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paper, see Brouweet al, [4]. Nguyen, Gyrfi, and Massey [1] Lemma 2.2 (Johnson Bound | [8]):
presented a new construction method of binary cyclic constant-weight né

codes fromp-ary linear cyclic codes, wheneis a prime. They used A(n, 26, w) <
a representation of Gfp) as cyclic shifts of a binary-tuple. Based ]
on this method, some asymptotically optimum binary constant-weight-€Mmma 2.3 (Johnson Bound 11 [8]):
codes were obtained. Because of the requirement of “cyclic codes,” ) n n—1 n—w+é

) . . . A(n,25,w) < |—

binary optimum constant-weight codes were not constructed in [1]. In ‘ 6

this correspgndence, we present two constr_uctlon methods of b'n\?vrllfere[;c] denote the largest integer less than
constant-weight codes, and one construction method of constant:

. . . Below we present the first concatenated construction method of
weight codes over Gfy). First, we extend the construction method_. .
. . ) . inar nstant-weigh . Wi r r ,
of [1] in the following two directions: db ary constant-weight codes. We ugeary codes as outer codes

) ] and binary constant-weight codes as inner codes.
1) We construct a binary constant-weight code (not necessarilyconstruction A: Let C; be ag-ary (n1, M, dy) code,Cs be a bi-

cyclic) from a code over Gfy), by using a representation pgpy, (n2, ¢, d2, w) constant-weight codef: GF(¢q) — Cb be a one

of GF(¢q) as codewords of a binary constant-weight codgy one mapping. Let

Actually, this idea already has been explored by Ericson

and Zinoviev in [5] and [6]. We show that binary optimum CalCh, o, f) ={(f(ea)s- -, fleni))e

constant-weight codes, which achieve the Johnson bound, can =(ci, vy ny) €Ci Y.

be constructed from optimum codes over GF;, which achieve ) ) . .

the Plotkin bound. The cyclic shifts of a binary vector forms a 't IS €asy to verify thatC’+(Ch,C5, f) is a binary (ninz, M,

binary constant-weight code, and thus this construction meth@g’2- 71%) constant-weight code. . _

can be understood as a generalization of the method as pre]'heorem 2.1:1f _|n Constructlon_ ACLis a_n optimum code over
sented in [1], see Section Il. Furthermore, two classes ng(‘f)' which achieves the Plotkin bound, i.e.,
binary optimum constant-weight codes can be constructed from M= qda
simplex codes over Gfg) by using this generalized method, . gdi —ni(qg—1)’
see Sections Il and IIl. _ C- is a binary optimum constant-weight code, which achieves the

2) We construct a binary constant-weight code from a constantspnson bound, i.e.,
weight code over GFy), by using a representation of nonzero .
elements of GFq¢) as codewords of a binary constant-weight q= nadz/2 ,
code, andd € GF(q) as a zero vector. We show that some n2dz /2 = w(nz —w)
binary optimum constant-weight codes can be constructed thenC 4 (C\, C>, f) is a binary optimum constant-weight code, which

B né > wln —w).
né — w(n —w) né > w(n - w)

w w—1

d>mni(g—1)/q

nada/2 > w(ng — w)

using this modified method, see Section IV. achieves the Johnson bouiddi.e.,
To our knowledge, most research in this field is concerned with nina(dida/2)
. ) . . M= .
binary constant-weight codes. The contruction of constant-weight ning(dida/2) — niw(ning — niw)

codes over GFy) did not receive a lot of attention. For some Proof: The proof follows from substituting into the expression

references, see [13]-[15]. It is easy to see that the Johnson bou%orlsﬂ I ' O

for binary constant-weight codes can be generalized togthey '

case. Here we show that the first construction method can be

generalized to construct optimum constant-weight codes ovégGF !ll- TWO CLASSES OFBINARY OPTIMUM CONSTANT-WEIGHT CODES

Actually, several classes afary optimum constant-weight codes, Nguyen, Gyrfi, and Massey [1] presented a concatenated con-

which achieve the Johnson boundsafy case), are constructed, seetruction method of binary cyclic constant-weight codes fromry

Section V. linear cyclic codes. By using Reed—Solomon codes and generalized

Berlekamp-Justesen codes as outer codes, they obtained four classes

II. CONSTRUCTION A of good binary cyclic constant-weight codes, which asymptotically

. . . . achieve the Johnson upper bound I or the Plotkin upper bound. In
In this section, we construct a binary constant-weight code from a PP PP

. ) this section, we useg-ary optimum codes, which achieve the Plotkin
code over GFg), by using a representation of Gf) as codewords - . o
. - L bound, as outer codes in the construction method of [1]. This is
of a binary constant-weight code. Actually, this idea already appeared . -
) . . ) special case of Construction A. We construct several classes of
in [5] and [6]. We show that binary optimum constant-weigh

. . imum binar nstant-weigh which achieve th hnson
codes, which achieve the Johnson bound, can be constructed fr%pn% um binary constant-weight codes, ch achieve the Johnso

optimum codes over Gfg) (outer codes), which achieve the PlotkinUp.IF_)ﬁr boupd l'd f

bound. We use a representation of G as codewords of a binary € cyclic order o )
optimum constant-weight code (inner code), which achieves the v=(vi, -,on) € [GF(2)]"
Johnson bound.

Let A,(n,d) denote the largest numbéd of codewords in any
g-ary code of lengthn and minimum distance at leagt (called 0 =8"(0) = (vrg1s s ON, UL, oy V).
g-ary (n, M,d) code), andA,(n,d,w) denote the largest number
M of codewords in any-ary constant-weight code of length,
minimum distance at leadt, and codeword weight (called ag-ary Ew) ={v,S), -, 5‘(“)‘1(1:) }
(n, M, d,w) constant-weight code). In the sequel, we omit the inde])( . . . .
“2" for the binary case. We use the following lemmas. orms a binary constqn;-welght_ code V\.”th length cod S'Z.ef’(”)'

Lemma 2.1 (Plotkin Bound [7]): and weightw(v). Its minimum dlstan%e is denott_ad dév). Given a

g-ary (n, M, d) codeC, v € [GF(2)]"" with cyclic orderg, and a
’qd _, d>n(q—1)/q. one-to-_o_ne mapping: GF(¢) — &(v), then we have the following
qd —n(q—1) proposition.

is denoted ag(v), i.e., the smallest positive integéersuch that

It is clear that

Aqln,d) <
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Propositon 3.1: C'4(C, E(v), f) is a binary constant-weight codecode, and) € GF(q) as a zero vector. We show that some binary
with lengthn N, weight nw(v), minimum distance at least(v)d, optimum constant-weight codes can be constructed by using this
and code sizeli. modified method.

Proposition 3.2: Construction B: Let C; be a g-ary (ny,M,d;,w;) constant-

weight code(> be a binary(nz, ¢—1,d2, w2) constant-weight code,

AN, d(v)d, nw(v)) 2 Aq(n, d). 0 € [GF(2)]"2 be the all-zero vectorf: GF(q) — C, U {0} be a

From [1], we know that one-to-one mapping'(0) = 0. Let
o g = (1,0,---,0) € [GF(2)]?, t(ay) = ¢, w(ag) = 1, o g o
d(ag) = 2. Cp(C1,Co, f) ={(f(e1), -,f((?nl))|0
e q = p, prime, andpz;1 is odd, 3 dof Legendre sequence of =(c1.--+.cn) € Ch ).
length p,
ghr It is easy to verify thatUs(C4, C2, f) is a binary constant-weight
tB)=p, w(B) = p;l ap) ="r +1 code with lengthn,n, code sizeM, weightw, ws,.
2 2 Given z,y € Ci,z # y, andz = (w1, ", &0, ),y =
where (y1,-**,Yn,), We denote
B=(0.r. Bp1)s Fi=0 Uayy) = [{is @ = 0,y; # 0 OFy; = 0, 2: % 0}
if 7 is a quadratic residue modupoand3; = 1 if 7 is a quadratic U(x,y) = |{i: x; # y; andz;, y; # 0}].

nonresidue modulg.
It is easy to verify thatS(a,) and £(3,) are binary optimum Then
constant-weight codes, which achieve Johnson bound I. From both
examples, we obtain the following proposition.
Proposition 3.3:

Ua,y) + 1" (2,y) > d.

D t
1) A(ng,2d,n) > A,(n,d), enote
A A
2) if p is prime, and*5— is odd, then dp = min{wsl(x,y) + dol* (2, y)|Va,y € C1,2 £ y}.
/ p+1 p-—-1 )
A, == n=5— | > Ap(n.d). It is not difficult to see that the minimum distance of

Cp(C1,Cy, f) is at leastdp.

Remark: Proposition 3.3 (1) can also be found in [12, Theorem pygposition 4.1:

7, p. 57].

Lower bounds ford (n’, d’, w) can be obtained from lower bounds 2 . o . . .
for A,(n,d), e.q., GiIéert—Vars),hamov bound, and optimum codes inA(q —L20-Dg =g -1, ¢1s a prime power g # 2.
GF(q), e.g., Hamming codes, Golay codes, R-S codes, MDS codes, ]
and simplex codes. Proof: Let C1 = S,(2) — {0} (Simplex codeS,(2) deleting

Proposition 3.4: If C'is an optimum(n, M, d) code over GFq), the zero vector) and’; = £(a,-1) in Construction B. Then
which achieves the Plotkin bound, thefi4(C,E(ay),f) and
Ca(C,E(B3p), f) are binary optimum constant-weight codes, which m=q+1, M=¢ -1, di=q, w =g,
achieve the Johnson bound I.

Generalized Hadamard matrix over GB can be used to construct
codes over GFy), which achieve the Plotkin bound, see [2]. If we dp >1x2+2(q—2)=2(¢—1).
take C' to be the[(¢™ — 1)/(¢— 1), m,¢™ '] simplex codeS,(m),

i.e., the dual code of the Hamming code over (GF we obtain the  Hence
following two classes of binary optimum constant-weight codes.

no=q—1, do=2, wo=1,

Proposition 3.5: Cp(54(2) —{0},E(ag—1), f)
1) A (q q::] 24", q;n__11) =q" is a binary(¢® — 1,¢* — 1,2(q — 1), ¢) constant-weight code. This
2) If p is prime, and?5" is odd, then yields that

A<p1%—11 mfu%l,pm; 1) — Al* - 1.2(¢-1).q) 2 ¢ — L.

From Johnson bound II, we have
Remark: If C' is a binary optimum code which achieves the . W v

Plotkin bound, therC'4(C, E(«2), f) is an optimum balanced error-
correcting code. Therefore, we can use the Hadamard matrix to 2 . ¢ -1[¢ -2

construct optimum balanced error-correcting codes. Barg and Litsyn q qg—1
[9] used the Hadamard matrix to construct good balanced error- -1 )
correcting codes. In [10], van Tilborg and Blaum also presented a = { p X q} =q¢ - L
construction method for balanced error-correcting codes.
Therefore,
IV. CONSTRUCTION B
In this section, we construct a binary constant-weight code from Al® = 1,2(q - 1)) =¢* — 1. O

a constant-weight code over Gf). We use a representation of the
nonzero elements of Glg) as codewords of a binary constant-weight Actually, we can obtain following results.
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Proposition 4.2: For all ¢y, co € Sy(m) — {0}, c1 # co Proposition 4.4:

1) if c1 # Oc2,V8 € F,, then ) . .
A(2¢q,q+1,9-1)=g¢q, ¢ is an odd prime power

ler,e2) =2¢"7%  (ereo) =q" 7" —2¢" 72 Proof: Let () = (bij)qx4 be the Jacobsthal matrix (see [3, p.
47], notifying that quadratic residues are defined to be the nonzero
2) if there existd € F,.6 # 0 such thate, = fco, then squares in GFq)). From the properties of the Jacobsthal matrix, we
know that the row vectors @ form a ternary(q, ¢, (¢+3)/2,¢—1)
l{ci,c2) =0 I*(cr,e0) = ¢™ ", constant-weight codé€';. If in Construction B, we take’; = C'y,

C> = {10,01}, f: 0 — 00,1 — 10,—1 — 01, thends = q + 1.
Proof: Let (F;)™ be them-dimensional column vector sPaceyence, C'5(C.y, Co, ) is a binary(2¢.¢.q + 1,¢ — 1) constant-

over the finite fleIdF The scalar multiple class efe (F,)™ — {0} weight code. This yields. thatttoy.a & 1y =1 5 e
is defined by Johnson bound |, we havé(2¢,q + 1,¢ — 1) < ¢ and therefore
a={falf € Fy, § # 0} A(2¢,9+1,g—-1)=4q. 0

Ifin Contruction A, we tak&™; as ag-ary optimum(n, M, d) code,
There are a total 01’—’1 scalar multiple classes. First, pick only onewhich achievesd, (n, d), andC; as the binary(2q,¢,q¢+ 1,4 — 1)
column vector in every scalar multiple class. We obtain the colunf@nstant-weight code constructed in Proposition 4.4, we have the

vectorshy, ha, -, hnyn = "q_j‘. The generator matrix of, () following proposition.
is defined asf = (h1, ha, -+, ha)mxn. Denote the row vectors of Proposition 4.5:
H aswvi,va,+++,v,. Then

A(2qn,(¢g+1)d,(¢—1)n) > A,(n,d), qis an odd prime power
Sq(m) ={01v1 + Ozv2 + -« + b,,v,, | 6: € Fy,
i=1,2,---,m). Further_more, if we takeCy as S,(m), we have the following
proposition.
Givene € S,(m)— {0}, then there exist; € Fy,i =1,2,---,m Proposition 4.6:
(not all zero), such that

¢ q7n -1 m—1 m _m
C:€1'U1+€2'U2+"'+HNLUWL fl(zq q_l .\(q—"_l)q 4 1>_q '

. is an odd prime power
and the components ef satisfy 1 P P

= (01,02, 0m) Dy, =12, V. OPTIMUM CONSTANT-WEIGHT CODES OVER GF(q)
Consider the linear equatioff,, s, -,8m)r = 0, wherex = To our knowledge, most research in this field is concerned with
(21,22,--+,2,)" is an unknown column vector inF,)™. There binary constant-weight codes. The contruction of constant-weight
are ¢™~' — 1 nonzero solution vectors, and th ?S”;:ll—l scalar codes over Gkg) did not receive a lot of attention in literature.

In this section, we show that the first construction method can be
generalized to construct optimum constant-weight codes ovér GF
1{jle; = 0}] = q ) Actually, several classes af-ary optimum constant-weight codes,
s q—1 which achieve the Johnson boungdry case), are constructed. It is
easy to see that the Johnson bounds for binary constant-weight codes
can be generalized to thgary case.
-1 ¢ =1 1 Johnson bound 1 for binary constant-weight codes can be gener-
- alized as follows.
Lemma 5.1 (Generalized Johnson Bound I):

multiple classes. Therefore,

m—1 _ 1

The Hamming weight of: is

g-1  q-1
It is easy to verify that assertion (2) is true.
Givency,c2 € S;(m) — {0}, and¢; is not a multiple vector of
ca. Let c; = (cit,cinyr o+, cin),i = 1,2. Using the same argument
as above, we have

n(qg — 1)d
qw? — 2(¢ — Dnw + n(qg — 1)d’
quw® = 2(q — Dynw + n(qg — 1)d > 0.

AQ<n7 da ll)) S

q7n—'2 -1

Hiless = 2y = 0} = =5

It is easy to see that

Therefore, Ag(n,d,w) < M Ag(n—1,d,w —1)
w
l{ers o) =[{iler; = 03 4 Kilezj = 0} = 2{jler; = c25 = 0}

q’VL ' - 1 qm ? - 1 m—2
=2 -2 =2¢"72,
q—=1 q—1 Therefore, Johnson bound Il for binary constant-weight codes can be
Hence, generalized as follows.
Lemma 5.2 (Generalized Johnson Bound Il):
I(er,e0) =du(ereo) = l(er,e0) =" =2¢" 7% O If d =26+1,andé +1 < w, then

Ay(n,26+1,6)=1 A,(n,26,6) = [;_z]

Let Cy = Sy(m) — {0} andC> = E(ay—1) in Construction B. , (g—Dn [(¢g=1D(n—=1)
We then have the following proposition. Ag(n, 28+ 1, w) < w w—1
Proposition 4.3: {(q —D(n—w+b+ 1)} H
A" =12 =Dg™ % g" ) =" - L. 6+1 .
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If d =26, andé < w, then This yields
‘4{1(77’2(5‘,“)) < |:(q_ 1)71 |:(q _'1)(71,— 1) )
w w—1 Ay (n,2,w) = (¢ — 1)u1—1. O
) (g—Dn—w+6+1) w
641 N
{w” ” Proposition 5.2:
1) 4 mo__ 1 (m71 m—1 _om 1
Remark: The generalized Johnson bound Il was given in [13] and S\ T q g q .

[14], but the casel = 26 was not separated as was done here.
Generalized Steiner systems (see [15]) are a subclass of codes which Proof' It is easy to see thaf,(m) — {0} is an optimumg-ary

attain the generalized Johnson bound IlI. 4 *11./ —1,¢™ ', ¢™™ 1) constant-weight code, which achieves
The method in Construction A can be generalized to construd:le generalized Johnson bound I. (I
optimum constant-weight codes over Gf. Proposition 5.3:
Construction A: Let C be ag-ary (n1, M, d,) code,C- be ag-
ary (n2,q1,dz, w) constant-_weight code over GF), f: GF(q1) — A, <q7 qg+3 g 1) is an odd prime power
C> be a one-to-one mapping. Let 2

—7
Car(Cr. Co, f) ={(f(er). -+ fleny))le Proof: From the proof of Proposition 4.4, we know that the

=(c1, " ,cn,) € C1}. row vectors of the Jacobsthal matrix form a ternary optimum
: . s a2 ¢ — 1) constant-weight code”;, which achieves the
It is easy to verify thatC . (C\,C: is a g-ary (nime, M, (117574 9 T
y fy a0, Ca, f) g-ary (mn, generalized Johnson bound I. O

d1d2,nyw) constant-weight code over GF).

Theorem 5.1:1f in Construction A € is an optimum code over Proposition 5.4:

GF(¢1), which achieves the Plotkin bound, i.e., =1 g +3 . .
qid As{ 47— a 51 —1)=4q
M=—H—"—/—4/ d>n(g—-1)/q q z
q1di = ni(q = 1) ¢q is an odd prime power.
(' is an optimum constant-weight code over @Gk, which achieves
the generalized Johnson bound 1, i.e., Proof: In Theorem 5.1, seC’; = S,(m), and Cy = C,
na(q — 1)ds (in Proposition 5.3). From this we obtain a ternary optimum
= qu? —2(q — L)naw 4+ na(q — 1)(12’ (q -1 qm, q‘m—l %J.’ ¢" — 1) constant-weight code, which
achleves the generalized Johnson bound I. (I

a2 _ _ P no — . . . .
qu” = 2(g = Dnzw + n2fg = 1)dz > 0 If in Contruction A, we takeC; as ag-ary optimum(n, M, d)
then C4/(C1,Co, f) is an optimum constant-weight code overcode, which achieved, (n, d), andC, asC';, we have the following

GF(q), which achieves the generalized Johnson bound |, i.e., proposition.
M= nina(q — 1)dids Proposition 5.5:
g(niw)? — 2(q — )(nina)(niw) + nina(q — Ddids”
Below we present several classes of optimum constant-weight cod&("q d ""(‘1 - 1)> 2 Aq(n.d), ¢is an odd prime power
over GFg).
Proposition 5.1: Proposition 5.6:
Ag(n,2,w) = <7’:> (¢ = 1" A ("1 (" =D" —q)
| “’<q—1’3’3>—f~
Proof: AssumeC' = {(L‘,l,(‘z,'“, n) € [GF(g)]"| there are
only w NONZEro COMpPONeNts;, , iy, <+, Ciy,_y; Ciys 1 < it < 2 Proof: From the generalized Johnson bound I, we have

< -+ <iw—1 < iw < n, such thate;,, = c,lclz- “Ciw_q ) ItS

easy to verify that”' is ag¢-ary (n, 2, w) constant-weight code over —1)? -
Yy fy g-ary (n,2,w) g A,(n.3.3) < (¢ —1)n(n 1).

GF(q), and 6
|| = <">(q -1 The codewords with weight3 in the ¢-ary Hamming code
W . m_ g —1)(q" —q¢
w Ham (m.q) form an optimumg-ary (L= (=1l _’),3‘3)
Therefore constant-weight code, which achieves the generalized Johnson
’ bound II. O
Ag(n,2,w) > |C| = < ) (¢—1)" N Proposition 5.7:
By using the generalized Johnson bound I, we have As(11,5,5) =132 A3(12,6,6) = 264.
, (q=Dnfl¢g=1(n—-1)
Ag(n,2,w) < { " — Proof: The codewords with weighi in the ternary[11, 6, 5]
Golay code form an optimum ternaryll, 132, 5, 5) constant-
-Dn—w+2)[n-—w+1 e
. {(q )(HQ wt2) {n LIL + H H weight code, which achieves the generalized Johnson bound II. The

codewords with weight in the ternary[12, 6, 6] extended Golay
— <"> (q—1)"~". code form an optimum ternat 2, 264, 6, 6) constant-weight code,
w which achieves the generalized Johnson bound 1. O
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Remark: As pointed out by one referee, Proposition 5.6 and th@0] H. van Tilborg and M. Blaum, “On error-correcting balanced codes,”

first part of Proposition 5.7 are among the results which are mentioned |EEE Trans. Inform. Theorwol. 35, pp. 1091-1095, 1989. =
in [14]. For completeness, we still include these results here. 1 M. A Tsfasman, S. G. \Adyt, and T. Zink, “Modular curves, Shimura

. . . . . . curves and Goppa codes better than the Varshamov-Gilbert bound,
Erlcson and Z_movnev [6] studied the asymptotic behavior of  pah Nachrichten.vol. 104, pp. 13-28, 1982.
A(n,d,w). By using the well-known bound of Tsfasman,adjt, [12] T. Ericson, “Bounds on the size of a code, “Tapics in Coding Theory,
and Zink [11] and the facti(ng, 2d,n) > A4(n.d), they obtained an Lecture Notes in Control and Information Sciencesl. 128. Berlin,
improvement of the Gilbert bound for binary constant-weight codeag} Germany: Springer-Verlag, 1989, ch. 2.

h . . R. J. M. Vaessens, E. H. L. Aarts, and J. H. van Lint, “Genetic algorithms
It is worthy to point out that we can obtain new lower bounds fo in coding theory—A table fords (n, d)," Discr. Appl. Math, vol. 45,

asymptotic values ofi(n,d,w) and As(n,d,w) in the same way, pp. 71-87, 1993.
by using the fact [14] T. Etzion, “Optimal constant-weight codes ov&y, and generalized
designs,”Discr. Math, 1997, to be published.
A(2qn, (¢+ 1)d, (g — 1)n) > Ay(n,d) [15] K. Phelps and C. Yin, “Generalized Steiner systends,Comb. Des.
g+3 to be published.
As(ng,d 5 ,n(g—1)) > Ay(n,d)

¢ is an odd prime power, respectively.

VI. CONCLUSION Maximum Disjoint Bases and Constant-Weight Codes
Motivated by the construction method of binary cyclic constant- o
weight codes by Nguyen, ®yfi, and Massey [1], we study the Vladimir D. Tonchev

concatenated construction methods of constant-weight codes. In Con-
struction A, we use codes over GF as outer codes and bi-
nary constant-weight codes as inner codes. In Construction B,
use constant-weight codes over GF as outer codes and binary
constant-weight codes as inner codes, with the zero element {n)GF
is represented as zero vector. We show that binary optimum constarnfe construction exploits maximal sets of bases in the four-dimensional
weight codes can be constructed from Constructions A and B bipary vector space pairwise intersecting in at most two vectors.

using different inner codes and outer codes. We also establish SOM@gex Terms—Affine geometry, constant-weight code, Steiner system.
interesting relations betweet(n, 26, w) and A, (n, d). Furthermore,

Construction A is generalized to construct constant-weight codes over

GF(q). In Construction A, we use codes over GF) as outer I. INTRODUCTION

codes and constant-weight codes over(@Fas inner codes. Finally, e follow the notation of [2]. For the parameteis= 2™ + 1,
several classes of optimum constant-weight codes ovefqGBre = 5, d = 26 = 4 of a binary constant-weight code, the Soheim
constructed. upper bound is

Abstract—T he following lower bound for binary constant weight codes
We derived by an explicit construction:

A(17, 4, 5) > 441.

(27" + (27 (2" = (2> —2)
5-4-3-2
The authors wish to thank the Editor and the referees for their comith equality if and only if a Steiner systey4, 5, 22" 4 1) exists.
ments and suggestions that helped to improve the correspondenc&part from the trivial casen = 1, no such system is known presently.
An “approximation” of such a Steiner system, being a Steifier
REFERENCES design with two block sizes) and 6, can be derived from the

Preparata code [4]. The best known lower bound for the smallest

[1] Q. A. Nguyen, L. Gyifi, and J. L. Massey, “Constructions of binary i  — is A(17 4 5 / ;
constant-weight cyclic codes and cyclically permutable codHsFE nontrivial casem 2 is A(17.4,5) > 424, obtained by the
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