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The codeC3

29 has a generator matrix

01001110111010000000000000000

00111011101001000000000000000

11010011011000101100000000000

10100110000000111010000000000

00000001011000110001000000000

10011101011000011000100000000

10011101110100000000000000000

00011111111000011000011000000

11011111101000111000010100000

10111111100000101000010010000

00010010010000100000010001000

10010111110000001000010000100

00000110011000110000010000010

11111100001000010000010000001

:

The constructed self-dual codes have a weight enumerator (9). In
21 cases codes with such weight enumerators were not known up
to now.

F. [68; 34; 12] Codes

The weight enumerator of an extremal self-dual[68; 34; 12] code
must be of the form

W (y) = 1 + (442 + 4�)y
12

+ (10864� 8�)y
14

+ � � � (10)

W (y) = 1 + (442 + 4�)y
12

+ (14960� 8�

� 256
)y
14

+ � � � : (11)

The double circulant self-dual[68; 34; 12] codes have weight enu-
merators (10) for

� = 104; 137; 170; 203; 236; 269; 302; 335; 401;

and (11) for


 = 0; � = 34; 68; 102; 136; 170; 204; 238; 272

[9]. There also exist codes with weight enumerators (10) for

� = 122; 125; 126; � � � ; 132; 134; 135; 136; 139

and (11) with
 = 0 and

� = 40; 44; 45; 47; � � � ; 65; 67; 68; 69;


 = 1 and

� = 61; 63; 64; 65 ; 72; 73; 76;


 = 2 and � = 65; 71; 77 [7].
From the quasi-cyclic[34; 16] code with a generator matrix

obtained from two circulant17 � 16 matrices with first rows
01000000001010010 and 11000000001111101 we construct the
extremal self-dual[68; 34; 12] codes listed in Table IX. These codes
have weight enumerators (11). Codes with these weight enumerators
were not known to exist.
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On the Constructions of Constant-Weight Codes

Fang-Wei Fu, A. J. Han Vinck, and Shi-Yi Shen

Abstract—Two methods of constructing binary constant-weight codes
from 1) codes over GF(q) and 2) constant-weight codes over GF(q) are
presented. Several classes of binary optimum constant-weight codes are
derived from these methods. In general, we show that binary optimum
constant-weight codes, which achieve the Johnson bound, can be con-
structed from optimum codes over GF(q) which achieve the Plotkin
bound. Finally, several classes of optimum constant-weight codes over
GF (q) are constructed.

Index Terms—Constant-weight codes, Johnson bound, Plotkin bound,
simplex codes.

I. INTRODUCTION

Binary constant-weight codes play an important role in coding
theory. Research has been done in searching good constant-weight
codes and finding good lower and upper bounds. For a good survey
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paper, see Brouweret al., [4]. Nguyen, Gÿorfi, and Massey [1]
presented a new construction method of binary cyclic constant-weight
codes fromp-ary linear cyclic codes, wherep is a prime. They used
a representation of GF(p) as cyclic shifts of a binaryp-tuple. Based
on this method, some asymptotically optimum binary constant-weight
codes were obtained. Because of the requirement of “cyclic codes,”
binary optimum constant-weight codes were not constructed in [1]. In
this correspondence, we present two construction methods of binary
constant-weight codes, and one construction method of constant-
weight codes over GF(q): First, we extend the construction method
of [1] in the following two directions:

1) We construct a binary constant-weight code (not necessarily
cyclic) from a code over GF(q), by using a representation
of GF(q) as codewords of a binary constant-weight code.
Actually, this idea already has been explored by Ericson
and Zinoviev in [5] and [6]. We show that binary optimum
constant-weight codes, which achieve the Johnson bound, can
be constructed from optimum codes over GF(q), which achieve
the Plotkin bound. The cyclic shifts of a binary vector forms a
binary constant-weight code, and thus this construction method
can be understood as a generalization of the method as pre-
sented in [1], see Section II. Furthermore, two classes of
binary optimum constant-weight codes can be constructed from
simplex codes over GF(q) by using this generalized method,
see Sections II and III.

2) We construct a binary constant-weight code from a constant-
weight code over GF(q), by using a representation of nonzero
elements of GF(q) as codewords of a binary constant-weight
code, and0 2 GF(q) as a zero vector. We show that some
binary optimum constant-weight codes can be constructed by
using this modified method, see Section IV.

To our knowledge, most research in this field is concerned with
binary constant-weight codes. The contruction of constant-weight
codes over GF(q) did not receive a lot of attention. For some
references, see [13]–[15]. It is easy to see that the Johnson bounds
for binary constant-weight codes can be generalized to theq-ary
case. Here we show that the first construction method can be
generalized to construct optimum constant-weight codes over GF(q):
Actually, several classes ofq-ary optimum constant-weight codes,
which achieve the Johnson bounds (q-ary case), are constructed, see
Section V.

II. CONSTRUCTION A

In this section, we construct a binary constant-weight code from a
code over GF(q), by using a representation of GF(q) as codewords
of a binary constant-weight code. Actually, this idea already appeared
in [5] and [6]. We show that binary optimum constant-weight
codes, which achieve the Johnson bound, can be constructed from
optimum codes over GF(q) (outer codes), which achieve the Plotkin
bound. We use a representation of GF(q) as codewords of a binary
optimum constant-weight code (inner code), which achieves the
Johnson bound.

Let Aq(n; d) denote the largest numberM of codewords in any
q-ary code of lengthn and minimum distance at leastd (called
q-ary (n;M; d) code), andAq(n; d; w) denote the largest number
M of codewords in anyq-ary constant-weight code of lengthn,
minimum distance at leastd, and codeword weightw (called aq-ary
(n;M; d; w) constant-weight code). In the sequel, we omit the index
“2” for the binary case. We use the following lemmas.

Lemma 2.1 (Plotkin Bound [7]):

Aq(n; d) �
qd

qd� n(q � 1)
; d > n(q � 1)=q:

Lemma 2.2 (Johnson Bound I [8]):

A(n; 2�; w) �
n�

n� � w(n� w)
; n� > w(n� w):

Lemma 2.3 (Johnson Bound II [8]):

A(n; 2�; w) �
n

w

n� 1

w � 1
� � �

n� w + �

�
� � �

where [x] denote the largest integer less thanx:
Below we present the first concatenated construction method of

binary constant-weight codes. We useq-ary codes as outer codes,
and binary constant-weight codes as inner codes.

Construction A: Let C1 be aq-ary (n1;M; d1) code,C2 be a bi-
nary (n2; q; d2; w) constant-weight code,f : GF(q) ! C2 be a one
to one mapping. Let

CA(C1; C2; f) = f(f(c1); � � � ; f(cn ))jc

=(c1; � � � ; cn ) 2 C1g:

It is easy to verify thatCA(C1; C2; f) is a binary (n1n2; M;

d1d2; n1w) constant-weight code.
Theorem 2.1: If in Construction A,C1 is an optimum code over

GF(q), which achieves the Plotkin bound, i.e.,

M =
qd1

qd1 � n1(q � 1)
; d > n1(q � 1)=q

C2 is a binary optimum constant-weight code, which achieves the
Johnson boundI, i.e.,

q =
n2d2=2

n2d2=2� w(n2 � w)
; n2d2=2 > w(n2 � w)

thenCA(C1; C2; f) is a binary optimum constant-weight code, which
achieves the Johnson boundI, i.e.,

M =
n1n2(d1d2=2)

n1n2(d1d2=2)� n1w(n1n2 � n1w)
:

Proof: The proof follows from substitutingq into the expression
for M:

III. T WO CLASSES OFBINARY OPTIMUM CONSTANT-WEIGHT CODES

Nguyen, Gÿorfi, and Massey [1] presented a concatenated con-
struction method of binary cyclic constant-weight codes fromp-ary
linear cyclic codes. By using Reed–Solomon codes and generalized
Berlekamp–Justesen codes as outer codes, they obtained four classes
of good binary cyclic constant-weight codes, which asymptotically
achieve the Johnson upper bound I or the Plotkin upper bound. In
this section, we useq-ary optimum codes, which achieve the Plotkin
bound, as outer codes in the construction method of [1]. This is
a special case of Construction A. We construct several classes of
optimum binary constant-weight codes, which achieve the Johnson
upper bound I.

The cyclic order of

v = (v1; � � � ; vN) 2 [GF(2)]N

is denoted ast(v), i.e., the smallest positive integert such that

v = S
t(v) = (vt+1; � � � ; vN ; v1; � � � ; vt):

It is clear that

E(v) = fv; S(v); � � � ; St(v)�1(v) g

forms a binary constant-weight code with lengthN , cod sizet(v),
and weightw(v): Its minimum distance is denoted asd(v): Given a
q-ary (n;M; d) codeC, v 2 [GF(2)]N with cyclic orderq, and a
one-to-one mappingf : GF(q) ! E(v), then we have the following
proposition.
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Propositon 3.1: CA(C; E(v); f) is a binary constant-weight code
with length nN , weight nw(v), minimum distance at leastd(v)d,
and code sizeM:

Proposition 3.2:

A(nN; d(v)d;nw(v)) � Aq(n; d):

From [1], we know that

• �q = (1; 0; � � � ; 0) 2 [GF(2)]q; t(�q) = q; w(�q) = 1;

d(�q) = 2:

• q = p, prime, and p�1
2

is odd, �
def

= Legendre sequence of
length p,

t(�) = p; w(�) =
p� 1

2
; d(�) =

p+ 1

2

where

� = (0; �1; � � � ; �p�1); �i = 0

if i is a quadratic residue modulop and�i = 1 if i is a quadratic
nonresidue modulop:

It is easy to verify thatE(�q) and E(�p) are binary optimum
constant-weight codes, which achieve Johnson bound I. From both
examples, we obtain the following proposition.

Proposition 3.3:

1) A(nq; 2d; n) � Aq(n; d),
2) if p is prime, andp�1

2
is odd, then

A np; d
p+ 1

2
; n

p� 1

2
� Ap(n; d):

Remark: Proposition 3.3 (1) can also be found in [12, Theorem
7, p. 57].

Lower bounds forA(n0; d0; w) can be obtained from lower bounds
for Aq(n; d), e.g., Gilbert–Varshamov bound, and optimum codes in
GF(q), e.g., Hamming codes, Golay codes, R-S codes, MDS codes,
and simplex codes.

Proposition 3.4: If C is an optimum(n;M; d) code over GF(q),
which achieves the Plotkin bound, thenCA(C;E(�q); f) and
CA(C;E(�p); f) are binary optimum constant-weight codes, which
achieve the Johnson bound I.

Generalized Hadamard matrix over GF(q) can be used to construct
codes over GF(q), which achieve the Plotkin bound, see [2]. If we
takeC to be the[(qm � 1)=(q� 1);m; qm�1

] simplex codeSq(m),
i.e., the dual code of the Hamming code over GF(q), we obtain the
following two classes of binary optimum constant-weight codes.

Proposition 3.5:

1) A q q �1

q�1
; 2qm�1; q �1

q�1
= qm:

2) If p is prime, andp�1

2
is odd, then

A p
pm � 1

p� 1
; p
m�1 p+ 1

2
;
pm � 1

2
= p

m
:

Remark: If C is a binary optimum code which achieves the
Plotkin bound, thenCA(C;E(�2); f) is an optimum balanced error-
correcting code. Therefore, we can use the Hadamard matrix to
construct optimum balanced error-correcting codes. Barg and Litsyn
[9] used the Hadamard matrix to construct good balanced error-
correcting codes. In [10], van Tilborg and Blaum also presented a
construction method for balanced error-correcting codes.

IV. CONSTRUCTION B

In this section, we construct a binary constant-weight code from
a constant-weight code over GF(q): We use a representation of the
nonzero elements of GF(q) as codewords of a binary constant-weight

code, and0 2 GF(q) as a zero vector. We show that some binary
optimum constant-weight codes can be constructed by using this
modified method.

Construction B: Let C1 be a q-ary (n1;M; d1; w1) constant-
weight code,C2 be a binary(n2; q�1; d2; w2) constant-weight code,
0 2 [GF(2)]n be the all-zero vector,f : GF(q) ! C2 [ f0g be a
one-to-one mappingf(0) = 0: Let

CB(C1; C2; f) = f(f(c1); � � � ; f(cn ))jc

=(c1; � � � ; cn ) 2 C1g:

It is easy to verify thatCB(C1; C2; f) is a binary constant-weight
code with lengthn1n2, code sizeM , weightw1w2:

Given x; y 2 C1; x 6= y; and x = (x1; � � � ; xn ); y =

(y1; � � � ; yn ); we denote

l(x; y) = jfi: xi = 0; yi 6= 0 or yi = 0; xi 6= 0gj

l
�

(x; y) = jfi: xi 6= yi andxi; yi 6= 0gj:

Then

l(x; y) + l
�

(x; y) � d1:

Denote

dB = minfw2l(x; y) + d2l
�

(x; y)j8x; y 2 C1; x 6= yg:

It is not difficult to see that the minimum distance of
CB(C1; C2; f) is at leastdB :

Proposition 4.1:

A(q
2
� 1; 2(q� 1); q) = q

2
� 1; q is a prime power; q 6= 2:

Proof: Let C1 = Sq(2) � f0g (Simplex codeSq(2) deleting
the zero vector) andC2 = E(�q�1) in Construction B. Then

n1 = q + 1; M = q
2
� 1; d1 = q; w1 = q;

n2 = q � 1; d2 = 2; w2 = 1;

dB � 1� 2 + 2(q � 2) = 2(q� 1):

Hence

CB(Sq(2)� f0g; E(�q�1); f)

is a binary(q2 � 1; q2 � 1; 2(q � 1); q) constant-weight code. This
yields that

A(q
2
� 1; 2(q� 1); q) � q

2
� 1:

From Johnson bound II, we have

A(q
2
� 1; 2(q � 1); q) �

q2 � 1

q

q2 � 2

q � 1

=
q2 � 1

q
� q = q

2
� 1:

Therefore,

A(q
2
� 1; 2(q� 1); q) = q

2
� 1:

Actually, we can obtain following results.
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Proposition 4.2: For all c1; c2 2 Sq(m)� f0g; c1 6= c2

1) if c1 6= �c2;8� 2 Fq, then

l(c1; c2) = 2qm�2 l
�(c1; c2) = q

m�1
� 2qm�2

2) if there exists� 2 Fq; � 6= 0 such thatc1 = �c2, then

l(c1; c2) = 0 l
�(c1; c2) = q

m�1
:

Proof: Let (Fq)m be them-dimensional column vector space
over the finite fieldFq: The scalar multiple class ofa 2 (Fq)

m�f0g

is defined by

a = f�aj� 2 Fq; � 6= 0g:

There are a total ofq �1

q�1
scalar multiple classes. First, pick only one

column vector in every scalar multiple class. We obtain the column
vectorsh1; h2; � � � ; hn; n = q �1

q�1
: The generator matrix ofSq(m)

is defined asH = (h1; h2; � � � ; hn)m�n: Denote the row vectors of
H as v1; v2; � � � ; vm: Then

Sq(m) = f�1v1 + �2v2 + � � �+ �mvm j �i 2 Fq;

i = 1; 2; � � � ;mg:

Givenc 2 Sq(m)�f0g, then there exist�i 2 Fq; i = 1; 2; � � � ;m
(not all zero), such that

c = �1v1 + �2v2 + � � �+ �mvm

and the components ofc satisfy

cj = (�1; �2; � � � ; �m) � hj ; j = 1; 2; � � � ; n:

Consider the linear equation(�1; �2; � � � ; �m)x = 0; where x =
(x1; x2; � � � ; xm)

T is an unknown column vector in(Fq)m: There
are qm�1 � 1 nonzero solution vectors, and thusq �1

q�1
scalar

multiple classes. Therefore,

jfjjcj = 0gj =
qm�1 � 1

q � 1
:

The Hamming weight ofc is

w(c) =
qm � 1

q � 1
�
qm�1 � 1

q � 1
= q

m�1
:

It is easy to verify that assertion (2) is true.
Given c1; c2 2 Sq(m)� f0g; and c1 is not a multiple vector of

c2: Let ci = (ci1; ci2; � � � ; cin); i = 1; 2: Using the same argument
as above, we have

jfjjc1j = c2j = 0gj =
qm�2 � 1

q � 1
:

Therefore,

l(c1; c2) = jfjjc1j = 0gj+ jfjjc2j = 0gj � 2jfjjc1j = c2j = 0gj

=2
qm�1 � 1

q � 1
� 2

qm�2 � 1

q � 1
= 2qm�2:

Hence,

l
�(c1; c2) = dH(c1; c2)� l(c1; c2) = q

m�1
� 2qm�2:

Let C1 = Sq(m)� f0g andC2 = E(�q�1) in Construction B.
We then have the following proposition.

Proposition 4.3:

A(qm � 1; 2(q � 1)qm�2; qm�1) � q
m
� 1:

Proposition 4.4:

A(2q; q + 1; q � 1) = q; q is an odd prime power:

Proof: Let Q = (bij)q�q be the Jacobsthal matrix (see [3, p.
47], notifying that quadratic residues are defined to be the nonzero
squares in GF(q)). From the properties of the Jacobsthal matrix, we
know that the row vectors ofQ form a ternary(q; q; (q+3)=2; q�1)
constant-weight codeCJ : If in Construction B, we takeC1 = CJ ;

C2 = f10; 01g; f : 0 ! 00; 1 ! 10;�1 ! 01; thendB = q + 1:
Hence,CB(CJ ; C2; f) is a binary (2q; q; q + 1; q � 1) constant-
weight code. This yields thatA(2q; q + 1; q � 1) � q: From
Johnson bound I, we haveA(2q; q + 1; q � 1) � q and therefore
A(2q; q + 1; q � 1) = q:

If in Contruction A, we takeC1 as aq-ary optimum(n;M; d) code,
which achievesAq(n; d), andC2 as the binary(2q; q; q + 1; q � 1)
constant-weight code constructed in Proposition 4.4, we have the
following proposition.

Proposition 4.5:

A(2qn; (q+1)d; (q� 1)n) � Aq(n; d); q is an odd prime power:

Furthermore, if we takeC1 as Sq(m), we have the following
proposition.

Proposition 4.6:

A 2q
qm � 1

q � 1
; (q + 1)qm�1; qm � 1 = q

m
;

q is an odd prime power:

V. OPTIMUM CONSTANT-WEIGHT CODES OVER GF(q)

To our knowledge, most research in this field is concerned with
binary constant-weight codes. The contruction of constant-weight
codes over GF(q) did not receive a lot of attention in literature.
In this section, we show that the first construction method can be
generalized to construct optimum constant-weight codes over GF(q):
Actually, several classes ofq-ary optimum constant-weight codes,
which achieve the Johnson bound (q-ary case), are constructed. It is
easy to see that the Johnson bounds for binary constant-weight codes
can be generalized to theq-ary case.

Johnson bound I for binary constant-weight codes can be gener-
alized as follows.

Lemma 5.1 (Generalized Johnson Bound I):

Aq(n; d; w) �
n(q � 1)d

qw2 � 2(q � 1)nw+ n(q � 1)d
;

qw
2
� 2(q � 1)nw+ n(q � 1)d > 0:

It is easy to see that

Aq(n; d; w) �
n(q � 1)

w
Aq(n� 1; d; w � 1)

Aq(n; 2� + 1; �) = 1 Aq(n; 2�; �) =
n

�
:

Therefore, Johnson bound II for binary constant-weight codes can be
generalized as follows.

Lemma 5.2 (Generalized Johnson Bound II):
If d = 2� + 1; and � + 1 � w, then

Aq(n; 2� + 1; w) �
(q � 1)n

w

(q � 1)(n� 1)

w � 1

� � �
(q � 1)(n� w + � + 1)

� + 1
� � � :
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If d = 2�, and � � w, then

Aq(n; 2�; w) �
(q � 1)n

w

(q � 1)(n� 1)

w � 1

� � �
(q � 1)(n� w + � + 1)

� + 1

�
n� w + �

�
� � � :

Remark: The generalized Johnson bound II was given in [13] and
[14], but the cased = 2� was not separated as was done here.
Generalized Steiner systems (see [15]) are a subclass of codes which
attain the generalized Johnson bound II.

The method in Construction A can be generalized to construct
optimum constant-weight codes over GF(q):

Construction A0: Let C1 be aq1-ary (n1;M; d1) code,C2 be aq-
ary (n2; q1; d2; w) constant-weight code over GF(q), f : GF(q1)!
C2 be a one-to-one mapping. Let

CA (C1; C2; f) = f(f(c1); � � � ; f(cn ))jc

=(c1; � � � ; cn ) 2 C1g:

It is easy to verify thatCA (C1; C2; f) is a q-ary (n1n2;M;

d1d2; n1w) constant-weight code over GF(q):
Theorem 5.1: If in Construction A0

C1 is an optimum code over
GF(q1), which achieves the Plotkin bound, i.e.,

M =
q1d1

q1d1 � n1(q1 � 1)
; d > n1(q1 � 1)=q1

C2 is an optimum constant-weight code over GF(q), which achieves
the generalized Johnson bound I, i.e.,

q1 =
n2(q � 1)d2

qw2 � 2(q � 1)n2w + n2(q � 1)d2
;

qw
2
� 2(q � 1)n2w + n2(q � 1)d2 > 0

then CA (C1; C2; f) is an optimum constant-weight code over
GF(q), which achieves the generalized Johnson bound I, i.e.,

M =
n1n2(q � 1)d1d2

q(n1w)2 � 2(q� 1)(n1n2)(n1w) + n1n2(q � 1)d1d2
:

Below we present several classes of optimum constant-weight codes
over GF(q):

Proposition 5.1:

Aq(n; 2; w) =
n

w
(q � 1)

w�1
:

Proof: AssumeC = f(c1; c2; � � � ; cn) 2 [GF(q)]nj there are
only w nonzero componentsci ; ci ; � � � ; ci ; ci ; 1 � i1 < i2

< � � � < iw�1 < iw � n; such thatci = ci ci � � � ci g: It is
easy to verify thatC is a q-ary (n; 2; w) constant-weight code over
GF(q); and

jCj =
n

w
(q � 1)

w�1
:

Therefore,

Aq(n; 2; w) � jCj =
n

w
(q � 1)

w�1
:

By using the generalized Johnson bound II, we have

Aq(n; 2; w) �
(q � 1)n

w

(q � 1)(n� 1)

w � 1

� � �
(q � 1)(n� w + 2)

2

n� w + 1

1
� � �

=
n

w
(q � 1)

w�1
:

This yields

Aq(n; 2; w) =
n

w
(q � 1)

w�1
:

Proposition 5.2:

Aq
q
m � 1

q � 1
; q
m�1

; q
m�1

= q
m
� 1:

Proof: It is easy to see thatSq(m)� f0g is an optimumq-ary
( q �1

q�1
; q
m � 1; qm�1

; q
m�1) constant-weight code, which achieves

the generalized Johnson bound I.
Proposition 5.3:

A3 q;
q + 3

2
; q � 1 = q; is an odd prime power:

Proof: From the proof of Proposition 4.4, we know that the
row vectors of the Jacobsthal matrix form a ternary optimum
(q; q; q+3

2
; q � 1) constant-weight codeCJ , which achieves the

generalized Johnson bound I.
Proposition 5.4:

A3 q
q
m � 1

q � 1
; q
m�1 q + 3

2
; q
m
� 1 = q

m
;

q is an odd prime power.

Proof: In Theorem 5.1, setC1 = Sq(m), and C2 = CJ

(in Proposition 5.3). From this we obtain a ternary optimum
(q q �1

q�1
; q
m
; q
m�1 q+3

2
; q
m � 1) constant-weight code, which

achieves the generalized Johnson bound I.
If in Contruction A0, we takeC1 as aq-ary optimum(n;M; d)

code, which achievesAq(n; d), andC2 asCJ , we have the following
proposition.

Proposition 5.5:

A3 nq; d
q + 3

2
; n(q � 1) � Aq(n; d); q is an odd prime power:

Proposition 5.6:

Aq
q
m � 1

q � 1
; 3; 3 =

(qm � 1)(qm � q)

6
:

Proof: From the generalized Johnson bound II, we have

Aq(n; 3; 3) �
(q � 1)2n(n� 1)

6
:

The codewords with weight3 in the q-ary Hamming code
Ham(m; q) form an optimumq-ary ( q �1

q�1
;
(q �1)(q �q)

6
; 3; 3)

constant-weight code, which achieves the generalized Johnson
bound II.

Proposition 5.7:

A3(11; 5; 5) = 132 A3(12; 6; 6) = 264:

Proof: The codewords with weight5 in the ternary[11; 6; 5]
Golay code form an optimum ternary(11; 132; 5; 5) constant-
weight code, which achieves the generalized Johnson bound II. The
codewords with weight6 in the ternary[12; 6; 6] extended Golay
code form an optimum ternary(12; 264; 6; 6) constant-weight code,
which achieves the generalized Johnson bound II.
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Remark: As pointed out by one referee, Proposition 5.6 and the
first part of Proposition 5.7 are among the results which are mentioned
in [14]. For completeness, we still include these results here.

Ericson and Zinoviev [6] studied the asymptotic behavior of
A(n; d; w): By using the well-known bound of Tsfasman, Vl˘adu̧t,
and Zink [11] and the factA(nq; 2d; n) � Aq(n; d), they obtained an
improvement of the Gilbert bound for binary constant-weight codes.
It is worthy to point out that we can obtain new lower bounds for
asymptotic values ofA(n; d; w) andA3(n; d; w) in the same way,
by using the fact

A(2qn; (q + 1)d; (q � 1)n) � Aq(n; d)

A3(nq; d
q + 3

2
; n(q � 1)) � Aq(n; d)

q is an odd prime power, respectively.

VI. CONCLUSION

Motivated by the construction method of binary cyclic constant-
weight codes by Nguyen, Györfi, and Massey [1], we study the
concatenated construction methods of constant-weight codes. In Con-
struction A, we use codes over GF(q) as outer codes and bi-
nary constant-weight codes as inner codes. In Construction B, we
use constant-weight codes over GF(q) as outer codes and binary
constant-weight codes as inner codes, with the zero element in GF(q)
is represented as zero vector. We show that binary optimum constant-
weight codes can be constructed from Constructions A and B by
using different inner codes and outer codes. We also establish some
interesting relations betweenA(n; 2�; w) andAq(n; d): Furthermore,
Construction A is generalized to construct constant-weight codes over
GF(q): In Construction A0, we use codes over GF(q1) as outer
codes and constant-weight codes over GF(q) as inner codes. Finally,
several classes of optimum constant-weight codes over GF(q) are
constructed.
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Maximum Disjoint Bases and Constant-Weight Codes

Vladimir D. Tonchev

Abstract—The following lower bound for binary constant weight codes
are derived by an explicit construction:

A(17; 4; 5) � 441:

The construction exploits maximal sets of bases in the four-dimensional
binary vector space pairwise intersecting in at most two vectors.

Index Terms—Affine geometry, constant-weight code, Steiner system.

I. INTRODUCTION

We follow the notation of [2]. For the parametersn = 2
2m

+ 1,
w = 5, d = 2� = 4 of a binary constant-weight code, the Schönheim
upper bound is

A(2
2m

+ 1; 4; 5) �
(2

2m
+ 1)(2

2m
)(2

2m � 1)(2
2m � 2)

5 � 4 � 3 � 2

with equality if and only if a Steiner systemS(4; 5; 22m+1) exists.
Apart from the trivial casem = 1, no such system is known presently.
An “approximation” of such a Steiner system, being a Steiner4-
design with two block sizes,5 and 6, can be derived from the
Preparata code [4]. The best known lower bound for the smallest
nontrivial casem = 2 is A(17; 4; 5) � 424, obtained by the
partitioning construction in [2].

In this note, a binary constant-weight codeC of lengthn = 17,
weightw = 5, minimum distanced = 4, and containing 441 words is
constructed as a “partial extension” of the Steiner systemS(3; 4; 16)

formed by the planes in the four-dimensional binary affine space
AG (4; 2).

II. BASES IN 4-SPACE

Let S = S(3; 4; 16) be the Steiner system with blocks the 140
planes in the four-dimensional binary affine space AG(4; 2). The
point set ofS is the four-dimensional binary vector space

V4 = f 0 = (0; 0; 0; 0); (0; 0; 0; 1); � � � ; (1; 1; 1; 1)g
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