHz and
120 GHz (see Fig. 5(b) blue line). This is an interesting result
as it may challenge assumptions made in commonly used
tissue models for mm-wave [12] and THz frequencies [11].
In addition, the statistical evaluation of all parameter sets
has also led to validity limits with only weak dependence
on the volume fraction of the lipid droplets (i.e. inclusions)
in the adipose HYP tissue. Fig. 5(c)-(e) depict the electric
field distributions |E | within the microstructure of the het-
erogeneous composite for three distinct frequencies along
the blue curve. As expected from EMT, these field profiles
are quite homogeneous at frequencies in the validity range
(e.g. 10 GHz), but display interference patterns at forbidden
frequencies (e.g. 100 GHz and 200 GHz) with emerging
spatial correlations to the underlying microstructure. In the
context of reflectometry-based tissue characterization, these
correlations will establish the possibility of using spectral fin-
gerprints in the forbidden range, shown, for example, by the
blue curve in Fig. 5(a), to classify microscopic features of the
heterogeneous microstructure. In contrast, the well-behaved
frequency response in the validity range allows for the extrac-
tion of macroscopic quantities such as the underlying volume
fraction of the inclusions. This will be discussed in the next
section.

IV. ON THE INFORMATION CONTENT OF THE
FORBIDDEN FREQUENCY BAND

The existence of validity limits has direct consequences on
the use of EMT-based multiscale models for multi-layered
tissue systems such as skin. In such models the maximum fre-
quency is determined by the tissue layer with the lowest valid-
ity limit, thus yielding an allowed operating frequency band
which becomes specific to the overall skin model. At higher
frequencies outside this band, the described homogenization
of the particular tissue layer is not applicable anymore and
its further analysis requires an accurate modelling of its
proper microstructure, which actually leads to a modified
multiscale skin model. An ultra-broadband tissue analysis
must therefore consider simultaneous structural changes in
the tissue models during the frequency-domain simulation
while relying on an appropriately prepared set of multiple
model representations. These multiple representations can be
set up prior to numerical analysis, e.g. when using machine
learning-based predictions of the validity limits involved.

As indicated in the previous section the increasing impact
of the microscopic properties on the frequency response
beyond the validity limit opens up the possibility to identify
and classify specific features of the tissue’s microstructures
based solely on the associated spectral fingerprint in the for-
bidden frequency range. This reasoning can be underpinned
by correlating characteristic features in this spectral finger-
print with emerging interference patterns in the microstruc-
ture. In an illustrative example, we studied specific frequency
points in the spectral fingerprints of the power reflection R
and absorption A between 100 GHz and 200 GHz for a single
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HYP tissue realization (¢, = 0.45) in conjunction with the
associated EM field patterns in the microstructure.

A field quantity of particular significance here is the dif-
ference between electric and magnetic energy density Aw.
This measure has already proven successful in the assess-
ment of advanced MRI coils [25]. It is derived from the
time-harmonic version of the Poynting theorem, represents
for the conservation of the EM energy flux S (i.e. the Poynting
vector) as shown in Eq. (7) where S has to fuel areas with dis-
sipation loss and at the same time to compensate for temporal
changes in the reactive power.

a__l T2 l 2 2
VS =—S0lEl" =20 7 (WIHI" —soslEF), ()

-

V4 Aw=wpn—Wwe

The reactive power term contains the difference Aw between
the electric and magnetic energy density where Aw emerges
only if the energy density distributions of both field quantities
are spatially separated. The quantity Aw thus indicates a
locally confined resonant enhancement of reactive fields in
the tissue’s very microstructure while also highlighting poten-
tial “hot spots” in the loss density p. This is mainly due to
oscillating balancing currents between these separated energy
densities. The dissipated power Pp in the tissue results from
integrating the power loss density p over the tissue volume
yielding the absorption A.

Applied to the proper heterogeneous material representa-
tion of an illustrative HYP realization, Eq. 7, and its derived
measures, can be used to investigate correlations between
the spatial field distribution within the microstructure and
the spectral fingerprint in the forbidden range. In this case,
the local electric and magnetic field strengths, E r) =
(Ex(F) Ey(F) E,(M)" and HF) = (Hx(F) Hy(F) H,(F)"
respectively, are used for calculation, where 7 denotes the
spatial position. As depicted in Fig. 6, Aw provides the
most selective map of the resonant loss enhancement which
is highly correlated to the tissue’s microstructure and thus
to the randomized HYP cell distribution. With this connec-
tion between microstructure affine field patterns and spe-
cific signatures in the spectral fingerprint, we reason that the
spectral responses in the forbidden frequency range contain
enough information for the characterization of the underlying
microstructure. In the following, the spectral responses of
both power reflection R and absorption A of the given HYP
tissue are plotted in Fig. 7 for the previously mentioned region
of interest in the forbidden frequency range. Apart from the
expected opposing behavior of the frequency responses of R
and A [cf. Fig. 7(a) and (b)] where a reflection maximum is
accompanied by an absorption minimum, there are distinct
subintervals demonstrating different behavior, such as that
between 184 GHz and 188 GHz (shaded gray). An enlarged
view of this specific region is plotted in Fig. 7(c) and 7(d) and
shows both R and A forming unique spectral substructures.
In the following we analyzed local extrema at frequencies
160.7 GHz, 187.1 GHz, 187.9 GHz and 190.3 GHz outside
and within the sub-interval (labelled by red dots).
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FIGURE 6. Graphical evaluation of the EM fields within the microstructure for the frequency points 160.7 GHz, 187.1 GHz, 187.9 GHz and 190.3 GHz
(i.e. for & ; = 80; 0y = 0.53 S/m; & 5 = 50; 0 = 0.12 S/m; i = 50 um; and volume fraction cy = 0.45). From the top to the bottom row: the real part of

the Poynting vector Re(S}, the imaginary part Im{S}, the loss density p, and the difference of enegery densities Aw.

The associated field patterns regarding flowing, dissipat-
ing and stored energy are depicted in Fig. 6 partly using
a generalized field line representation provided by the line
integral convolution (LIC) method [26]. Comparing these
fields inside the subinterval (at 187.1 GHz and 187.9 GHz)
with those outside (at 160.7 GHz and 190.3 GHz) indicates
that the imaginary part of the energy flux S yields the most
distinct correlations to the underlying microstructure. This is
even more distinct when using Aw, which is actually derived

VOLUME 8, 2020

from Im{S }. We can therefore assume that these unique spec-
tral substructures in the spectral responses may, in particular,
significantly contribute to the information content about the
tissue’s microstructure. This makes it easy to understand that
promising tissue characterization schemes based on skin sur-
face reflectometry could implicitly use such unique spectral
features and eventually exploit them in the framework of
a supervised learning-based classification approach. In the
following section we therefore present a successful procedure
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FIGURE 7. Spectral response in the forbidden frequency range between 100 GHz and 200 GHz: (a) reflectance; (b) absorptance; (c), (d) detailed
enlargements of the reflectance and absorptance in the subinterval between 182 GHz and 188 GHz; (e) example of the analysed HYP realization
(i-e. for ¢, ; = 80; 6 = 0.53 S/m; ¢ 5 = 50; 5 = 0.12 S/m; djc = 50 um; and volume fraction ¢y = 0.45).

that utilizes the spectral fingerprints of the HYP structures
in both the valid and the forbidden frequency range for
reflectometry-based tissue classification with ANN.

V. ANN-BASED TISSUE CLASSIFICATION

Based on the relationship between the resonances in the
underlying microstructure and interference patterns in the
spectral response of the reflection coefficient, we are going to
present an academic case study to demonstrate the existence
of spectral subintervals bearing information about specific
morphological features. For this purpose, we extended the
Monte-Carlo analysis by including parameter sets with vari-
able structural parameters for the inclusion diameter and the
volume fraction of the lipid droplets. Then we identified the
resulting HYP derivatives with a image recognition-based
material classification procedure using ANN. With this clas-
sification we will demonstrate the existence of spectral subin-
tervals bearing information about specific morphological
features. For this reason the remainder of this section is
as follows. In the first subsection, we will show that the
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valid and the forbidden frequency ranges complemented each
other with regard to the information content contained in
the spectral fingerprint. In the second subsection, we will
show that the forbidden frequency range could be exploited
to predict the microstructure of the HYP tissues (e.g. the
expectation values of the cell sizes) and the validity range
in order to classify aggregated HYP tissue properties such
as the volume fractions of the adipose cells. In the last
subsection, we will describe a method developed here based
on occlusion sensitivity to identify and subsequently select
information-carrying frequency ranges which can be corre-
lated to specific structural properties of the microstructure.

A. DATA SETS FOR MICROSTRUCTURE CLASSIFICATION

For the tissue classification based on ANN we have exploited
both the forbidden frequency range to predict the microstruc-
ture of the HYP tissues (e.g. the expectation values of the cell
sizes) and the validity range to classify aggregated HYP tissue
properties such as the volume fractions of the adipose cells.
In this regard the Monte-Carlo analysis described in Sec. II is
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FIGURE 8. Overview of the parameter sets f’, to 54: (a)-(d) spectral responses
individual parameter sets; (e)-(h) examples of the analysed microstructures.
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FIGURE 9. Overview of the network architecture: A 1D-image input layer
for the processing of 300 image pixels consisting of 300 neurons,

a subsequent fully connected hidden layer with 100 neurons which has a
rectified linear unit (ReLU) activation function followed by a
fully-connected output classification layer (using a softmax function) in
which the number of neurons is derived from the number of categories to
be classified (P; to P4).

extended by four additional parameter sets P, to P4 with fixed
values for dg = 1.05 and variable structural parameters for
dinc € {0.05 mm, 0.1 mm} and ¢y, € {0.2, 0.35} (cf. Table 2).
The reflectometry data of these four generic HYP tissues
is given in Fig. 8, where each of them is numerically rep-
resented by 200 statistically independent realizations of the
underlying microstructure. To investigate the performance of
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of the reflectance of 200 statistically independent HYP realizations of the

TABLE 2. Overview of the material and structural parameters of
parameter set P; to P4.

er,1 = 80; 01 = 0.53S/m; er2 = 50; 0p = 0.12S/m
260 sampled frequency points (10 MHz to 200 GHz)
P; dg dine cy realizations
P, | 1.05 0.05mm | 0.2 200
P, | 1.05 0.05mm | 0.35 200
P3 1.05 0.1 mm 0.2 200
P, | 1.05 0.1 mm 0.35 200

the classification procedure, the analyzed spectral range is
subdivided into 2 frequency intervals Fy, and Fg,, as depicted
in Fig. 8(a). The interval Fyy := [10 MHz; 30 GHz] covers
the characteristic Maxwell-Wagner roll-off associated with
the relaxation effects of polarization charges at the cell sur-
face. Fror := [30 GHz; 200 GHz] includes the range of the
proper validity limit and the forbidden frequency range.

In preparation for ANN-based classification, the spectral
fingerprint of each randomized realization is sampled at
300 discrete frequency points within the complete frequency
range as well as in each of the given subintervals F,, and
Fior. The 300 discrete frequency points are determined by
interpolating the 260 frequency points simulated for each
realization (cf. Sec. II-C). The sampled values of the power
reflection are displayed according to a grayscale coding.
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FIGURE 10. Overview of the ANN-based classification of 4 generic tissue derivatives represented by the parameter sets P, to P, using the spectral
fingerprint in the validity, forbidden and complete frequency range summarized in confusion matrices in (a) to (c), respectively. The corresponding
grayscale images display the reflection coefficient of each realization of the considered parameter sets sampled at 300 discrete frequency points in a
grayscale coding.
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The resulting data set, encompassing the realizations of the
corresponding frequency interval, can therefore be depicted
as a 2D grayscale image with 300 image pixels along the
frequency axis and the corresponding label indices of the
spectral fingerprints along the other dimension.

The resulting image recognition-based material classi-
fication is implemented by the use of shallow ANNs as
depicted in Fig. 9 and performed with the image processing
library of the MATLAB programming environment (version
R2018a). The ANNSs consist of a 1D-image input layer for
the 300 image pixels consisting of 300 neurons, a subsequent
fully connected hidden layer with 100 neurons which has a
rectified linear unit (ReLU) activation function followed by
a fully-connected output classification layer (using a softmax
function) in which the number of neurons is derived from the
number of categories to be classified (in this case 4 classes
referring to the parameter sets 131 to 134 depicted in Fig. 8).
As a training scheme, the stochastic gradient descent with
momentum (SGDM) method was applied to 80 % of the avail-
able data where every network was trained over 3000 epochs
yielding an overall training time of approximately 5 minutes.
For comparability of the classification results, the network
architecture (cf. Fig.9) was used for all frequency intervals.
The remaining 20 % of the data was used to test the trained
ANNS’ performance.

The results of the classification in the validity and the for-
bidden range as well as in the complete frequency range are
depicted in Fig. 10(a) to (c) respectively. In these, the spectral
fingerprints of all 800 realizations are plotted according to
the mentioned grayscale coding and represent the input data
for the ANNSs. The results of the ANN-based classifications
are summarized in the corresponding confusion matrices (test
set data). These confusion matrices compare the classes of
the individual realizations predicted by the ANN against
their actual classes. The correctly assigned realizations are
arranged on the main diagonals of the matrices and the incor-
rectly assigned ones on the minor diagonals. The overall per-
formance of the classification is evaluated by three metrics,
namely accuracy, precision and sensitivity. The accuracy
(green frame Fig. 10(a)), which can be regarded as the overall
quality measure of the classification, is calculated as the ratio
of correct predictions to all predictions of a classification. The
precision (blue frame) is calculated as the ratio of the correct
predictions to all predictions within a particular class. The
sensitivity (red frame) is calculated as the ratio of the correct
predictions to all actual elements of a particular class.

The lowest accuracy is achieved with 66.3 % in the validity
range. If the data from the forbidden range is used, the accu-
racy improves to 79.4 %. This shows that within the forbidden
range there is a high information content for the classification
of microstructures. However, if the entire spectrum is used
for classification, an accuracy of 89.4 % can be achieved.
This implies that the information content of both ranges is
complementary and makes the classification more reliable.

In order to investigate the extent to which the validity
and the forbidden range complement each other, we will
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FIGURE 11. Implemented modifications for the binary classification:

(a) Reduction of the output layer to two neurons. (b) Reorganization of
the parameter sets P; to P, into two classification cases. Classification 1
targeting the volume coefficient with the classes ¢, ; = 0.2 and

¢y,2 = 0.35 and classification 2 the inclusion diameter with the classes
dinc,1 = 0.05 mm and djpc , = 0.1 mm.

examine whether specific properties of the microstructure can
be classified in specific frequency ranges in the following
subsection.

B. CLASSIFICATION OF SPECIFIC MATERIAL PROPERTIES
In this section we will show that the acquisition of the
HYP tissues’ specific microstructure is possible using the
targeted evaluation of the power reflection coefficient used
as a spectral fingerprint by ANNs within specific frequency
intervals.

For this purpose, we will perform a binary classifica-
tion with respect to the volume fraction ¢y and the cell
diameter din.. To implement the binary classification, the out-
put layer of the ANNs used is reduced to two neurons
(cf. Fig. 11(a)). In addition to the modification of the ANN’s
output layer, we will reorganize the spectral fingerprints of
the parameter sets Py to P4 according to Fig. 11(b). The
material parameter indicating the classification target is now
considered as the primary parameter and the other as the
secondary one acting as a perturbation. Following this prin-
ciple, parameter sets of the same primary parameters are
grouped together into two classes of the same size. As aresult,
we obtain two classification cases which still include all of the
800 realizations.
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FIGURE 12. Results of the material classification based on the implemented binary classification scheme: The top row, (a) to (c), shows the classification
results of the neural networks which had the aim of identifying the volume fraction and the bottom row, (d) to (f), shows the classification results with
the aim of identifying the inclusion diameter. The diagrams on the left-hand side show the accuracy of the characterizations, those in the middle the
precision and those on the right-hand side the sensitivity of the classifications within the frequency ranges F; to Fs.

To investigate the frequency specificity of the classifica-
tion, the analyzed spectral range is rearranged and subdivided
into 5 new frequency intervals F; to Fs5. The interval F; :=
[10 MHz; 10 GHz] covers the validity range up to a point
where no significant variance in the reflection coefficient of
the heterogeneous model exists. Fp := [10 GHz; 100 GHz]
includes an extended transition range between the validity
and forbidden range including the validity limit. In contrast,
F3 := [100 GHz; 150 GHz], F4 := [150 GHz; 175 GHz], and
Fs5 := [175 GHz; 200 GHz] are all consecutive sub-intervals
in the forbidden frequency range (c.f. Fig. 8).

The results of the HYP tissue classifications are quanti-
fied using the metrics introduced above and are illustrated
in Fig. 12. The upper row (a)-(c) shows the results of classifi-
cation 1 for the identification of the volume fraction ¢, within
all frequency intervals F; to Fs, whereas the lower row (d)-(f)
displays the corresponding results of classification 2 for the
cell diameter dj,c. The accuracy, precision and sensitivity of
the prediction within classification 1 confirms (as conjec-
tured) that the frequency intervals F; and F; are best suited to
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predict aggregate quantities of the microstructure such as the
volume fraction ¢y (with measures better than 98 %). This
predominantly corresponds to the allowed frequency band
below the validity limit. In contrast, the prediction quality
drops considerably (and becomes imbalanced between clas-
sified volume fractions) for the residual higher frequency
intervals in the forbidden frequency range. This conclusion
is also supported by the analysis of classification 2, which
aims to identify the cell diameter dj,c. Given the particular
parameter sets, the frequency intervals F, - F4 or F3 and
F4 within the forbidden frequency range were found to be
well-suited to the prediction of the microscopic quantities of
the underlying microstructure. The strong predictive power
of frequency interval F» leads to the conjecture that the
transition region around the validity limit encompassing both
allowed and forbidden frequency ranges could be particularly
fertile with respect to potential information on the underlying
microstructure. For this reason, the next section addresses
how to identify frequency domains that are relevant for the
classification of specific microscopic properties.
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C. OPTIMIZATION OF THE CLASSIFICATION BASED ON
OCCLUSION SENSITIVITY

The emerging question is how to separate frequency intervals
which bear specific information about the tissue’s microstruc-
ture from those which do not. To answer this question,
we have developed a method based on occlusion sensi-
tivity [27], which we will call the occlusion sensitivity
method (OSM) in the following. The basic idea is to cover
parts of an image with a mask (having an extent that corre-
sponds to a certain frequency range) and quantify its influence
on object recognition. The method developed is explained
using the data for the classification of the inclusion diameter
in interval F; as an example.

A detailed overview of how the OSM is implemented and
modified in order to separate frequency intervals which are
important from those which are not is illustrated in Fig. 13(a).
In a first step, the spectral fingerprint of a single microstruc-
ture (still represented by an 1D grayscale image) is repro-
duced in its entirety as many times as the number of pixels it
contains, in this case 300. Then, these copies are grouped into
a batch and modified by a mask of arbitrary odd pixel length
placed in a position shifted by one pixel in each subsequent
copy. To enable the mask to hide the information content of
the covered pixels without having an over-weighted influence
on the pattern recognition of the ANN, the gray value of the
mask corresponds to the average value of the grayscale image
under consideration.

Finally, the masked batch is transferred to the ANN
trained in Sec. V-B to predict the inclusion diameter between
10 and 100 GHz (F;) and the influence of this masking pro-
cess on the classification is determined. This is done by
observing the change in the classification result calculated
by the output layer of the ANN, i.e. the softmax function.
In the case of our binary classification, the output of the
softmax function, the precision score, is a number between
0 and 1 which expresses the probability of belonging to
a certain class. A prediction score > 0.5 (shaded in blue)
means that the ANN has interpreted the spectral response as
originating from a microstructure with an inclusion diameter
of dinc,1 = 0.05 mm and a prediction score < 0.5 (shaded in
red) as originating from a material structure with an inclusion
diameter of dinc2 = 0.1 mm. An example of how this
procedure is actually implemented is given in Fig. 13(b) and
(c), using the spectral response of a realization with a volume
coefficient of ¢y = 0.2 and an inclusion diameter of dj,c =
0.1 mm. The coded 1D grayscale image of this particular
realization is located above the corresponding curve of the
reflection coefficient and represents the input data within the
schematic shown in Fig. 13(a). The dotted blue and dashed
red curves correspond to reproductions of the original spectral
response, where the masks are centered on the frequency
points f, and f;, (cf. masked batch in Fig. 13(a)). The curve
of the prediction score in Fig. 13(c) can be determined by
the sequential classification of all masked reproductions by
the ANN (cf. prediction score in Fig. 13(a)). In analogy
to the grayscale coding of the spectral fingerprint, the
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FIGURE 13. Basic idea of the OSM developed here: (a) Schematic of the
proposed procedure for the separation of information-carrying frequency
ranges for the optimization of the frequency specific classification of
specific features of the tissue’s microstructure. (b) The reflection
coefficient of one realization with a volume coefficient ¢y = 0.2 and
inclusion diameter di, = 0.1 mm between 10 to 100 GHz. The gray bar
above displays the reflection coefficient of this particular realization. The
color bar associated with this code is located to the right of the graph.
The blue dotted and red dashed lines show reproductions of the original
reflection coefficient modified by masks. The center of the mask is
centrally aligned with the sampled frequency points f, and fm,
respectively. (c) depicts the precision score of the modified reproductions
(such as the blue dotted and red dashed curve). The prediction score at
each frequency point is associated with the center position of the
corresponding mask. The gray constant represents the prediction score of
the realization’s original reflection coefficient. The red bar above the
graph displays the prediction score in accordance with the color bar to
the right of the diagram.

prediction score is also color-coded and displayed as a red
shaded bar placed above the graph. The prediction score at
each frequency point is associated with the center position of
the corresponding mask, illustrated by the arrows connecting
Fig. 13(b) and (c). To assess the influence of the mask relative
to the prediction score of the original (unmasked) fingerprint,
it is also plotted as a gray-shaded constant.

If this procedure is not applied to a single implementation
but to the spectral response of all 160 classified realiza-
tions of the test set between 10 GHz and 100 GHz, a 2D
grayscale image is obtained as shown in Fig. 14(a). In this
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to the class dj,c ; = 0.05 mm, dif:clsf marks those incorrectly assigned to dj,c ; = 0.05 mm and ditI:“e marks those correctly assigned to dj,c , = 0.1 mm.
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(b) Blue-red image of the prediction score generated by applying the 0SM-based optimization procedure to all 160 realizations for a mask size
of 163 pixel. The deviation of the prediction score of the original (unmasked) fingerprints with the prediction score of their masked reproductions at a
specific frequency point indicates the importance of the frequency patterns covered by these masks.

grayscale image, every pixel in the horizontal direction rep-
resents one realization and every pixel in the vertical direction
the power reflection coefficient, R, at a certain frequency
(between 10 GHz to 100 GHz). The shade varies from black
for the lowest R in this frequency range (approximately 0.45)
to white for the highest R (approximately 0.75). To help relate
the data to the procedure presented in Fig. 13, this grayscale
image is illustrated in the adjacent figure in simplified form
as a pixel map (D). After classification, the spectral response
of each realization is ordered from left to right according
to its prediction score, displayed as a narrow bar below the
grayscale image 2. The color bar associated with the predic-
tion score is placed next to Fig. 14(b). Realizations with an
inclusion diameter of dipc,1 = 0.05 mm which have been cor-
rectly identified are labeled as di‘;gf"l and those with an inclu-
sion diameter of dinc 2 = 0.1 mm are labeled as diTC“fz or dlfj‘ési
respectively, if the classification is correct or incorrect. The
reordered grayscale image is reproduced (vertically) to form
a cube in illustration @). The reproductions of the spectral
fingerprints in this cube are also modified by masks indicated

223820

by green voxels. Each of the modified realizations of the batch
is then classified by the ANN. The result of this classification
is a 2D red-blue image that documents the influence of the
masking for each of the considered realizations against the
frequency (@. With this procedure applied to the realizations
shown in Fig. 14(a) with a mask size of 163 pixels, Fig. 14(b)
is obtained. By relating the prediction score of the unmasked
spectral fingerprints to Fig. 14(b), the deviation between
them can be interpreted as the sensitivity of the ANN to
the masked interference patterns (not in terms of the metrics
introduced earlier), so that the importance of these patterns
can be assessed. Assessing Fig. 14(b) in this way, we can
conclude from the strong misclassification of previously cor-
rectly identified realizations with an inclusion diameter of
dinc2 = 0.1 mm (ditrrllc‘?z) that the frequency response between
40 and 100 GHz plays a major role in the correct classifica-
tion of the material structure by the ANN. Therefore, new
frequency intervals for optimized classification are defined:
F| := [10 GHz; 40 GHz], F, := [40 GHz; 100 GHz] and
F3 := [40 GHz; 110 GHz].

VOLUME 8, 2020
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side, the sensitivity of the classifications.

The results of this optimized classification are depicted
in Fig. 15. Comparing the original frequency interval F;
(from Fig. 12) with the frequency interval Fy, it can be seen
that the accuracy decreases from 91.9 % to 79.4 %. This
indicates that the information contained in interval F 1 has
decreased. By comparing F with F, on the other hand,
it can be seen that the prediction accuracy has increased
slightly from 91.9 % to 92.5 % and in addition, the asym-
metry in precision and sensitivity has decreased. If F; is
extended by 10 GHz to 110 GHz in F3, the accuracy can
be increased by 1.9 % percent and the asymmetry decreases
further.

Based on these results it can be shown that the reflec-
tion coefficient contains enough information about specific
features of the tissue’s microstructure in specific frequency
intervals to be used as a spectral fingerprint. Furthermore,
based on the OSM, we were able to develop a procedure that
selects and visualizes these information-bearing frequency
intervals.

VI. SUMMARY AND CONCLUSION

In this study, we presented a three-stage methodology in
the framework of a parametrizable multiscale EM simula-
tion workbench yielding the effective EM material proper-
ties of a (bio-)composite. This methodology considers both
anisotropy and dispersion, which are rooted in the precise
cellular structure of the composite. In a subsequent step these
homogenized material models were evaluated in terms of
their validity limit. This limit was determined as the fre-
quency at which a deviation of 2 % occurred between the
frequency responses of the heterogeneous (bio-)composite
(reference model) and its homogeneous representation in
a generic reflectometry setup. In this setup, both materials
were illuminated by an EM plane wave. In our study we
focused on a 2D analysis of generic but suitable HYP repre-
sentations of a complex tissue composite. Since the validity
of homogenization at the tissue level is the main focus of
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the intended multi-scale modeling approach, the HYP rep-
resentations investigated were modeled as randomized cell
arrangements.

The modeling and simulation of a large number of
realizations of these HYP structures in Sec. III led to
a comprehensive Monte-Carlo analysis of various generic
HYP derivatives. As part of this analysis we developed a
statistical measure to determine the validity limit of the imple-
mented quasi-static homogenization approach. This allows us
to divide the spectral response of the reflection into a validity
range in which the homogenization is valid, and a forbidden
range in which it is not. The results of this analysis revealed
that the applicability of the homogeneous material represen-
tation had an upper operating frequency limit that started at
surprisingly low frequencies in the low mm-wave range and
thus contradicted the traditional use of homogenized layer
models in tissue analysis/diagnostics [12], [17]. This forced
any hierarchically organized multiscale model topology to
become strongly tied to a corresponding operating frequency
bandwidth. Consequently, an ultra-wideband tissue analysis
must consider simultaneous structural changes in the tissue
models during frequency domain simulation by using differ-
ent models to represent different frequency ranges.

Sec. IV showed that the collapse of the EMT approxi-
mation coincided with an increasing impact of the tissue’s
underlying microstructure on the frequency response beyond
the validity limit. In the course of this study, the differ-
ence between the electric and magnetic energy densities
displayed particularly strong resonances and standing fields
which correlated highly with the tissue microstructure and
thus with the randomized HYP cell distribution. Explain-
ing the relationship between the resonances in the underly-
ing microstructure and interference patterns in the spectral
response of the reflection coefficient, we were able to estab-
lish reflection as a spectral fingerprint to classify features of
the tissue’s microstructure. Following this idea, we extended
the Monte-Carlo analysis by including parameter sets with
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FIGURE 16. Spectral response of the permittivity and conductivity of two illustrative microstructures in the frequency range from 10 MHz to 200 GHz. The
spectra are calculated by analytical mixing rules such as Maxwell-Garnett (MG), Hanai-Bruggemann (HB) and Landau-Lifshitz-Looyenga (LLL) as well as
by using numerical simulations. Fig. (a) and (c) correspond to the structural parameters dy = 1.05, dj, = 0.05, cy = 0.45 and Fig. (b) and (d) to

dq = 1.05, djpc = 0.1, cy = 0.35. Examples for the analyzed HYP realizations are shown in (e) and (f).

variable structural parameters for the inclusion diameter and
the volume fraction of the lipid droplets, and identified the
resulting HYP derivatives with an image recognition-based
material classification procedure using ANN in Sec. V. Based
on this classification we showed that the valid and the forbid-
den frequency ranges complemented each other with regard
to the information content of the spectral fingerprint. In addi-
tion, we were able to show that the forbidden frequency range
could be exploited to predict the microstructures of the HYP
tissues (e.g. the expectation values of the cell sizes) and the
validity range to classify aggregated HYP tissue properties
such as the volume fractions of the adipose cells. In Sec.
V-C, we developed a method based on occlusion sensitivity
to identify and subsequently select information-carrying fre-
quency rangeswhich can be correlated to specific structural
properties of the microstructure.

OUTLOOK

On the basis of these research results, the following
priorities emerge for the future. Validity limits caused
by structural/morphological signatures in the frequency
response of reflection in the forbidden range will be fur-
ther researched and documented. For this purpose, specially
designed 2D composites will be created using 3D printing and
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used to make measurements for comparison with correspond-
ing simulations. This will explore the EM signatures in the
forbidden range for composites with low material contrast.
In addition, structures with embedded channels filled with
liquids (e.g. water, alcohol) will be examined to investi-
gate the separation of signatures originating in the morphol-
ogy/structure and those in the dispersive EM properties of the
constituents of the composite. A further future focus will be
the expansion of the virtual workbench for the exploration
of multi-layer structures. The central question is how much
the underlying microstructure of the individual layers of the
tissue can be superimposed in the frequency response and
still be separated regarding the allowed operating frequency
bands of the EMT models of these layers as expressed by
their validity limits. The aim will be to identify and analyze
subfrequency bands in order to extract information from indi-
vidual layers and to deduce a complete image of the material
system using ANNSs in a wideband analysis. Furthermore,
the question arises to what extent the roughness of the mate-
rial surface has an influence on the analysis of a composite.
This question can be divided into two parts: firstly, whether
volume and surface scattering can be separated and secondly,
whether the type of discretization has an influence on the
result when simulating reflection events at a rough material
boundary layer.
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APPENDIX A

ADDITIONAL NOTES REGARDING HOMOGENIZATION

An alternative or rather an approximation to the numeri-
cal homogenization procedure presented in Sec. II-B is the
application of classical mixing rules provided by EMT [24].
However, the reasons in favor of the implemented numerical
homogenization procedure are not self-explanatory. This is
why the differences to common mixing rules will be dis-
cussed in the following.

Classical mixing rules such as Maxwell-Garnett (MG),
Bruggemann (B) [28] or Landau-Lifshitz-Looyenga (LLL)

[29], [30] consider two-phase composites as inclusions
embedded in a dielectric host material. The derivation of
classical mixing rules, which analytically describe the macro-
scopic material properties of such a material mixture, is based
on the following assumptions: the EM field solution is
curl-free (V x E = 0) and all interactions between adja-
cent inclusions are neglected [31]. Strictly speaking, these
assumptions mean that the application of the mixing rules is
limited to quasi-static conditions in diluted mixtures. As a
rule of thumb, the relation ’;—; > dinc, Where Ay, denotes
the wavelength within the material, can be used to estimate
the upper applicable frequency of the mixing rules of sparse
microstructures (cy up to 10 %).

In [32], Bruggeman’s mixing rule was extended to the
Hanai-Bruggeman (HB) formula to approximate denser mix-
tures (cy up to 40 % [33]). The macroscopic material prop-
erties according to HB can be determined by:

oo D (et )\ .
e —oeth \ et (I'—=cy) ®)

where 8fﬁf and sfgf denote the effective complex permittivity
of the host and inclusion material respectively. The depolar-
ization factor A = 0.5 accounts for composites consisting
of rods embedded in a dielectric host material. According to

MG, the effective material parameters can be determined by

e e ET =) —A) + ey +A(L )

& = .
BMG T T e+ A — o)t — ech)
C))
and according to LLL by
ff (1—cy ff cy
EfLLL = €01 (= Ery (10)

In Fig. 16, the spectra of the permittivity and conduc-
tivity calculated by MG, HB and LLL mixing rules are
compared with those determined by numerical simulations.
Fig. 16 (a) and (c) show the permittivity and conductivity of a
microstructure with the parameter set dqg = 1.05, dinc = 0.05
and ¢y = 0.45 and Fig. (b) and (d) one with the parameter
set dg = 1.05, dinc = 0.1 and ¢y = 0.35. Examples of the
analyzed HYP realizations are shown in (e) and (f). These
cases represent extremes in terms of the volume fraction or
density applied to the mixing rules.

Common to all spectra is a low-frequency roll-off of per-
mittivity, or a increase of conductivity, at about 100 MHz,
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FIGURE 17. Graphical evaluation of the electric field within the
microstructures under investigation at 10 MHz and 200 GHz (i.e. with and
without the influence of charge carriers between the material
boundaries). The images all demonstrate rotation-free yet divergent
electric fields.

which is associated to the decay of the Maxwell-Wagner
effect. In the lower frequency range, the simulated spectra are
between those of MG and HB. The calculations according
to the MG formula represent a lower estimate and the HB
an upper estimate of the EM material properties. The calcu-
lations according to the LLL formula seem to overestimate
the influence of interfacial polarization and, thus, are not
appropriate to represent the macroscopic material properties
in the lower frequency range. At high frequencies, however,
the deviation between the simulation results and any of the
mixing rules is marginal.

This result is in accordance with [22], where the dielectric
spectra obtained by simulations and mixing rules have been
compared. The investigations showed that only numerical
simulations which can be considered as the multipole repre-
sentation of the EM problem are able to determine the influ-
ence of interactions between adjacent particles correctly at
low frequencies. In [15] and more comprehensively in [20]
numerical homogenization has been extensively investigated
and validated using skin measurements, in the context of
multi-scale modeling of the skin at microwave frequencies
in comparison with classical mixing rules. It has been shown
that the shape of cells has a significant influence on the
macroscopic material properties due to interfacial polariza-
tion, especially at low frequencies and high volume densities.

The effect of interfacial polarization is illustrated in Fig. 17
by means of the electric field strength distribution at 10 MHz
and 200 GHz within the illustrative microstructures con-
sidered in Fig. 16. Even though the numerical FEM solver
uses all of Maxwell’s equations, the excitation of the
composite by two electrodes means that the images all
demonstrate rotation-free yet divergent electric fields. Com-
pared to classical mixing rules at frequencies lower than
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FIGURE 18. Overview of two 3D simulations of a generic HYP structure (i.e. for ¢, | = 80; 0y = 0.53 S/m; &; 5 = 50; 03 = 0.12 S/m; djnc = 50 um). The
edge length of the simulated supercell is 0.25 mm. The upper row contains simulation results for a structure with a volume fraction of ¢y = 0.2 and the
bottom row those of a structure with a volume fraction of ¢y = 0.35. (a) and (d) show the frequency-dependent power reflection coefficient R of the
heterogeneous (blue) and the homogeneous model (red). (b) and (e) provide an overview of the relative error between both models. The validity range is
highlighted in green and the forbidden frequency range in red. (c) and (f) show the field distribution of the magnitude of the electric field within the

supercell embedded in the simulation setup at 300 GHz.

the roll-off frequency of the interfacial polarization, numer-
ical homogenization can therefore still be regarded as the
more reliable calculation method, which considers field inter-
actions between adjacent inclusions, but still provides a
quasi-static solution.

Nevertheless, MG and HB mixing rules can be used to
estimate the validity at low frequencies and can calculate the
macroscopic material properties with high accuracy for high
frequencies even for dense composites when compared to
numerical simulations.

In summary, at frequencies lower than the expected
Maxwell-Wagner roll-off, while MG and HB can be con-
sidered as upper and lower bounds to verify numerical sim-
ulation, LLL overestimates the interfacial polarization. At
frequencies lower than the expected Maxwell-Wagner roll-
off, the differences between the spectra obtained by simula-
tions or determined by mixing rules are negligible, so that the
calculation methods are interchangeable. Therefore, classical
mixing rules can be used instead of the numerical EMT model
to estimate the validity limits as proposed in Sec. III.

APPENDIX B

3D REFERENCE SIMULATION

The transferability of the research results is checked by sim-
ulating two three-dimensional microstructures, one with a
volume coefficient of ¢y, = 0.2 and the other with ¢y, = 0.35.
As shown in Fig. 18(c) and (f), microstructures with spherical
inclusions embedded in a cubic supercell are investigated.
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While the material parameters and the diameter of the inclu-
sion, dipc = 0.05 mm, remain unchanged to those introduced
in Sec. II, the edge length of the cubic supercell is now
reduced to 0.25 mm. To reduce the numerical demands of the
simulation, an auxiliary layer has been inserted between the
supercell and the PML. Just like the bottom PML, the effec-
tive material parameters of the composite are assigned to this
auxiliary layer. Note that this separation of the supercell by
this auxiliary layer is mainly due to numerical reasons as the
direct termination of the heterogeneous layer by the PML
poses some numerical challenges given the layer’s complex
morphology.

Due to the high numerical demand and, thus, to the high
simulation time, this investigation could not be performed
with a larger set of implementations. The simulations have
been performed on a PC equipped with two Intel Xeon ES5-
2697 V4 processors (36 cores) and 512 GB of RAM. Between
0.1 GHz and 300 GHz, 200 frequency points have been sim-
ulated with a MUMPS solver with the density of these points
increasing with frequency. The simulation for each frequency
point lasts 2 hours and includes the full-wave simulation
of the heterogeneous microstructure and its homogenized
representative in p and s-polarization.

The spectral response of the power reflection coefficient R
is shown for the heterogeneous (blue) and homogeneous
model (red) in the given frequency interval in Fig. 18(a)
and (d). Based on the 2 % deviation criterion, the validity
of the homogeneous material model is retrieved from the
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relative deviation (i.e. relative error) between the models and
collapses at 156 GHz for the material structure with a volume
coefficient of ¢y, = 0.2 and at 225 GHz for ¢y, = 0.35. The
validity range of the homogeneous model is again marked
green and the forbidden range red.

The observed periodic oscillations in the simulated spectral
response of the power reflection are due to Fabry-Perot res-
onances in both the heterogeneous and homogeneous layer.
These oscillations are determined by the finite thickness of
the auxiliary layers and are thus not present in our prior 2D
simulations. This is because we have dealt with a numerically
infinite half-space system in those cases. However, the eval-
uation of the validity limit is not affected by the Fabry-Perot
resonances since they are present in both models and thus
assumed to be balanced out in the analysis of the relative error.
To underline this, Fig. 18(b) and (e) show the relative errors
between the reflection coefficients of both models in the same
frequency range.

The field strength distributions within the heterogeneous
models at 300 GHz illustrated in Fig. 18(c) and (f) show
that the breakdown of the validity of the EMT model and
the associated interference patterns in the reflection response
are accompanied by strong field inhomogeneities within the
microstructure. Both the separation of the investigated spec-
trum into a valid and a forbidden range, and the interference
patterns associated with inhomogeneous field distributions
in the microstructure in the forbidden range clearly indicate
the transferability of one of the paper’s core statements to
randomized three-dimensional microstructures. This state-
ment concerned the correlation of interference patterns in
the spectral response with morphological peculiarities of the
microstructure. However, the transferability of the paper’s
quantitative statements is not given here.
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