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Abstract: Magnetic induction tomography (MIT) is a contactless, low-energy method used to visual-
ize the conductivity distribution inside a body under examination. A particularly demanding task
is the three-dimensional (3D) imaging of voluminous bodies in the biomedical impedance regime.
While successful MIT simulations have been reported for this regime, practical demonstration over
the entire depth of weakly conductive bodies is technically difficult and has not yet been reported,
particularly in terms of more realistic requirements. Poor sensitivity in the central regions critically
affects the measurements. However, a recently simulated MIT scanner with a sinusoidal excitation
field topology promises improved sensitivity (>20 dB) from the interior. On this basis, a large and
fast 3D MIT scanner was practically realized in this study. Close agreement between theoretical
forward calculations and experimental measurements underline the technical performance of the
sensor system, and the previously only simulated progress is hereby confirmed. This allows 3D
reconstructions from practical measurements to be presented over the entire depth of a voluminous
body phantom with tissue-like conductivity and dimensions similar to a human torso. This feasibility
demonstration takes MIT a step further toward the quick 3D mapping of a low conductive and
voluminous object, for example, for rapid, harmless and contactless thorax or lung diagnostics.

Keywords: magnetic induction tomography; electromagnetic tomography; three-dimensional imag-
ing; biomedical imaging; 3D reconstruction

1. Introduction

The contactless method of magnetic induction tomography (MIT) has attracted in-
terest for over two decades due to its harmlessness and the simple generation and de-
tection of low-energy induction fields. These fields easily permeate free space and all
non-ferromagnetic materials at sufficiently low conductivity. The method of application is
relatively straightforward. Primary induction coils induce electric fields in the required
measuring range, whereby eddy currents are established within the conductive body under
examination. The conductivity distribution of the body shapes the eddy currents, and their
secondary induction field is detected by receiver coils. The stronger primary field would
also be detected by the receivers, but this can be avoided by using various techniques, such
as backoff coils [1] or gradiometry [2,3]. Finally, a computer translates the signals obtained
into a visualization of the conductivity distribution under investigation.

With typical annular MIT setups, the sensitivity in the central areas of weakly conduc-
tive measurement objects (i.e., voluminous bodies) has so far been very low [3–7]. However,
with a new type of MIT setup [8], simulations have shown that a sensitivity increase of
more than 20 dB can be achieved. This has enabled the 3D imaging of conductivity changes
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in the center of a conductive volume. Here, this novel MIT method is comprehensively
demonstrated in an experimental setting for the first time. Thereby, low conductivities (0 to
1 S/m) in the biomedical range are accessible with this novel approach.

In general, biomedical MIT applications have appeared attractive for a long time.
Other contactless imaging methods include magnetic resonance imaging (MRI), which
typically uses a strong and stable magnetic field, with different gradients for spatial
encoding and radio frequency (RF) for excitation and detection, and X-ray-based computed
tomography (CT). Compared with these, MIT appears to offer a relatively fast, convenient,
and generally harmless whole-body tomography method. Moreover, the potential system
cost of MIT is low compared with MRI and CT. The material costs for this experimental
setup are up to 3000 €. Furthermore, the method is still contactless in contrast to sonography
or electrical impedance tomography (EIT). However, MIT also has significant inherent
drawbacks and weaknesses that make the method difficult and ultimately result in only
modest resolution. Since the induction fields quickly become weaker and blurred with
increasing distance, there is an information loss, particularly for those areas distant from
the inductors, resulting in an ill-posed inverse problem. Therefore, MIT requires a precise
measurement technique and high computational effort. Nevertheless, the rather low
resolution could be sufficient to resolve centimeter-sized features inside a body. This could
be sufficient for various applications, for example, to localize major lung anomalies or mass
bleeding inside the torso.

Similar to scintigraphy, which is also low-resolution, MIT offers an alternative contrast
method, namely, the distribution of electrical conductivity. This could be used, for example,
in non-invasive mapping of the conductivity of cardiac tissue [9]. The MIT approach
presented in our article is not intended to compete with or replace existing, well developed
tomography methods. Thus, it is not the replacement of, but the potential addition to,
existing methods that makes MIT particularly relevant. More biomedical applications
might arise in the field of rapid, non-hazardous, non-contact lung diagnostics [10], or in the
rapid detection of hemorrhage in the human skull [11]. Nevertheless, possible applications
are not limited to biomedicine. An MIT setup could also serve as a quick, non-contact
body scanner at security gates, for example, at airports, where currently implemented
systems for harmless mass application can either detect metallic objects (metal detector
gates) or are essentially restricted to the body surface (terahertz scanner). In contrast,
MIT could resolve non-metallic and centimeter-sized objects of concern inside the body,
without critical energies such as those of X-rays or the strong electromagnetic fields of
MRIs. Many industrial applications are also being discussed. Alongside previous work on
metallic targets, where the signal response is stronger than for the low conductivity regime
in biomedicine, multiphase mixtures or flows can be analyzed with tomography systems,
allowing the imaging of the spatial distribution of substances [12].

However, this article does not address a specific application, it is only about advancing
basic research in the field of MIT. For this reason, the practical implementation of 3D MIT
has been considered here for the first time, to detect and localize perturbations throughout
the depth of a weakly conductive (“biomedical”) test body. With the exciter and receiver
geometries previously used [3–7,13–23], the sensitivity in the central areas of a weakly
conductive body is critically low [3–7]. In addition to the attenuation and blurring of the
induction field over distance, there is another effect that further reduces the sensitivity
at the center of the body: the induced eddy currents run in closed loops within the
body, and the current density thus tends to be strongest near the surface, but decreases
toward the center region (and along the axis of the coils), where it vanishes and no longer
provides any information [8]. Therefore, only simulations of biomedical 3D MIT have been
successful in resolving weakly conductive inhomogeneities at the center of a test body to
this point [8,24,25]. Yet, MIT simulations can be too optimistic, as they can be based on
idealized prerequisites that are difficult to implement in practice.

Therefore, for initial biomedical MIT realizations, various evasion methods were used
so far to ensure that the signals received were usable. The perturbations were either placed
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close to the surface of the test body; were centered but breaking through the lower and
upper surface of a shallow bath (a quasi-2D setup) while being partly isolated from the
conductive background by plastic containers; were not immersed in a conductive back-
ground; or were not weakly conductive, but instead metallic. Usually, the perturbations
had a relative volume (RV) from 3% to 8% of the total volume of the body [6,15,18], which
corresponds to a rather poor resolution. In addition, the measurement sequence typically
required more than a few seconds, thus causing the method to be uncomfortable or even
unfeasible for living beings, especially because of the high susceptibility of MIT to motion
artifacts [26].

A more realistic biomedical MIT approach requires the simultaneous fulfillment of
several restrictive requirements for the phantoms and the measurement: (i) the conductivi-
ties for the background (body) and sought feature (perturbation) should be in the range of
biological tissues (i.e., from 0 S/m to 2 S/m [27]); (ii) the body should have representative
dimensions, for example, of the human torso or head; (iii) the sought perturbation should
be relatively small in relation to the whole body, such as a deviation in lung density or mass
hemorrhage in relation to the human torso; (iv) the perturbation should be continuously
interconnected to the surrounding background, and no plastic insulation should be placed
around a conductive perturbation; (v) the perturbations should be detectable throughout
the depth of the body; they should not be located only near the surface of the volume,
where the signals are much stronger; (vi) the entire problem must be treated technically and
mathematically in 3D; in principle, a 2D approach cannot satisfy voluminous, biomedical
MIT because the eddy current extends into a volume; and (vii) the measurement data must
be acquired within seconds, otherwise, motion artifacts from living beings will prevent
sufficient quality.

These more realistic requirements were recently addressed [8], whereby a wave-
shaped (undulating) excitation field was used. Intentionally increased eddy current den-
sities in the center of a test volume provided a sensitivity gain of more than 20 dB in the
central areas compared with annular MIT setups with circular coils, making the depth of the
volume more easily accessible. Using simulations, the principles and inherent advantages
of the undulating excitation field were extensively discussed in that previous study. At that
time, the reported technique was not ready for multichannel acquisition in 3D, and a more
extended undulator to create a virtually sinusoidal field in the measuring range of the
receivers had not been implemented. Brief experimental verification was achieved using a
reduced undulator, consisting of just five strips, and only one receiver. The undulator did
not provide a sufficiently pure sinusoidal field and the whole setup was insufficient for
practical 3D MIT results. Although the practical measurement signals only showed a rough
approximation to the simulated measurements, this similarity was insufficient for the MIT
calculation. Therefore, in the previously shown 3D reconstructions based on simulated
data, experimental evidence of truly practical feasibility was ultimately not provided. As
mentioned above, simulated MIT successes often fail to materialize in practice because real
circumstances are not considered or are only considered in an idealized way.

Here, a multichannel 3D MIT scanner with an extended undulator is experimentally
demonstrated. Particular care is taken to ensure that the previously described criteria
for realistic biomedical MIT verification are met. The practical design enables the rapid
detection of small (less than 2% RV), and weakly conductive (0–1 S/m) perturbations in
a weakly conductive background (0.5 S/m) with dimensions similar to a human torso.
However, the necessary agreement between the forward model and the measured signals
required for successful reconstruction poses a great challenge to experimental MIT. System-
atic signal deviations originate from many different sources, for example, imperfections in
coil implementation, any geometrical mismatch between the forward model and the real
setup, additional coupling paths (capacitive coupling), or effects caused by inappropriate
voxel size [20]. In addition, both the input signals for the exciter and the reference at the
receiver must be stabilized in amplitude and phase. Furthermore, environmental vibrations
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cannot be considered in the forward model, and such dislocation noise (and other noise
sources) has to be reduced as much as possible.

2. Materials and Methods
2.1. Applied Techniques for 3D MIT Imaging

The MIT setup implemented practically here approaches the setup only simulated
in [8]. In order to achieve 3D reconstructions based on real measurements, all feasible aids
were exploited, which are listed below:

• Virtually perfect gradiometry was established. The receivers were aligned gradiomet-
rically with the transmitter field; thus, almost all received signals originated in the
measurement object itself [2,3]. This means that the full dynamic range of the receiver
can be used for the secondary field, that is, the imprint of the test body of interest.

• Measurements were made using transmission geometry, which means that the test
body was mainly located between the excitation coil and the receiver coils. Thus, the
fields always passed through the entire body. This technique increased the amount of
information about the interior of the body.

• Due to the rapidly blurring and decaying induction fields over distance, the geometric
gap between the excitation and receiver coils was kept as small as possible. Conse-
quently, the smallest dimension of the test body ultimately determined the required
gap [8]. Preferred directions can, and should, therefore be used to facilitate MIT
challenges. For example, the human torso is not normally spherical in shape.

• A Weak coupling approach was considered. The operating frequency was chosen
to be so low (here: 1.5 MHz) that the induction fields would not experience signifi-
cant attenuation or distortion in the weakly conducting test body. This allowed the
assumption that the primary field was not affected or altered inside the body, which
considerably simplified the calculation [28].

• A single, planar exciter (undulator) provided the wave-shaped primary field, which
enhanced the central area sensitivity (>20 dB) together with the lateral scan procedure.

• The lateral and linear movement of the test object between the excitation coil (undu-
lator) and the opposing receivers provided a considerable amount of independent
data within 10 s. The mechanical scan was subjected to low mechanical vibration and
motion artifacts.

• In forward modeling, the eddy currents in the object have to be recalculated for each
position of the lateral scan method (here, 200 x-positions). However, the frequently
performed, computationally expensive forward problem was significantly reduced
using a sinusoidal field topology. Only two eddy current solutions had to be calculated,
and the total MIT computation was accelerated by one order of magnitude [8]. This
advantage required an extended undulator for only one significant spatial frequency
in the x-direction. The previously applied and more compact excitation with only five
strips could not provide a sufficiently clean sinusoidal field topology.

• Butterfly receivers were used instead of circular receiver coils. In comparison to a
circular receiver coil, this geometry further increased the sensitivity of the dipole-
shaped current fields typically originating from local perturbations in a conductive
background (by about 6 dB).

• As a practical simplification, a restriction was initially made to use only voluminous
cuboids with torso-like dimensions. The general functionality of the system was,
however, not restricted to voluminous cuboids. Although possible, the acquisition
and modeling of arbitrarily shaped bodies is more complex and initially more prone
to errors.
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2.2. Electro-Mechanical MIT Scanner Setup

The practical implementation of the planar MIT setup (Figure 1a–c) was created with
dimensions suitable for scanning a human being; it consisted of three functional modules.
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Figure 1. Planar MIT scanner setup. (a) Practical realization; (b) and (c) Schematic illustration, the upper half of the carrier
box is omitted for better visualization of the test object; (d) Undulating exciter with dimensions shown, consisting of 11
copper strips with antiparallel current directions. The distance D describes the periodicity of similar structures and cur-
rents; (e) Butterfly receiver array with dimensions. The left column contains the wide receivers, and the right column
contains the narrow receivers; and (f) Exciter and receiver alignment in cross-section from the central plane.

Figure 1. Planar MIT scanner setup. (a) Practical realization; (b,c) Schematic illustration, the upper half of the carrier
box is omitted for better visualization of the test object; (d) Undulating exciter with dimensions shown, consisting of 11
copper strips with antiparallel current directions. The distance D describes the periodicity of similar structures and currents;
(e) Butterfly receiver array with dimensions. The left column contains the wide receivers, and the right column contains the
narrow receivers; and (f) Exciter and receiver alignment in cross-section from the central plane.
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An undulating excitation coil (undulator) projected a well-balanced and steady-state
induction field at 1.5 MHz. An opposing receiver array consisted of six butterfly coils,
which were gradiometrically aligned in the excitation field, such that the six idle signals
were virtually zero with respect to the imprint of the test body. The test object was housed
in a carrier box and moved laterally in the x-direction on a 300 cm-long rail system through
a 40 cm gap (extending in the z-direction) between the exciter and receiver. A practical
scan was completed in 10 s, and each receiver took a measurement value every 1 cm
along the active, 200 cm-long, central scanning path. The recorded dataset thus equaled
200 × 6 = 1200 measurements.

The undulator (Figure 1d) behaved like a single LC parallel circuit with a resonance
frequency of 1.5 MHz, whereby a relatively modest driving power at the resonance fre-
quency resulted in considerably enhanced currents in the copper strips. The 1.5 MHz
induction field was only slightly absorbed or deformed by the weakly conductive test
object; thus, it could be advantageously treated as a weakly coupled problem [29]. Fur-
thermore, the power introduced into the test object could always be guaranteed to be less
than the driving power (less than 2 W), making this a harmless method with low power
density in the measurement volume. The undulator consisted of 11 elongated, equidistant
copper strips vertically aligned in the y-direction (Figure 1d). The strip currents ran in
alternating directions (periodicity D = 48 cm) and at equal amplitudes. Only the two
outermost strips were smaller and carried half the current. The primary field in the design
had a periodically repeating vector potential (isomorphic to the induced electrical field),
which in the measurement volume was directed only in the y-direction. The approximately
sinusoidal shape of the field in the x-direction was preserved in the area under investigation
rather than widening with depth z [8]. As a consequence, the field intensity exponentially
decayed with depth in the z-direction. For a primary of periodicity D, the characteristic
eddy current loops inside the voluminous test body cannot typically be wider than D/2
in the x-direction. The eddies must then pass through the central volume of wide objects.
Therefore, the eddy current density here was higher on average throughout the object
compared with typical MIT excitation by circular coils [3–7,13–23]. Improved central area
sensitivity (>20 dB) was the result of this spatial prefiltering [8]. Central perturbations
became much more detectable above the noise floor, and the relative imprint of minor
dislocations or mechanical vibrations in the receiver signals was accordingly reduced.

In addition, because of their butterfly geometry, the six receivers (Figure 1e,f) achieved
an increased sensitivity of approximately 6 dB [8] in dipole-shaped current fields compared
to circular receiver geometries. The dipole-shaped current fields were typically emitted by
local perturbations in the conductive background determined by the biomedical application.
The receivers were arranged in two vertical columns with three narrow and three wider
receivers. The depth range (i.e., the z-range) of the two geometries differed, thus allowing
for better depth resolution in the MIT. Due to their geometry, the vector potential of the
narrow receivers was larger in the vicinity of these receivers than at deeper points of the
measuring range, so that their detection range also tended to be nearer the receivers. The
wide receivers achieved a greater depth range and were modified so that their vector
potential (i.e., relevant y-component) crossed zero just beyond the object boundary near the
exciter. In addition, the outermost wires of the wide butterfly receivers (considering the y-
direction) were elevated in the z-direction toward the exciter (Figure 1f). This modification
partly compensated for the strong currents in the y-direction in the object near the exciter,
which tended to deliver disproportionately strong signals from this region. The resolution
in the z-direction was obtained by the signal shape but was also improved by the different
receiver sizes previously described. Resolution in the x-direction was implicitly provided
by the scan in the x-direction, and in the y-direction by the arrangement of the receivers in
vertical columns. Shielding the receivers reduced capacitive coupling between the exciter,
the test object and the receiver, which otherwise might have become a major issue [30] in
the biomedical regime where phantoms or bodies are rich in water (low conductivity and
high dielectric constant). In addition, there is a slight coupling among the receivers. Despite
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this coupling, the difference signals considered here are sufficient for a 3D reconstruction.
For future work, especially for reconstructions with total signals, this coupling must be
considered and revised separately.

The two receiver columns were located opposite the transmitter with the test body
placed between them (i.e., transmission geometry), and they were both centered between
two undulator strips. Due to the elementary symmetry, the primary field was almost
completely canceled in the received signals (i.e., gradiometric alignment, [2,3,8,31]). The
six 1.5 MHz signals received were amplified and directly mixed down to DC according
to a reference signal from the excitation site. The DC measurement value changed with
each step along the 200 cm-long scanning path. This value was digitized (Arduino Due)
and transmitted to the computer accompanied by the scanning position discretized in 1 cm
steps. The phase position of the signal depended on the object under investigation. For
example, signals from resistive materials had a phase angle of about 90◦ to those from
inductive materials (highly conductive metals). By phase tuning the reference signal at
the mixer, these different regimes became directly accessible. Overall, the system was
critically affected by phase drift and noise. For example, temperature-dependent capacitors
of the exciter oscillating circuit caused a slow phase drift, which affected the signal stability.
The transmitter LC circuit was thus damped with resistors, resulting in a flattened phase
response.

The complete electro-mechanical MIT scanner setup was installed in a normal labora-
tory environment that had many sources of quasi-seismic or mechanical interference (e.g.,
people walking somewhere in the building, opening and closing doors, etc.). The effect
with the greatest influence was that of mechanical vibrations, which disturbed the relative
positioning between the exciters and receivers, thereby inducing the largest artifacts and
noise. To mitigate this, the entire transmitter and receiver assembly were damped with
foam mats and springs as well as being stiffened against each other. In addition, the rails
and, thus, the moving carrier box were completely detached from the rest of the setup.

2.3. Conductive Body Phantom

The test body (Figure 2), the dimensions of which were similar to a human torso
(49 cm × 28 cm × 24 cm), was a 33-L saline bath (0.5 S/m). The largest dimension (49 cm)
extended in the x-direction and thereby approached the undulator periodicity D. Greater
length in the x-direction would not have affected the underlying principles. The smallest
body dimension (24 cm) was extended in the most sensitive direction, that is, the z-direction
(the gap between excitation and receiving). The smaller this gap, the higher the potential
resolution of the MIT. This is similar to the obsolete tape recorder, where the undesired
air gap between the audio tape and the magnetic head had to be as small as possible to
reproduce high audio frequencies, corresponding to smaller and more densely arranged
magnetic structures in the tape.

A polystyrene covering plate inhibited the random motion of the water (i.e., motion
artifacts) during a scan. The introduced perturbations were steady with respect to the
traveling saline bath, and their effective conductivities (either 0 or 1 S/m) were in the typical
range of human organs or tissues: 0 S/m is similar to fat tissue, a pneumothorax, or highly
aerated lungs, and 1 S/m is similar to free blood or serum. For the 3D reconstructions
(Section 3.2), cuboidal perturbations were used (Figure 2a). The cuboidal perturbations
that were placed in various positions within the body provided a RV of 1.55% (8 cm × 8
cm × 8 cm = 0.512 L) with respect to the 33-L saline cuboid. The smallest clearly detectable
perturbation in the interior of the volume was a sphere with a diameter of 5 cm (65 mL,
0.2% RV; Figure 2b).
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Figure 2. The 33-L saline body phantom with a non-conducting perturbation centered in the horizon-
tal middle plane. Body dimensions: 49 cm in the x-direction, 28 cm in the y-direction, and 24 cm in
the z-direction. (a) Body with cuboidal perturbation (512 mL); (b) Body with spherical perturbation
(65 mL).

Perturbations at 0 S/m consisted of a plastic cube or sphere filled with deionized
water (Figure 3a). To ensure a realistic representation of the situation in living beings, all
sides of the more conductive perturbation were connected to the conductive environment;
thus, it was not isolated by a plastic shell. More conductive perturbations were realized
using saline-agar cubes (1 S/m; Figure 3b). Although this material has been established
for application in biomedical impedance phantoms, being easy to shape, it is, however,
not durable. As this material is organic, it dissolves and/or decomposes over time, thus
hindering experiments conducted over longer periods. A virtually equivalent replacement
for the saline-agar perturbation was found in a much more durable wire star (Figure 3c)
shaped from multiple, open-ended copper wires (silver coated).
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Figure 3. Cuboidal perturbations corresponding to a 0.512-L (RV = 1.55%) feature. (a) Plastic cube
filled with deionized water (0 S/m); (b) Saline-agar cube (1 S/m); (c) Wire star in a conductive
background resulted in virtually the same signal as that obtained by the saline-agar cube (1 S/m).

Due to the open-ended wires, the eddy current loops must be closed by the weakly
conductive background of the environment. Furthermore, it was ensured that this wire
star reproduced the differential MIT signals of the 1 S/m saline-agar cube within the
0.5 S/m background. For this purpose, measurements were made with both the saline-agar
cube and the wire star at different locations in the 33-L body. The comparison showed
that the signal curves and amplitudes were quite similar, and the phase was virtually
the same (Appendix A). Only small-sized eddies occurred inside the open-ended but
highly conductive wires, at a relative phase shift of approximately 90◦, which was mostly
undetected in the phase-locked receiver circuit. The open-ended wire star immersed in the
weakly conducting background did not therefore appear as a highly conductive solid metal
object. It was therefore used as a durable replacement for the established but unstable
saline-agar cube (1 S/m).
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The test body and the introduced perturbations described here fulfilled the require-
ments for a realistic biomedical MIT, as described in the introduction.

2.4. Reconstruction in the Computer

In 3D MIT, the computational effort required is high [32], a major portion of which is
caused by the nonlinear response to conductivity variations. The conductivity was typically
approximated by numerous recalculations using iterative approaches.

In the reconstruction, it was necessary to set up a forward model that simulated
and calculated the physical signal chain from the excitation coils, over the body to the
receivers, resulting in simulated measurements. The forward model was calculated using
the generalized version of Geselowitz’s relationship [33] based on the reciprocity theorem,
that is, the integration of the inner product of the virtual receiver field (represented by the
vector potential) and the calculated eddy current density field in the object representing the
receiver signal [34]. The virtual receiver field remained constant and had to be calculated
only once. However, the eddy current density field (J) throughout the object had to be
recalculated for each position (x) along the scanning path, and for this reason is referred to
as Jx. This recurring calculation accounted for a major fraction of the total computational
cost. The undulator used here allowed for considerably accelerated calculation of the eddy
current density field by intentionally generating the periodic and even sinusoidally-shaped
excitation with periodicity D (Figure 1d), as shown in Equation (1):

Jx = JΦ cos
(

2πx
D

)
+ JΨ sin

(
2πx

D

)
, (1)

where JΦ corresponds to the eddy current density field throughout the object when the
object is centered exactly in front of the middle exciter copper strip and JΨ corresponds to
the eddy current density field when the object moves by D/4 and is therefore exactly be-
tween two strips. Hence, only two eddy current solutions (JΦ and JΨ) had to be calculated,
and their weighted superposition revealed Jx at any scan position [8]. The reconstructions
presented here are currently based on differential measurements because the computer-
aided and idealized forward model, although it performed well, was still not exact enough
to describe the total signals measured in practice, as shown in the experimental results
below. Instead of MIT using absolute measurements, differential measurements of local
perturbations were utilized because they were already a satisfactory match to the dif-
ferential forward calculation. The reconstruction algorithm (implemented in MATLAB
R2021a) corresponded to that of our previously published procedure [8], where an iterative
algorithm based on the inverted and regularized Jacobian was used to reconstruct the
practical 3D conductivity distribution inside the voluminous body. Direct inversion in a
single step was hampered by the high complexity of the generally nonlinear MIT problem.

The authors are aware that more mature theories and algorithms will solve the prob-
lems better and faster. Such theories and algorithms will be implemented in our institute
in the near future by a team of professional mathematicians; a specific project to address
these issues has recently been approved. The scope of this paper, though, is the practical
progress of 3D MIT throughout a volume within the realistic requirements of a biomedical
application.

3. Experimental Results
3.1. Measurement Signal Validation

The practical setup presented here is intended to verify whether local differences in
conductivity can be detected in the central regions of a voluminous body and whether
the sensitivity from the central regions is similar to that near the surface. In addition, it
examines how well the practical signals match the predictions from the forward calculation.
For successful reconstruction, high correspondence between these signals is necessary.
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Figure 4 shows the signal trace of receiver 2 (Figure 1e) for a perturbation (0.512 L at
0 S/m) immersed within the conductive background (33 L at 0.5 S/m; cf., Figure 2a). The
perturbation had a relative volume of 1.55% (0.512 L) with respect to the 33-L saline cuboid.
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The total signal (2.5 V peak-to-peak; Figure 4) of the voluminous object is depicted
by black dots. The green dotted curve shows the simulated total signal. The difference in
amplitude between the measured and simulated total signals was similar in magnitude
to the differential signals shown (red and blue) at a value of about 120mV. This residual
deviation probably occurred due to geometric mismatches between real techniques and
the idealized forward model and was partly influenced by additional coupling paths, such
as capacitive effects.

Even small deviations in the physical construction of the setup, such as slight shifts of
one of the exciter strips, can lead to distortion of the total signal (Appendix B). However,
these deviations had much less impact on the differential signals. Therefore, only differen-
tial MIT is presented here at this point. Both the red and the blue signal curves resulted
from the difference between a single measurement with and without perturbation. The
red curve (about 190 mV peak-to-peak) showed the signal behavior of the near-surface
position, face-centered at the side wall, and the blue curve (about 130 mV peak-to-peak)
showed that at the center of the volume (cf. Figure 2a). It is noteworthy that the relative
signal of the central perturbation (5.2% of the total signal) was distinctly higher than the
RV of the perturbation (1.55%). In previous MIT systems, the relative signal was usually
much smaller than the RV, making small central perturbations virtually undetectable.

Environmental influences (e.g., motion artifacts, mechanical noise, EMI, etc.) led to a
total noise signal of up to 2 mV peak-to-peak in differential signals. The signal-to-noise
ratio (SNR) between the total signal (2.5V peak-to-peak) and the overall noise was thus
close to 62 dB. The SNR given here, therefore, does not refer to the much stronger primary
field, which is actually canceled out. Instead, it refers to the much smaller secondary field,
equivalent to the imprint of the test body itself. To determine the electrical noise of the
circuitry alone, a measurement was made without the test object and the carrier box. The
electrical noise signal was 0.5 mV peak-to-peak. This results in a SNR of 74 dB between the
total signal of the test object and the electrical noise.
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During each MIT measurement procedure (scan), the measurement signals of all six
receivers were acquired. To obtain successful pattern reconstruction in the computer, these
experimental signals should properly match the signals calculated by the forward compu-
tation of the scenario. The red and blue curves in Figure 5 show differential signals from all
six receivers for real and simulated measurements of a non-conducting perturbation (1.55%
RV) at the center of the volume, respectively. Other perturbation positions (calculated and
measured) are shown in Appendix A. The blue signal curve was computed, and the red
signal curve was the differential measurement obtained from two single measurement
signals taken within 10 s of each other. The maximum deviation between the simulated
and the measured curve was 6.2 mV and was recorded by receiver 2. The average deviation
was 0.86 mV. Deviations between the practical measurements and the forward calculation
thus have less effect on the differential signals than on the total signals. The smallest
perturbation in the center of the body with a differential signal clearly above the noise
floor (Figure 5, black line) was a sphere 5 cm in diameter at 0 S/m (65 mL, 0.2% RV; cf.,
Figure 2b). Smaller spheres at the center of the volume (33 mL, 0.1% RV; Figure 5, green
line) resulted in critically weak signatures at a few mV (approaching −60 dB with respect
to the total signal) that were more affected by motion artifacts and other noise, which
ultimately prevented adequate evaluation.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 5. Differential scan signals from all six receivers from central perturbations with different RVs when comparing 
the incorporated perturbation and the whole test body. In the upper graph, the measured differential signal (red) of a 
perturbation with 1.55% RV overlapped with the simulation (blue) of the same arrangement. The lower graph shows the 
scan signal of a small non-conducting sphere with 0.2% RV (black) and a smaller sphere with 0.1% RV (green). 

3.2. Reconstruction in 3D 
Experimental arrangements were tested in which the weakly conductive perturba-

tions were located at positions that were previously difficult to detect with MIT setups 
and have, therefore, not yet been successfully reconstructed with practical measurements. 
Relevant examples are a perturbation in the central area of a voluminous body or two 
inner perturbations with complementary contrasts (i.e., higher and lower conductivity 
than the background) that were close together in the central area. 

The iterative reconstruction algorithm (Section 2.4) recalculated and visualized the 
perturbations in the given homogeneous saline bath. Figures 6 and 7 illustrate the recon-
structions of different conductivity setups based on real measurement data. The top row 
in each figure shows the real setup, that is, the saline bath (33 L, 0.5 S/m) with the im-
mersed perturbations. The bottom row shows computer reconstructions without prior 
knowledge regarding the probable locations or the character of the perturbations. The re-
sults are based on the numerical difference of two single measurements, with and without 
perturbations (Figure 4). The coloration mirrors the conductivity: the light blue, transpar-
ent background has a conductivity of 0.5 S/m; orange voxels have a larger conductivity 
(maximum 1 S/m) than the background; blue voxels have a smaller conductivity (mini-
mum 0 S/m); and the lower the transparency, the greater the deviation from the back-
ground. The non-conductive perturbations shown as blue objects in Figures 6 and 7 could 
represent over-inflated lungs. Perturbations with slightly increased conductivity (1 S/m) 
connected to the surrounding environment on all sides, shown as orange objects, could 
represent a bleeding mass or free fluid in the body. Note that the wire star shown in Figure 
3c was used in measurements with a perturbation of 1 S/m. The wire star used in Figures 
6 and 7 with much thicker, colored wires was only used in the photos for better visualiza-
tion. 

The test body was discretized into 1224 voxels, each measuring 3 cm × 3 cm × 3 cm. 
A smaller voxel would have increased the computational effort disproportionately. More-
over, it is not yet possible to resolve very small conductivity modifications (RV < 0.2%), 
because they are affected too much by environmental influences. Due to the simplified 
forward problem (cf., Section 2.4) and the voxel size adjustment, the reconstruction in 
MATLAB using a standard office laptop without accelerating hardware took about three 

Figure 5. Differential scan signals from all six receivers from central perturbations with different RVs when comparing
the incorporated perturbation and the whole test body. In the upper graph, the measured differential signal (red) of a
perturbation with 1.55% RV overlapped with the simulation (blue) of the same arrangement. The lower graph shows the
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3.2. Reconstruction in 3D

Experimental arrangements were tested in which the weakly conductive perturbations
were located at positions that were previously difficult to detect with MIT setups and
have, therefore, not yet been successfully reconstructed with practical measurements.
Relevant examples are a perturbation in the central area of a voluminous body or two inner
perturbations with complementary contrasts (i.e., higher and lower conductivity than the
background) that were close together in the central area.



Sensors 2021, 21, 7725 12 of 17

The iterative reconstruction algorithm (Section 2.4) recalculated and visualized the
perturbations in the given homogeneous saline bath. Figures 6 and 7 illustrate the recon-
structions of different conductivity setups based on real measurement data. The top row in
each figure shows the real setup, that is, the saline bath (33 L, 0.5 S/m) with the immersed
perturbations. The bottom row shows computer reconstructions without prior knowledge
regarding the probable locations or the character of the perturbations. The results are based
on the numerical difference of two single measurements, with and without perturbations
(Figure 4). The coloration mirrors the conductivity: the light blue, transparent background
has a conductivity of 0.5 S/m; orange voxels have a larger conductivity (maximum 1 S/m)
than the background; blue voxels have a smaller conductivity (minimum 0 S/m); and the
lower the transparency, the greater the deviation from the background. The non-conductive
perturbations shown as blue objects in Figures 6 and 7 could represent over-inflated lungs.
Perturbations with slightly increased conductivity (1 S/m) connected to the surrounding
environment on all sides, shown as orange objects, could represent a bleeding mass or free
fluid in the body. Note that the wire star shown in Figure 3c was used in measurements
with a perturbation of 1 S/m. The wire star used in Figures 6 and 7 with much thicker,
colored wires was only used in the photos for better visualization.
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Figure 6. Comparison of real test body setups with the resulting reconstructions based on measured data. The background
has a conductivity of 0.5 S/m in all three setups. (a) The perturbation with 0 S/m is located in the center; (b) The perturbation
with 1 S/m is face-centered at the right side; and (c) The perturbation with 1 S/m is located at the bottom of the test
body in the direction of the receiver. Note that the finer wire star shown in Figure 3c was used in the measurements and
reconstructions. The coarser wire star in the photographs is used here only for better visibility.

The test body was discretized into 1224 voxels, each measuring 3 cm × 3 cm × 3 cm. A
smaller voxel would have increased the computational effort disproportionately. Moreover,
it is not yet possible to resolve very small conductivity modifications (RV < 0.2%), because
they are affected too much by environmental influences. Due to the simplified forward
problem (cf., Section 2.4) and the voxel size adjustment, the reconstruction in MATLAB
using a standard office laptop without accelerating hardware took about three minutes.
Therefore, it is reasonable to state that with more powerful yet affordable hardware and
more effective coding, reconstruction could be achieved in a few seconds or even in real
time instead of a few minutes.
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conductivity of 0.5 S/m in all three setups. (a) The perturbations with 0 and 1 S/m are centered in the body and displaced
only in the x-direction; (b) The perturbations with 0 S/m are located at the bottom and in the direction of the exciter, and
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S/m has same x- and y-position and is displaced in the z-direction towards the transmitter. Note that the finer wire star
shown in Figure 3c was used in the measurements and reconstructions. The coarser wire star in the photographs is used
here only for better visibility.

4. Discussion

All of the MIT hardware presented here was designed to achieve the highest available
sensitivity for the central area, ultimately resulting in more homogeneous sensitivity
throughout the test body. Thus, signal amplitudes from perturbations near the surface
or in the central areas were almost similar (cf. Figure 4). In the setup presented here,
the relative amplitude of the central perturbation (130 mV peak-to-peak) corresponded
to about 5.2% of the total signal (2.5 V peak-to-peak) and was thereby even higher than
the RV of the perturbation (1.55%). An object near the surface (190 mV peak-to-peak)
resulted in a signal at about 7.6% of the total signal. In addition, smaller voids (0.2% RV;
Figure 5) in the central area were also clearly distinguishable from the noise floor (62 dB
SNR). For comparison, previous practical studies usually used perturbations with an RV
of 3 to 8 % of the total volume. These are thus usually more than twice as large as the
conductivity perturbations (1.55% RV) reconstructed here in 3D and 15 times larger than
the smallest clearly measurable perturbations (0.2% RV). Moreover, even such a small
perturbation delivered a relative signal (1.1%) that was proportionally larger than the RV
(0.2%). Overall, a specific gain of about 4 was achieved with the undulator MIT setup used
here with its lateral scan procedure. Due to the topology of the eddy current distribution
and receiver design, the overall signal of the whole object (Figure 4, black curve) was
intentionally reduced with respect to the signal of a central perturbation (Figure 4, blue
curve), which proportionally reduced the dominant dislocation noise [8]. These effects
could be exploited in conductive volumes extending in all directions and not necessarily
just in regular cuboids, making the technique promising for, for example, the human torso.

Another fundamental requirement for accurate reconstruction is good agreement
between calculated and measured signal characteristics (Figure 5). The differential signals
obtained here matched almost perfectly (with an average deviation of 0.86 mV) and thereby
confirmed the applied forward theories and the chosen discretization. Combined with
the higher sensitivity for the central areas, it was possible for the first time to reconstruct
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a weakly conductive volume with low-contrast inhomogeneities throughout its depth
(Figures 6 and 7) based on measurement data quickly acquired using experimental MIT.
The absolute signal, however, still showed a significant mismatch (maximum 120 mV)
between forward theory and measurement, presumably due to geometric mismatches of the
undulator (Appendix B). Such mismatches were in the order of an included perturbation
and currently prevent MIT using absolute measurements, that is, not based on differential
measurements. There are several reasons why there might be a geometric mismatch
between theoretical design and practical system. Since this is only an experimental setup
to prove the basic methodology, it is implemented with a wooden frame. The wood
can deform, for example, due to changes in temperature or humidity. Furthermore, the
two narrow outer conductor strips (6 mm) of the undulator (Figure 1d) were handmade,
which can lead to minimal differences in width, resulting in a small but noticeable current
difference and imbalance throughout the undulator. In the future, the structure should
be supported by a rigid fiber composite material and the elaborated dimensions of the
undulator setup should be manufactured by machine.

The reconstructions shown in Figure 6 demonstrated that individual conductivity
deviations (±0.5 S/m) were detected at different positions in the voluminous background.
Both the surface positions (Figure 6b,c) and the central position (Figure 6a) were resolved,
the former often being shown in typical MIT setups, while the latter, having no proximity
to any outer surface, was typically omitted in previous publications. Due to the more
homogeneous sensitivity resulting here, inhomogeneities at the center and at the edges
were detected simultaneously (Figure 7b,c), which was previously not possible because of
the much stronger signals near the surfaces, compared with the weak imprints from central
areas. Furthermore, clear differentiation was demonstrated in the x-direction (Figure 7a),
y-direction (Figure 7b), and z-direction (Figure 7c). In Figure 7b, the reconstructed conduc-
tivity perturbation in the center (1 S/m) seems to occupy more volume than in Figure 7a,c.
This could result from the basic reconstruction-algorithms but is probably also due to the
fact that in Figure 7a,c the complementary perturbation (0 S/m) is positioned closer to the
center perturbation, thus forming a clearer edge.

5. Conclusions

This study has demonstrated the practical implementation of a novel 3D MIT sensor
system for the biomedical regime. For this implementation, many conditions had to be
considered (Section 2) so that sufficient agreement between forward theory and technical
realization could be achieved. The agreement of the simulated and measured differential
signals proved to be satisfactory for differential 3D MIT and sufficient for imaging with ex-
perimental measurements. However, the deviation of the total signals, although improved,
still prevents 3D MIT from absolute measurements. Geometric mismatches between the
theoretical design and the practical system could be the cause of the remaining deviations.

The undulator MIT setup using a lateral scanning method, which has been presented
here, improved the sensitivity in the central areas, resulting in a similar response to objects
near the surfaces compared to those at the center of the volume. As a result, and for the first
time, experimental 3D MIT has been presented here that is sufficient to detect and localize
weakly conductive, small perturbations (>0.2% RV) throughout the depth of a voluminous
body. The perturbations had conductivities in the same range as organic tissue (0–1 S/m)
and were connected to the environment, which had a conductivity of 0.5 S/m. The test
body dimensions and general conductivity were similar to those of a human torso. The
results presented here move MIT a step closer to harmless, convenient, and quick human
tomography. In addition, the measurement and reconstruction results shown here confirm
the simulations shown in [8]. The future task is clearly to develop an absolute tomography
of an arbitrarily shaped body, that is, not based on differential measurements alone, where
the outer contour of the body could be independently determined (e.g., by optical methods)
and transferred to a computer. Further adjustment and refinement of the hardware and
software would further increase and stabilize the resolution.
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Appendix A

A saline-agar cube will dissolve and/or degrade over time, hindering experiments
over longer periods of time. A much more durable wire star was used as an effective
replacement. To verify equivalent signal behavior, the perturbations (saline-agar cube or
wire star) were placed one after the other at different positions within the conductive back-
ground (body), and the differential signals of the perturbations were recorded (Figure A1).
The signals show very similar behavior regarding amplitude and shape; therefore, a wire
star can actually be used as a 0.512 L perturbation with 1 S/m.
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Figure A1. Comparison between saline-agar cube and wire star signal measurements. In addition, a simulated signal is
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located face-centered at the side wall; (c) The perturbations are located close to the surface in the direction of the transmitter;
and (d) The perturbations are located close to the surface in the direction of the receiver array.
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Appendix B

If the undulator in Figure 1 is only slightly deformed, this will influence the total
signal. Figure A2 shows simulated signal changes (receiver 2) when one of the strips (here
strip 8) is shifted by 1 cm in the z-direction. This slight change results in a maximum signal
deviation of 74 mV. Similar changes occur for a slightly imbalanced current distribution in
the undulator.
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