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aGeneral and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen,
and CENIDE – Center for Nanointegration Duisburg-Essen, 47048 Duisburg, Germany
bDepartment of Chemistry, University of Duisburg-Essen, and CENIDE – Center for Nanointegration Duisburg-
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The quantum tunneling within the gap between two gold nanowires is studied in order to apprehend the effect
of wall’s curvature on the effective quantum tunneling volume. To accurately model the gold dimer with sub-
nanometer gap sizes, the hydrodynamic model together with the quantum corrected model are implemented
within a fully classical finite element method (FEM) solver, which has facilitated the simulation of both large
nanodimers as well as large gaps up to 2nm. Results show that as the wall’s curvature determines the effective
tunneling volume, the gap sizes in which the quantum tunneling starts is dependent on the nanodimer’s sizes.

INTRODUCTION
Concentrating light in sub-diffraction volume has many applications, and hence has been
extensively studied based on the Maxwell equations [1]. However, it is shown that when the
size of the nanoparticle becomes in the range or smaller than the finite Fermi wavelength
of electrons, this classical picture can no longer fully describe the optical response of the
nanoparticle as the permittivity of the nanoparticle as well as being frequency dispersive is
non-local and thus depend on the wave vector [2, 3]. Such nonlocality has been described
in various models such as the hydrodynamic approach or the generalized nonlocal optical
response (GNOR) model [4], which has been implemented to realize the optical response of
small plasmonic nanoparticles [5, 6]. Nevertheless, when the gap sizes in metallic dimers
becomes in subnanometer range where the quantum tunneling starts to occur, these models
fail to provide a full description of the dimer’s optical response and hence a full quantum
mechanical description of the structure is required which can only be done for small dimers
[7, 8]. An alternative approach which facilitates studying large dimers as well as large
gap sizes up to 2nm, is to translate the quantum tunneling probability into a fictitious DC
conductivity of the gap in the framework of the quantum corrected model (QCM) in order
to bridge quantum and classical plasmonics [9, 10]. In this work, the hydrodynamic model
as well as the quantum corrected model are implemented within a classical finite element
solver, in order to investigate the effect of the wall’s curvature on the effective quantum
tunneling volume in gold nanowire dimers with various radii and gap sizes.

FICTITIOUS MATERIAL
In the quantum corrected model, the electron transfer probability within the gap T (l) is
converted into a static conductivity and a fictitious material is defined for the gap with the
mentioned DC conductivity [11]. This DC conductivity is dependent on the nanowires
separation distances and consequently on the nanowires curvature. The Drude permittivity
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of such gaps between two gold walls is shown in the equation (1).

eg(w, l) = e0(w)+(ed
m(w)� e0(w))e� l/ld � w2

P
w(w + igg(l))

(1)

In which the gg(l)= gPe� l/lc is the separation-dependent loss parameter with the phenomeno-
logical decay length of lc = 0.4Å. The second term in the equation (1) accounts for the con-
tribution of the d-electrons to the optical response of the dimer, in which the dispersive ed

m
associates the interband transitions involving d-electrons with the decay length of ld = 0.8Å
to the consequent conductivity. The real part of the fictitious permittivity together with the
corresponding conductivity are illustrated in the Figure 1 b), c) for a 15nm with a 0.2nm
gap size for various energies along the gap width (the red dashed line within the Figure 1
a). As depicted, both the conductivity and the real part of the permittivity are dispersive
and decay rapidly as the separation distance increases. The conductivity is presented for
various gap sizes in both 15nm and 40nm dimers at the E = 3.1eV (cf. Figure. 1 d). The
interesting feature of this graph is that although the magnitude of conductivity is the same
for both dimers the effective conductivity volume is larger in the larger dimer and hence the
resulted quantum tunneling current should be dependent on the dimer’s size. This feature is
better presented via the conductivity profile for both dimers in the Figure 1 e), f).
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Figure 1: a) The schematic of the nanodimer geometry where the red dashed line depicts the gap
width. b) The real part of the fictitious material permittivity for various energies along the gap
width. c) The gap conductivity for various energies along the gap width. d) The gap conductivity
for different gap sizes in both 15nm and 40nm dimers along the gap width together with the gap’s
conductivity profiles for e) 15nm and f) 40nm dimers.
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Figure 2: The SP coupling band in both 15nm and 40nm dimers versus the gap sizes based on the
quantum corrected model (QCM), the hydrodynamic model (HD) as well as the classical model (Cl),
where the points are the simulation results which are then fitted to a polynomial (solid lines).

MODELLING AND SIMULATION SCENARIO
The modelling is carried out in a classical FEM solver namely Comsol Multiphysics in
which the hydrodynamic system of equations is defined as partial differential equations and
added to the Maxwell equations [12]. The hydrodynamic current’s normal component is set
to zero on the nanowires and the gap boundaries, which ensures that the hydrodynamic cur-
rent only exists within the mentioned regions. The QCM model is added to the gap via the
represented DC conductivity where separation distance dependency is taken into account.
To reduce the required computational resources as well as the simulation time, the geom-
etry is cut vertically into half (along the red dashed line in the Figure 1 a)), while adding
the appropriate boundary conditions. A fine meshing is required to accurately resolve the
subnanometer gap which results in 453091 degrees of freedom even for the smallest dimer.
The surface plasmon (SP) coupling band is determined as the main figure of merit for 15nm
and 40nm gold dimers with gap sizes ranging from 0.1nm up to 2nm based on the fully
classical model, the hydrodynamic model as well as the QCM model.

Table 1: The average hydrodynamic conductivity at corresponding SP coupling bands in 15nm and
40nm dimers for various gap sizes.

shd
kS
m

SP
coupling band

eV

15nm

40nm

15nm

40nm

0.2nm 0.3nm 0.4nm 0.5nm

3.79

2.40

3.32

2.26

3.51

2.37

3.64

2.41

28.9

84.8

3.2

6.9

0.28

0.57

0.02

0.05

THE QUANTUM TUNNELING CURRENT
The SP coupling band for all the gaps in each model is fitted to a 4th order polynomial
to study the spectral position of the SP coupling bands (cf. Figure 2). As expected the
deviation of the hydrodynamic model from the classical model starts in larger gap sizes for
the 15nm dimer, as the hydrodynamic effect is stronger in smaller nanoparticles. However,
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the deviation of the QCM model from the hydrodynamic model starts earlier in the larger
dimer. This deviation is the result of the quantum tunneling within the gap and shows that
quantum tunneling starts at larger gap sizes for larger dimers compared to the smaller ones.
This effect is the consequence of the larger effective conductivity volume in larger dimers
due to a more gradual curvature. In order to validate this claim, the average hydrodynamic
conductivity (AHDC) of the gap shd =

R
gap

Jhd
|E| at the SP coupling band is calculated for

both dimers in gap sizes in which the quantum tunneling occurs. The results are presented in
table 1, which shows the larger AHDC in larger dimers and consequently a size-dependent
red shift in the SP coupling band.
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