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Abstract: Propagation of the temporal soliton in Kerr-type photonic crystal waveguide is
investigated theoretically and numerically. An expression describing the evolution of the envelope
of the soliton based on the full-wave modal analysis, taking into account all space-harmonics, is
rigorously obtained. The nonlinear coe�cient is derived, for the first time, based on a modification
of the refractive indices for each space-harmonic due to the Kerr-type nonlinearity. For illustrating
the general formulation and results, we performed extensive computational electromagnetics
simulations for the propagation of gap solitons in an experimentally feasible photonic crystal
waveguides, endorsing the correctness and usefulness of the proposed formalism.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

After John Scott Russell’s experimental discovery and the subsequent mathematical formulations
by Rayleigh and Boussinesq, the generality of solitonic behaviour has been recognized in many
branches of physics, electronics and biology [1–3]. Several theoretical and numerical techniques
have been developed so far to analyze the formation and the propagation of solitons (kink-solitons,
spatial and spatio-temporal solitons, gap solitons, etc.) in di�erent kind of media [4]. In general,
the main requirement for the propagation of solitons is the one- or quasi-one dimensionality of
the medium except for the spatial soliton [5] for which a beam propagation direction plays the
role of time. In photonics a quasi-one dimensionality can be achieved either by sharp refractive
index change between the guiding layer and the surrounding medium [6], or by the photonic
crystal (PhC) along (PhC fiber [7]) or perpendicular (PhC waveguide [8]) to the direction of the
soliton propagation.

The transmission of localized energy in a structure with a periodically varying refractive index,
such as 1D Bragg grating [9] or 2D PhC [10], occurs due to the modulation of corresponding
Bloch modes. In weakly nonlinear systems, the problem could be solved by multiple-scale
perturbation method and the soliton propagation is described by the nonlinear Schrödinger
equation for a slowly-varying envelope of the soliton [11,12]. Planar PhC waveguides, which are
designed by removing one or a few rows from the original PhCs, are considered as very promising
candidates for various realizations of optical devices on a chip. Moreover, PhC waveguides
guarantee a very good confinement of the modes in the slow light regime [13].

The main tool to deal with the nonlinearities is variational Ansatz, from which a soliton
shape is obtained [14,15]. Here, for the first time, a theoretical framework for the propagation
of temporal solitons in PhC waveguides based on a multi-harmonic treatment of the nonlinear
setup is presented. The method is based on a full-wave modal analysis using the Floquet-Bloch
theorem. A rigorous expression for the nonlinear coe�cient (due to Kerr-type nonlinearity)
based on a modification of the refractive indices of each space-harmonic is derived. For the
sake of confirmation and illustration we performed numerical simulations for the propagation

#372138 https://doi.org/10.1364/OE.27.029558
Journal © 2019 Received 9 Jul 2019; revised 5 Sep 2019; accepted 16 Sep 2019; published 30 Sep 2019

https://orcid.org/0000-0002-1467-6373
https://doi.org/10.1364/OA_License_v1


Research Article Vol. 27, No. 21 / 14 October 2019 / Optics Express 29559

of gap-solitons. The gap-solitons are formed if the power of the launched signal exceeds a
certain threshold value [16–18]. Their formation time is relatively short and the registered gap
soliton inside the guiding structure can be used for comparison with the analytical solution of the
nonlinear Schrödinger equation. A very good agreement between the numerical and theoretical
results is demonstrated.

2. Formulation of the problem

Without loss of generality we analyze three coupled symmetric PhC waveguides composed of a
hexagonal lattice made of circular air-holes that are periodically distributed along the x-axis with
a common period h, as shown in Fig. 1. The structure as such is already well studied [19]. The
guiding regions (a), (b) and (c) having the same width w are separated by the barrier layers of two
PhCs with a barrier thickness according to the number of layers NB. The radius of the air-holes is
r and ✏s = n2

s is the relative dielectric permittivity of the background material. The number of
layers N of the upper and lower PhCs is taken large enough in order to minimize the leakage of
the power along the transverse y - axis. The modulated x component of the electric field Ex(x, y, t)
propagating in the nonlinear coupled PhC waveguides can be written in the following form:

Ex =
 

2

’
m
(u+meikymy + u�me�ikymy)ei�mx�i!t + c.c. (1)

where ⌘  (x, t) is a slowly varying amplitude of its arguments, kym =
p

k2
s � �2

m, �m = kx0+
2m⇡

h ,
ks = !ns

p
✏0µ0, ! is the angular frequency, kx0 is the mode propagation constant along the x-axis,

kym is the transverse wavenumber of the m - th space-harmonic and ’c.c.’ stands for complex
conjugate. We symbolize by u+ and u� the vectors with components

�
u+m

 
and

�
u�m

 
, respectively.

Thus, u+ and u� are the amplitude vectors of the up-going and down-going space-harmonics
along the y-axis. Let us denote by a+ and a� the amplitude vectors of the Floquet modes defined
at the upper and lower interfaces of the guiding region (a), by b+ and b� those of the guiding layer
(b) and by c+ and c� those of the guiding layer (c), as shown in Fig. 1. From Maxwell’s equations
one infers the expression for the y-component of the electric field and finds the corresponding
harmonics as:

E±
xm =  u±m; E±

ym = ⌥ �m
kym

u±m (2)

The x-component of the electric displacement field Dx reads:

Dx = Ex

h
�(1) + �(3)(E2

x + E2
y )

i
(3)

where �(i) is the i-th order optical susceptibility (particularly, �(1) ⌘ ✏s = n2
s ). In our analysis

we assume that the second-order susceptibility term �(2) = 0, which is true in centrosymmetric
crystals such as silicon [20]. Substituting the electric field components defined from (1) and (2)
into (3) and collecting terms for the x-component of the electric displacement field D±

xm for the
up-going and down-going m-th space harmonic containing the same ei(�mx�!t)e±ikymy, we obtain:
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Note that in (4) all the higher harmonic terms are neglected with respect to the leading one. If
the guided modes are well confined by the upper and lower PhCs with a number of layers N (in
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our studies N = 5), u�m ⇡ u+m and the last term in the square brackets of (4) can be considered as
negligibly small. Thus, a refractive index for the up-going and down-going m-th space harmonic
in each guiding region can be written in the following form:

n±m,⌫ = ns +
�(3) | |2

4ns

"
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2

"
1 +
�2

m

k2
ym

#
|u±m,⌫ |2 +
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# ⇣
|u±µ,⌫ |2 + |u⌥µ,⌫ |2

⌘# (5)

where ⌫ = a, b, c. Here, the scattering amplitude for the guiding region “a” is u±m,a = a±m, for the
guiding region “b” is u±m,b = b±m and for the guiding region “c” is u±m,c = c±m (Fig. 1). Note that D±

ym

is expressible through D±
xm exploiting the Maxwell’s equations D±

ym = ⌥ �m
kym

D±
xm. Besides, from (5)

it follows that the refractive indices for the up-going and down-going m-th space harmonics are
very close to each other n+m,⌫ ⇡ n�m,⌫ and are proportional to the wave intensity | |2, which leads
to a corresponding shift in the angular frequency !0 = !+ �! at a given propagation constant kx0
due to the involved Kerr-type nonlinearity. Applying a ray tracing of the space-harmonics along
the transverse y-axis, the relations between the scattering amplitudes in three guiding layers are
given in terms of the reflection and transmission matrices of the PhCs as:

a� =W(!0, kx0, n±m,a)R(!0, kx0, ns) · a+ (6)

a+ =W(!0, kx0, n±m,a)
⇥
RB(!0, kx0, ns) · a� + TB(!0, kx0, ns) · b+

⇤
(7)

b+ =W(!0, kx0, n±m,b)
⇥
TB(!0, kx0, ns) · c+ + RB(!0, kx0, ns) · b�⇤ (8)

b� =W(!0, kx0, n±m,b)
⇥
TB(!0, kx0, ns) · a� + RB(!0, kx0, ns) · b+

⇤
(9)

c+ =W(!0, kx0, n±m,c)R(!0, kx0, ns) · c� (10)

c� =W(!0, kx0, n±m,c)
⇥
TB(!0, kx0, ns) · b� + RB(!0, kx0, ns) · c+

⇤
(11)

with
W(!0, kx0, n±m,⌫) = [eikymw], ⌫ = a, b, c (12)

where W(!0, kx0, n±m,⌫) is a diagonal matrix, which defines the phase shift of each m-th up-going
and down-going space harmonics within the guiding region(s), R(!0, kx0, ns) is the generalized
reflection matrix for the upper and lower N-th layered PhCs, whereas the generalized reflection
and transmission matrices of the PhCs barriers are RB(!0, kx0, ns) and TB(!0, kx0, ns), respectively.
Note that the reflection and transmission matrices are functions of ns, assuming that the shift of
the refractive index due to the Kerr e�ect (according to the injected intensity | |2) occurs only in
the guiding region having the thickness w� 2r (Fig. 2). Then, we use our original formulation to
accurately and e�ciently calculate the generalized reflection and transmission matrices of the
PhCs [21]. The formalism is based on the lattice sums (LSs) technique [22] combined with the
transition matrix (T-matrix) and the generalized reflection matrix approach [23]. It is numerically
slim and applicable to a wide class of periodic and bandgap structures from microwave to optical
regions. The formulation is briefly discussed in Appendix A.

The linear system of Eqs. (6)–(11) can be re-written in the following compact form:

�(!0, kx0, n±m,⌫) · AT (!0, kx0, n±m,⌫) = 0 (13)

where A =
�⇥
· · · a+�m, . . . , a+m · · ·

⇤
, . . . ,

⇥
· · · b��m, . . . , b�m · · ·

⇤
, ..

 
, “T” stands for the transpose

of the vector, � is a block matrix and the size of each sub-matrix is (2M + 1) ⇥ (2M + 1).
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Fig. 1. (Left) Schematic view of the three symmetric PhC waveguides with guiding regions
(a), (b) and (c) having the same width w and separated by the barrier layers of two PhCs
with number of layers NB. Planar PhCs are composed of hexagonal lattice of the circular
air holes periodically distributed along x-axis with a period h. The air-holes are infinitely
long along the z-axis. The radius of the air holes is r, ns is the refractive index of the
background medium. Here a+ and a�, b+ and b�, c+ and c� define the up-going and
down-going space-harmonics in the guiding regions (a), (b) and (c), respectively. (Right)
Dispersion curves of the symmetric (blue curve and green curve) and the antisymmetric (red
curve) super-modes for the H-polarized field. The operating frequency for the realization
of functional all-optical logic gates is h!

2⇡c = 0.232, and it is marked by a red dot. The
distributions of the magnetic field Hz for the super-modes, as well as the geometry of the
setup are shown in the corresponding insets.

Fig. 2. Schematic view of PhC waveguide with a guiding region (a) having a refractive
index ñs = ns + �n, whereas the refractive index of the other regions is the same as in Fig. 1
and it is equal to ns.

Expanding (13) in terms of the perturbation �! and | |2, and vector multiplying with A0 from
the left while considering that A0 · [�(!, kx0, ns)] = 0, the following expression can be obtained:

�!A0 @�(!, kx0, ns)
@!

AT = �| |2A0 @�(!, kx0, n±m,⌫)
@

�
| |2

� AT
����
n±m,⌫=ns

(14)

It should be emphasized that the eigenvectors A0 and A are numerically calculated for the
truncated block matrix �(!, kx0, ns) after confirming the convergence of the solutions that have
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to satisfy det [�(!, kx0, ns)] = 0. The second term in (14) is rewritten as:

@�(!, kx0, n±m,⌫)
@

�
| |2
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’
m,⌫
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n±m,⌫

�
@

�
| |2
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@

�
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�
�����
n±m,⌫=ns

Note that @(n±m,⌫)
@( | |2) can be inferred directly from (5), whereas @�(!,kx0,n±m,⌫ )

@(n±m,⌫)
���
n±m,⌫=ns

should be

numerically calculated for each m-th space-harmonic in each ⌫-th guiding region. The calculation
procedure follows the formulation [21,22], albeit a slight modification is needed of (6)–(11) by
implementing the Fresnel matrices. Note, Fresnel matrices are diagonal matrices. Figure 2
displays a schematic view of only the guiding region (a) having a refractive index ñs = ns + �n,
whereas the refractive index of the other regions is ns. The calculation technique is briefly
described in Appendix B and is applicable to the other guiding regions having di�erent refractive
indices.

Once the non-linear dispersion relation !(kx0, | |2) for weak nonlinearities is defined from
(13) and (14), there exists a well-established procedure to reduce the problem to a nonlinear
Schrödinger equation using the multiple-scale treatment of the wave equations [11]. Following
the analysis described in [24], we find the following expression:

i
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@x

◆
+
!

00

2
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where � = � @(�!)
@( | |2) is a nonlinear coe�cient and can be directly deduced from (14), the group

velocity vg =
@!
@kx0

and the group velocity dispersion !00
= @2!

@k2
x0

can be retrieved from the
dispersion diagram. The solution for the slowly varying amplitude  (x, t) is then written in the
following form:

 (x, t) = Fe�i(�!)t

cosh
⇥
(x � vgt)/⇤

⇤ (16)

where

⇤ =

s
!00

�F2 , �! = ��F
2

2
=

F2

2
@(�!)
@(| |2) (17)

Note that ⇤ stands for the width of the temporal soliton, F denotes the soliton’s amplitude, and
�! is the shift of the angular frequency due to Kerr nonlinearities. Finally, substituting (16) into
(1) and (2), we arrive at the expressions for the electric fields from which the magnetic field is
retrieved.

3. Numerical results and discussions

We analyze a 2D model system of three coupled PhC waveguides composed of experimentally
feasible planar hexagonal lattice of air holes formed in a dielectric nonlinear background medium
with a linear refractive index ns = 2.95 (crystalline silicon) in conjunction with a Kerr-type
nonlinearity [19]. This 2D model has proven to be a very good approximation of the original
3D structure. The thickness of the upper and lower PhCs is taken N = 5 and the radius of the
air-holes is r = 0.32h, where h is a period of the PhCs. The barrier layers are composed of
1-layered structures, NB = 1, and the length of the PhC is 30h. The dispersion diagram of the
structure is shown in Fig. 1. Here, we are interested only in the symmetric mode described by
the blue line, since this mode is responsible for the formation of the gap soliton. The dispersion
diagram of this mode can be well approximated by the parabola taking into account the terms up
to the square of the angular frequency and the group velocity dispersion amounts to @2!

@k2
x0
⇡ 1.9 hc

2⇡ .
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A full-wave computational electromagnetics analysis is conducted based on the finite-di�erence
time-domain (FDTD) method [25] together with uniaxial (perfectly matched layer) PML at the
operating normalized frequency h!

2⇡c = 0.232 (Fig. 1).
A continuous wave (CW) signal with (Hz, Ex, Ey) is launched through the middle waveguide of

the coupled PhC waveguides [guiding region (b)]. The injected peak power of the CW signal
is chosen as �(3)E2

0 = 0.1410, which means that for silicon with the nonlinear refractive index
n2 = 3 · 10�18[m2 ·W�1], E2

0 = 2.7 · 1018[V2 ·m�2] (we excite the waves very close to the left edge
inside the PhCs). A nonlinear medium due to the Kerr e�ect results in a dispersion shift of the
symmetric mode (blue line in Fig. 1) to the lower frequencies yielding the formation of the gap
soliton. The shift of the angular frequency due to the Kerr-type nonlinearity can be calculated
theoretically based on (17) and it amounts to h�!

2⇡c = 0.0016. Figure 3(a) depicts the magnetic

Fig. 3. (a) Schematic distribution of the magnetic field of the gap soliton inside the coupled
PhC waveguides, when a continuous signal with the peak power �(3)E2

0 = 0.1410 is injected
into the guiding region (b). The operating frequency is chosen h!

2⇡c = 0.232 (Fig. 1). (b)
Magnetic field Hz versus the non-dimensional parameter x/h at y = 0 [Fig. 3(a)] where the
blue line shows the numerical results based on FDTD analysis while the red dashed line
stands for the theoretical result using (1) together with (6)–(11) and (16), (17). (c) Magnetic
field Hz versus y/h at x = 0 [Fig. 3(a)]. The blue line represents the numerical results
based on FDTD analysis and the red dashed line shows the theoretical analysis based on (1)
together with (6)–(11). Here [a.u] stands for the arbitrary units.
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field distribution of the gap soliton propagation. From the numerical simulations it follows that
the maximum F and the width ⇤ of the gap soliton exhibiting a stable profile propagating inside
the waveguide, amounts to F = 300A/m and ⇤ = 4.10h, respectively.

Figure 3(b) illustrates the longitudinal dependence of the magnetic field Hz versus the
dimensionless parameter x/h at y = 0 [cf. Figure 3(a)], where [a.u] stands for arbitrary units.
Numerical results from the FDTD analysis are shown by the blue line, whereas the theoretical
result is indicated by a dashed red line. The latter we find by substituting (16) and (17) together
with (6)–(11) into (1) and (2) from which the magnetic field Hz is easily retrieved. Calculating
the nonlinear coe�cient � from (14), the width of the bandgap soliton ⇤ is directly obtained
from (17). Based on our theoretical analysis, the width of the bandgap soliton amounts to
⇤ = 3.95h, which is in a very good agreement with the numerical result (⇤ = 4.10h). It is worth
emphasizing that only the scattering amplitudes of the space harmonics m = �1 and m = 0 gives
rise to the formation of the electromagnetic field (1), while the scattering amplitudes of other
space-harmonics are very small and can be neglected. All scattering amplitudes are calculated
by solving for the eigenvalue problem in the linear regime defined as �(!, kx0, ns) · AT = 0.

Figure 3(c) depicts the the transversal dependence of the magnetic field Hz versus y/h at
x = 0 [cf. Figure 3(a)]. The numerical results of the FDTD calculations are depicted as blue
line, whereas the theoretical results are indicated by the dashed red line. The latter is obtained
by substituting (6)–(11) into (1) from which the magnetic field Hz is inferred. A very good
agreement is observed between the results obtained from our theory and those that follow from
the corresponding full-wave computational electromagnetics simulations.

4. Conclusion

A rigorous theoretical formulation describing the evolution of the envelope of temporal solitons
propagating in Kerr-type nonlinear PhC waveguides has been proposed. The formalism is based
on the full-wave modal analysis and is very general in nature and can be applied to various
configurations of planar PhCs including the most challenging ones, such as plasmonic crystals
with intrinsic losses. We investigated an experimentally feasible hexagonal lattice formed by
air-holes in crystalline silicon. The expression for the nonlinear coe�cient has been rigorously
derived while accounting for all the space-harmonics and the interactions between them. The
width of the soliton and the shift of the angular frequency due to Kerr nonlinearities have been
analytically calculated. Extensive computational electromagnetics simulations based on the
FDTD were performed demonstrating the correctness of the proposed formalism.

Appendix A

In case of a multilayered periodic structure such as a PhC (Fig. 1), the scattered space harmonics
are conceptualized as new incident waves on the neighbouring PhC arrays and thus scattered into
another set of space harmonics, which then impinges back on the original array. The scattering
process from each layer is described by reflection and transmission matrices, which relate a set
of the incident space harmonics to a set of reflected and transmitted ones. Reflection rj and
transmission fj matrices for j-th layer are derived as follows [22]:

rj = U+(kx0)[I � T(ks)L(kx0h, ksh)]�1T(ks)P(kx0) (18)

fj = I + U�(kx0)[I � T(ks)L(kx0h, ksh)]�1T(ks)P(kx0) (19)
with

P(kx0) =
"
iseis cos�1(kxq/ks)

#
(20)
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U±(kx0) =
"
2(�i)s
kynh

e±is cos�1(kxn/ks)
#

(21)

where P(kx0) is a matrix that transforms the down-going q-th incident space harmonic wave to
the s-th scattered cylindrical harmonic wave, U+ and U� are the matrices that transform the s-th
scattered cylindrical harmonic wave back to the up-going and down-going n-th space-harmonic
waves (with n, s, q = �M,�M + 1, . . . , 0, . . . , M � 1, M), T(ks) is the T-matrix describing the
nature of the circular scatterer per unit cell, I is unit matrix and L(kx0h, ksh) is the matrix called
the lattice sums (LSs). All the matrices are given as functions of the complex wavenumber
kx0, whereas the T-matrix does not depend on kx0, but depends only on the geometrical and
material parameters of the circular scatterer per unit cell and the wavenumber ks characterizing
the background medium. The LSs whose elements are Lm, with m = q� s, are defined as [21,22]:

Lm(kx0h, ksh) =
1’

n=1
H(1)

m (ksnh)
"
einkx0 + ei⇡m�inkx0h

#

where m = 0, 1, 2, . . . and H(1)
m is the m-th order Hankel function of the first kind. The LSs only

characterize the periodic arrangements of the scatterers. Recently we have used the formulation
of the Ewald method for a fast and accurate calculation of the LSs applicable for real and
complex-valued phase shifts kx0 [21]. The latter is needed when analyzing complex guided and
leaky waves. Since the reflection and transmission matrices for each array have been rigorously
defined based on (18) and (19) together with (20) and (21), the generalized reflection matrix
R(!, kx0, ns) for the N-layered periodic structure array can be easily obtained using a recursive
algorithm [22,23].

Appendix B

A schematic view of a guiding region (a) having a refractive index ñs = ns + �n, whereas the
refractive index of other regions is equal to ns is depicted in Fig. 2. In this case we need a
slight modification only of (6) and (7) by implementing the diagonal Fresnel matrices. Other
expressions are the same as in (8)–(11). Expressions in (6) and (7) are re-written in the following
form:

a� =W1Fñs,nsW2Fns,ñsW1R · a+ (22)
a+ =W1Fñs,nsW2Fns,ñsW1RB · a� +W1Fñs,nsW2Fns,ñsW1TB · b+ (23)

where W1 = [exp(ikynr)] and W2 = {exp(ik̃yn[w�2r])} are the diagonal matrices which represent
the phase shift of the up-going and down-going space-harmonics, kyn and k̃yn are the wavenumbers
along the y-axis of the n-th space harmonic in media with the refractive indices ns and ñs,
respectively; Fñs,ns denotes the Fresnel matrix, which connects the transmitted space harmonics
to the medium with a refractive index ns and the space-harmonics impinging from the medium
with a refractive index ñs, Fns,ñs stands for the Fresnel matrix, which connects the transmitted
space harmonics to the medium with a refractive index ñs and the space-harmonics impinging
from the medium having a refractive index ns. It can be checked that when the refractive indices
of both media are the same, the Fresnel diagonal matrices become unit matrices and (22) and
(23) are reduced to (6) and (7). The calculation procedure for the other guiding regions with
di�erent refractive indices is the same.
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