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TABLE I
NEW QUATERNARY CODES

There are totally 44 cosets. Let fu1; . . . ; u44g be the maximal
complete system of representatives of 5-cyclotomic cosets modulo
124.

Let q = s = 5. It is easy to see that for each coset S, we have
dimFFF V (Su ) = 1 by Lemma 3.2.

By taking

h(x) = (x124 � 1)=(x� 1)(x� 2)(x� 3):

Then h(x) 2 FFF 5[x] has one monic linear divisor and 40 distinct ir-
reducible monic divisors of degree 3. Thus, the codeC93(5; h(x))
is a 5-ary [41;� k;� d]-linear codes with k=44�(44�24)=24
by Theorem 3.5 (note that u24 = 93), and

d � 41� 1� b(93� 1)=3c = 10

by Corollary 2.2. Compared with Brouwer’s table [1], the best
known minimum distance for a 5-ary [41; 24]-linear code is 9.
Hence, we get an improvement. From a 5-ary [41; 24; 10]-linear
code, we can also get a 5-ary [40; 23; 10]-linear code. This is also
an improvement on Brouwer’s table [1].

C. h(x) = xN � x

In this case, we assume that gcd(q;N � 1) = 1. Then it is easy to
see that VN�1(xN � x) is generated by VN�2(xN�1� 1) and xN�1.
Hence, we have the following result from Theorem 3.5.

Theorem 3.9: Let Cm(q; xN �x) be the FFF q-linear code defined in
(2.4) with h(x) = xN �x. Let fu1; . . . ; u`g be the maximal complete
system of representatives of the q-cyclotomic cosetsmoduloN�1with
0 = u1 < u2 < � � � < u` = N � 2. If r satisfies ur � m < ur+1 for
some r, then the code has dimension

r

i=1

dimFFF V (Su ):

In particular, this dimension is at least n2 � (` � r) logq s, where n2
is the number of distinct monic irreducible divisors of xN�1 � 1.

Example 3.10: As in Example 3.8, part ii), we can produce many
best known quaternary codes by considering h(x) = x256 � x. For
instance, quaternary [136; 45; 43]; [136; 115; 8]-linear codes, etc., can
be obtained. We skip the detailed computation.
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Coding and Signal Space Diversity for a Class of Fading
and Impulsive Noise Channels

Jürgen Häring and A. J. Han Vinck, Senior Member, IEEE

Abstract—The transmission over the Gaussian mixture noise channel
with perfect channel state information at the receiver side is considered.
Lower and upper bounds on the achievable pairwise error probability
(PEP) are derived for finite and infinite codeword lengths. It is shown
that diversity codes, i.e., unitary transforms, can be applied to achieve a
diversity gain. A large class of diversity codes is determined for which—if
the codeword length is increased—the PEP between any two codewords
approaches either zero or the lower bound on the PEP.

Index Terms—Compound channel, diversity, fading channel, impulsive
noise, orthogonal frequency-division multiplexing (OFDM), signal space
diversity, unitary transform.

I. INTRODUCTION

In many cases of practical interest, Gaussian mixture noise (GMN)
channel models are well suited to statistically describe the impact of
noise on a digital communication system. On the GMN channel, the
data is corrupted by additive white Gaussian noise (AWGN) with ran-
domly varying noise variance, see [7]. In this correspondence, we as-
sume that the channel is memoryless and that the receiver is provided
with perfect channel state information (CSI), i.e., the receiver knows
the noise variance. Typically, reliable CSI can be obtained on channels
where strong statistical dependencies between consecutive noise sam-
ples exist. If the channel state estimator in the receiver is succeeded by
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an interleaver of sufficient length, the channel appears memoryless to
any further signal processing or decoding algorithm.

In this correspondence, only minor assumptions are made for the sta-
tistics of the channel state. Hence, our analysis covers a whole class of
communication channels, including several well-known cases; if, e.g.,
the channel state is constant, the classical AWGN model is obtained;
other examples are the slowly, flat Rayleigh-fading channel with per-
fect CSI, see [11], and the Gaussian collision channel, see [4]; finally,
many models for impulsive noise channels are included in the GMN
channel model, see [6], [7]. In a simple model, a good channel state
with a low noise variance (background noise) and a bad channel state
with a high noise variance (impulse) might be defined. Reliable CSI
can then be obtained if the noise is, e.g., bursty or the variances in the
good and the bad channel state vary significantly.

The correspondence is organized as follows. Section II introduces
the GMN channel model. Based on the union bound, the decoding error
probability Pe achieved by block-coded transmission and maximum a
posteriori (MAP) decoding is considered in Section III. The pairwise
error probability (PEP) is calculated, and achievable lower bounds on
the PEP are derived for both finite and infinite codeword lengths. This
discussion is related to the analysis of the Rayleigh-fading channel with
perfect CSI in [2], [3], [14]. We, therefore, compare our results to the
Rayleigh-fading case and give rules for the design of “good” codes. In
Section IV, the concept of so-called diversity codes is introduced. The
diversity encoder applies a unitary transform over the real or complex
numbers to rotate a vector of information symbols in then-dimensional
space, wheren is the length of the information sequence. The transform
leaves the Euclidean distance between any two information vectors un-
changed, however, it modifies the distribution of the Euclidean distance
over the components of the information vector and therefore introduces
signal space diversity. Section IV discusses a class of diversity codes
for which, as n is increased, the PEP of any arbitrarily chosen pair of
codewords approaches either zero or the best possible diversity distri-
bution. This supports the observation made in [8] that several diversity
codes approach the same performance as n is increased.

Diversity codes were already applied in 1963 by Lang for the trans-
mission over an impulsive noise channel, see [9]. In [2], [8], the con-
struction of good diversity codes is studied for the slowly, flat Rayleigh-
fading channel with perfect CSI, whereas [12] and [15] focus on the de-
coding problem. In [12], a suboptimal decoder based on the decision
feedback principle is proposed that is mainly suited for long codeword
lengths, see [8]. In contrast, the lattice decoder presented in [15] re-
quires small codeword lengths to operate with acceptable complexity.
Finally, it should be noted that also a convolutional type of diversity
codes exist, see [16], and that [6] analyzes the performance and de-
coding of diversity codes for the GMN channel without CSI.

II. CHANNEL MODEL

At each discrete time instant, the GMN channel accepts one symbol
x 2 X from the channel input alphabet X and maps it onto a symbol
y 2 Y of the channel output alphabet Y . Conditioned on the random
channel state s 2 S , the channel adds white Gaussian noise w with
variance �2s

y = x+ w (1)

where S is the set of all possible channel states, and �2s is a determin-
istic function of s 2 S . Since we assume perfect CSI, the probability
density function (pdf) of w is conditioned on the channel state

p(wjs) =
1

2��2s
exp �

jwj2

2�2s
(2)

where we assume that the channel output alphabet is complex (pass-
band transmission), see, e.g., [7]. Note that the results presented in the
following are similar for the channel with real input and output alpha-
bets. Applying (1), the channel transition pdf immediately follows as

p(yjx; s) = p(w = y � xjs) =
1

2��2s
exp �

(jy � xj2

2�2s
: (3)

Since the channel is memoryless, the channel state is an independent
random variable not depending on any previous or succeeding states.
It is completely described by the pdf p(s) and the probability mass
function (pmf) P (s), respectively.

For the GMN channels discussed in this correspondence, the fol-
lowing assumptions are made:

• the special case where the GMN channel degenerates to the
AWGN channel, i.e., one channel state is taken with probability
one, is not considered;

• Es 1=�2s <1, where Esf�g denotes the expectation over the
channel state s;

• only channels providing a finite average noise variance �2w =
Es �2s < 1 are considered.

To illustrate the results obtained in this correspondence, we intro-
duce a simple, two-state GMN channel model. The states s 2 f0; 1g
are taken with probabilities P (s = 0) = 0:9, P (s = 1) = 0:1.
The corresponding noise variances �2s=0, �

2

s=1 directly follow from
�2w = Es �2s and the parameter T := �2s=0=�

2

s=1, with T 6= 0 (for
T = 0 the model is equivalent to the AWGN channel). For T � 1, this
model describes an impulsive noise channel where 10% of the trans-
mitted symbols are hit by an impulse, i.e., Gaussian noise with a large
variance, and 90% are corrupted by background noise with �2s=0. In
the sequel, this channel will be referred to as impulsive noise channel.

As another example, the Rayleigh-fading channel with perfect CSI,
see, e.g., [1] for a more detailed treatment, is covered by the above
GMN model. On this channel, each transmitted symbol x is multiplied
with the Rayleigh distributed fading coefficient s, and AWGN with
variance �2w is added. Considering s as the channel state and normal-
izing the channel output to s, the received samples can be described by
the GMN model with p(s) = 2s exp(�s2) and �2s = �2w=s

2.
Finally, we define the signal-to-noise ratio (SNR) as SNR :=

Ex jxj2 =N0, where Ex jxj2 is the average power of the trans-
mitted symbols, and N0 := 2�2w is the single-sided noise power
spectral density.

III. DECODING ERROR PROBABILITY

Since exactly calculating the decoding error probability Pe is a dif-
ficult task, we consider the union upper bound on Pe

Pe := P (ccc0 6= ccc) �
ccc2C

P (ccc)

ccc 2C

ccc 6=ccc

P (ccc! ccc0) (4)

where P (ccc) is the probability that codeword ccc is transmitted, and
P (ccc ! ccc0) is referred to as the PEP. The PEP is the probability that,
in the binary decision between ccc 2 C and ccc0 2 C, ccc0 is erroneously
decoded given that ccc was transmitted. Within this correspondence, we
assume that every codeword ccc 2 C is transmitted equally likely with
probability P (ccc) = 1=jCj. Clearly, the number of codeword pairs
achieving the maximum PEP must be small to minimize the bound.

For the further discussion, it is useful to define the distance vector.

Definition III.1 (Distance Vector): For two codewords ccc; ccc0 2 C
of length n, the components dk := jck � c0kj of the distance vector
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ddd(ccc; ccc0) = (d1; . . . ; dn) are defined as the Euclidean distance between
the code symbols ck and c0k .

A. MAP Decoding

The decoding of the transmitted codeword is based on the received
vectoryyy = (y1; . . . ; yn) and the channel state vectorsss = (s1; . . . ; sn).
The MAP decoder chooses the codeword ccc = (c1; . . . ; cn) that maxi-
mizes the a posteriori probabilityP (cccjyyy; sss), see [17]. For equally likely
transmitted codewords, the MAP decoding rule is given by

argmax
ccc2C

P (cccjyyy; sss) = argmax
ccc2C

n

k=1

p(wk = yk � ckjsk) (5)

with the pdf p(wkjsk) defined by (2). Further simplifying (5) shows
that MAP decoding is equivalent to choosing the codeword that mini-
mizes the additive decoding metric

!(ccc; yyy; sss) :=

n

k=1

jyk � ckj2
�2s

: (6)

1) PEP: To evaluate the union upper bound on Pe, see (4), the
PEP P (ccc ! ccc0) has to be evaluated. With the MAP decoding metric
!(ccc; yyy; sss) in (6), the PEP conditioned on the channel state vector sss is
given by

P (ccc! ccc0jsss) = P (!(ccc0; yyy; sss) � !(ccc; yyy; sss)jsss):
This equation can be rewritten in the form

P (ccc! ccc0jsss) = P (M � 
jsss)
with the constant M = n

k=1 d
2
k=(2�

2
s ) and the random variable


 =

n

k=1

Re fc0k � ckg
�2s

Refwkg+ Im fc0k � ckg
�2s

Imfwkg

where Ref�g and Imf�g denote the real and imaginary parts of their
complex argument, respectively. Since for a given channel state sk the
noise wk is complex Gaussian distributed, see (2), 
 is a real Gaussian
distributed random variable with expectation Ef
g = 0 and variance
Ef
2g = 2M . Hence, it follows

P (ccc! ccc0jsss) =
M

�1

p(
 = xjsss)dx =
1

2
erfc

M

2Ef
2g

=
1

2
erfc

n

k=1

d2k
8�2s

: (7)

To obtain P (ccc ! ccc0), the expectation over the channel state vector sss
has to be evaluated. The following theorem resumes the final result.

Theorem III.1 (PEP Given Perfect CSI) : For theGMNchannel with
perfect CSI adopting MAP decoding, the PEP for the codewords ccc;
ccc0 2 C of length n depends on the distance vector ddd(ccc; ccc0) only and is
given by

P (ccc! ccc0) = Esss=(s ;...;s )
1

2
erfc

n

k=1

d2k
8�2s

: (8)

The result holds for both, the real and the complex GMN channel with
perfect CSI.

Since evaluating the n-dimensional expectation operator given
above can be quite complicated, we will frequently use the upper
Chernoff bound on the PEP in the following. It is based on the
well-known relation erfc(x) � exp(�x2), see [17], yielding

P (ccc! ccc0) � 1

2

n

k=1

Es exp � d2k
8�2s

: (9)

Compared to (8), this bound can be quickly evaluated since the expec-
tation is only one-dimensional.

B. PEP Analysis

In this subsection, we study the importance of the diversity between
two codewords, i.e., we follow the question how a constant, given
Euclidean distance jddd(ccc; ccc0)j between two codewords should be
distributed over the symbols dk of the distance vector to achieve a low
PEP. This will show a major difference between the GMN channel
with perfect CSI and the AWGN channel; on the AWGN channel, the
PEP can only be decreased by increasing jddd(ccc; ccc0)j, whereas, on the
GMN channel, the diversity can be even more important.

Theorem III.2 considers the case where only two components of
the distance vector ddd(ccc; ccc0) are modified while jddd(ccc; ccc0)j remains un-
changed.

Theorem III.2 (Convexity): Assume that all components dk , k 2
f1; . . .ng n fi; jg of the distance vector ddd(ccc; ccc0) are constant. It is re-
quired thatM2 := d2i+d2j is constant which implies that also jddd(ccc; ccc0)j
is constant. Then, the PEP P (ccc! ccc0) is a function of di which is min-
imized for di = M=

p
2. Its maximum is achieved for di = 0 and

di = M , respectively. Moreover, applying the substitution z := d2i ,
the PEP is a convex function of z that is symmetrical about its min-
imum z = M2=2.

The proofs of this and all further theorems can be found in the Ap-
pendix.

Example III.1: Fig. 1 depicts the normalized PEP achieved on the
impulsive noise and the Rayleigh-fading channel with perfect CSI for
�2w = 1 and codeword length n = 2. The PEP has been normalized to
the PEP achieved by

ddd(ccc; ccc0) = (jddd(ccc; ccc0)j; 0)

to be able to show all curves in one plot. The convex structure of the
PEP can be clearly observed. For T = 10�4, the smallest possible
PEP is already almost achieved for values of d21 that significantly differ
from the optimum jddd(ccc; ccc0)j2=2. From the standpoint of code design,
this property is desirable since increasing the Hamming distance be-
tween the codewords is sufficient to almost achieve the whole diversity
gain. In contrast, for T = 5 � 10�2 and the Rayleigh-fading channel,
the figure shows that d21 must be close to 0:5 to (almost) achieve the
minimum PEP. Hence, here a large Hamming distance does not guar-
antee a low PEP.

The convexity property shown earlier is now applied to determine
the distance vector ddd(ccc; ccc0) that achieves the minimum PEP for a finite
codeword length n.

Theorem III.3 (Lower Bound, Finite n): Consider the PEP P (ccc !
ccc0) for all possible distance vectors ddd(ccc; ccc0) of finite length n under
the constraint jddd(ccc; ccc0)j = M , where M > 0 is a constant. Then,
P (ccc ! ccc0) achieves its absolute minimum for ddd(ccc; ccc0) = dddmin, where
the components of dddmin are given by dmin

k := M=
p
n.

In a similar manner, the following theorem identifies the worst case
distance vectors, i.e., the ddd(ccc; ccc0) achieving the largest PEP for a given
fixed Euclidean distance jddd(ccc; ccc0)j.

Theorem III.4 (Upper Bound, Finite n): Consider the PEP P (ccc !
ccc0) for all possible distance vectors ddd(ccc; ccc0) of finite length n under the
constraint jddd(ccc; ccc0)j = M , where M is a constant. Then, P (ccc ! ccc0)
achieves its maximum iff the Euclidean distance is concentrated in one
component of ddd(ccc; ccc0), i.e., dk = M and dj = 0 holds for any j,
k 2 f1; . . .ng, j 6= k.
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Fig. 1. Normalized PEP achieved by ddd(ccc; ccc ) = (d ; d ) under the constraint d + d = 1 on the impulsive noise and Rayleigh-fading channel with � = 1.

The following theorem addresses the question of how far the PEP can
be reduced while keeping jddd(ccc; ccc0)j constant and which vectors ddd(ccc; ccc0)
achieve this lower bound.

Theorem III.5 (Lower Bound): For a given finite distance jddd(ccc; ccc0)j
between the codewords ccc; ccc0 2 C, the PEP P (ccc ! ccc0) is lower-
bounded by the PEP achieved on an AWGN channel with variance
1=Es 1=�2s , i.e.,

1

2
erfc

jddd(ccc; ccc0)j2
8

Es

1

�2s
� P (ccc! ccc0):

Equality is achieved in the limiting case n ! 1 if all k = 1; . . . ; n
components dk of the distance vector ddd(ccc; ccc0) satisfy the condition
limn!1(

p
ndk) <1. The theorem holds for all GMN channels pro-

viding Es 1=�2s < 1 and Es 1=�4s < 1.

The preceding theorem shows that a whole class of distance vectors
achieves the lower bound for n ! 1. In contrast, the lower bound
for finite n can only be achieved by one specific distance vector, see
Theorem III.3.

Finally, it should be noted that all theorems previously given can also
be derived for the upper Chernoff bound on the PEP P (ccc ! ccc0), see
(9).

C. Discussion

The analysis of the PEP as a function of ddd(ccc; ccc0) shows that the PEP
can be decreased by increasing the Euclidean distance jddd(ccc; ccc0)j and/or
the diversity between the codewords. To achieve a diversity gain, the
convexity stated by Theorem III.2 shows that “balanced” distance vec-
tors should be used, and especially zero elements in ddd(ccc; ccc0) should be
avoided. To make more specific statements—especially if increasing
diversity or Euclidean distance leads to higher gains—the particular
GMN channel under investigation, the SNR, and also the codeword
length have to be further specified. For different GMN channels totally
different results might be obtained as demonstrated by the following
three examples.

1) Impulsive Noise Channel WithT � 1: ForT = 1, the impulsive
noise channel reduces to the AWGN case. Hence, as T ! 1, diversity
becomes less relevant and Euclidean distance dominates the PEP’s be-
havior.

2) Impulsive Noise Channel With T � 1: For T � 1, the PEP
shows a behavior similar to the symbol error rate (SER) curves in Fig. 3.
The error floor typical for impulsive noise channels is introduced by
the “bad” channel state s = 1 with �2s=1 � �2s=0. This can also be
studied analytically: if all dk 6= 0 satisfy dk � �2s=0 (this is true if
0 < M < dk holds for all dk 6= 0 with some finite constant M and
sufficiently large SNR), the expectation of all terms with dk 6= 0 in
(9) is dominated by exp �d2k=(8�2s =1) . Then, for finite n the PEP
might be approximated by

P (ccc! ccc0)
1

2
P (sk = 1)l

n

k=1

exp � d2k
8�2

s =1

=
1

2
P (sk = 1)l exp �jddd(ccc; ccc

0)j2
8�2

s =1

(10)

where l is the Hamming weight of ddd(ccc; ccc0), and “ ” can be replaced
by “�” for SNR ! 1. Note that Theorem III.5 shows that this ap-
proximation is not necessarily valid for l ! 1. It can be observed
that increasing the Hamming distance l between two codewords clearly
decreases the PEP. Especially in the region of the error floor where
�2s =0 � jddd(ccc; ccc0)j2 � �2s =1 and therefore,

exp �jddd(ccc; ccc0)j2=(8�2s =1) � 1

holds, increasing l (diversity) is more important than increasing
jddd(ccc; ccc0)j (Euclidean distance). In contrast, for jddd(ccc; ccc0)j2 � �2s =1

(large SNR), exp �jddd(ccc; ccc0)j2=(8�2s =1) decreases rapidly so that
the gain in SNR achieved by diversity converges toward zero and is
easily outperformed by a slight increase of jddd(ccc; ccc0)j.

3) Rayleigh-Fading Channel With Perfect CSI: The Rayleigh-
fading channel with perfect CSI has been extensively discussed in
literature [1]–[3], [13], [14]. The PEP can be evaluated exactly, see
[14], however, rules for code design are usually based on the Chernoff
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Fig. 2. Union bound for the impulsive noise channel with perfect CSI (T = 10 ) using the Chernoff bound on the PEP,GGG := FFF , and 4-QAM modulation.

upper bound on the PEP, see (9). Solving (9) for the Rayleigh-fading
channel as defined in Section II yields

P (ccc! ccc0) �

n

k=1

1

1 + d2k=(8N0)
�

d 6=0

1

d2k=(8N0)

=
1

(SNR=8)ld(l)p
(11)

where the second upper bound is tight for mink d
2
kN0 � 1. In the

above equation, l again denotes the Hamming weight (or diversity) of
ddd(ccc; ccc0), and d(l)p :

d 6=0 d
2
k=Ex jxkj

2 is defined as the normalized
product distance.

The bound shows the following behavior under the assumption
mink d

2
kN0 � 1 which is typically true in the high SNR domain, see

also [3].

• As the SNR increases, diversity l becomes more important; espe-
cially for a good asymptotic performance, l is the most important
code design parameter.

• At a given diversity l, the product distance d
(l)
p should be

high. This is achieved by using “balanced” distance vectors or
increasing Euclidean distance jddd(ccc; ccc0)j between the codewords.

These rules include and further specify the statements made in Sec-
tion III-C for the design of good codes for GMN channels: the im-
portance of l and the product distance both are consequences of The-
orem III.2. However, the results are different as for the impulsive noise
channel discussed before. Hence, the well-known code design rules for
the Rayleigh-fading channel do not apply to the whole class of GMN
channels.

IV. DIVERSITY BLOCK CODES

Input to the diversity encoder is the information vector uuu =
(u1; . . . ; un) 2 Un of length n. The symbol alphabet U is a set of
jUj complex numbers defined by the modulation scheme adopted.
As an example, for 4-QAM, U = f�(1 + j);�(1 � j)g holds.
Each vector uuu is encoded by a diversity block code C with codewords

ccc = (c1; . . . cn) and complex code symbols ci 2 . The encoding
operation is defined by the linear mapping

ccc = GuGuGu (12)

where GGG is the unitary n � n generator matrix. Unitary means that
GGG�GGG = III holds, where III is the identity matrix and the asterisk denotes
transpose complex conjugate. Possible choices forGGG are, e.g., the dis-
crete Fourier-, the discrete cosine-, or the Walsh–Hadamard-transform
matrix. The codewords ccc are simply rotated versions of the information
vectors uuu in the n-dimensional space, and, from the Parseval theorem,
it follows that the Euclidean distance between two information vectors
uuu, uuu0 is the same as between the codewords ccc = GuGuGu, ccc0 = GuGuGu0

jddd(ccc; ccc0)j = (ccc� ccc0)�(ccc� ccc0)

= (uuu� uuu0)�GGG�GGG(uuu� uuu0) = jddd(uuu;uuu0)j: (13)

This property explains the name “diversity codes”; whereas “classical”
codes designed for the AWGN channel are used to increase the Eu-
clidean distance between the information sequences, the diversity en-
coder can only increase diversity between the codewords, i.e., distribute
a given Euclidean distance over as many code symbols as possible. The
aim is to approach the optimum distribution defined by Theorem III.3.

To design codes with both, a high Euclidean distance and good di-
versity, a product encoder might be applied where the “classical” outer
code maximizes the Euclidean distances among the codewords. The
inner diversity code is then used to optimize the diversity properties of
the outer code while leaving the Euclidean distances unchanged, see
also [3], [6].

Example IV.1: To show that the concept of diversity codes is rea-
sonable, Fig. 2 shows the union bound on the SER for a 4-QAM mod-
ulation alphabet U and GGG := FFF�1, where FFF is the Fourier matrix.
The bounds are plotted for the impulsive noise channel (T = 10�3),
and, additionally, the minimum possible union bound for n = 8 is
depicted. It is constructed by assuming that the PEP between all code-
words achieves the lower bound on the PEP given by Theorem III.3.
Note that we do not state that a code with these properties exists. All
curves depicted are based on the upper Chernoff bound, see (9), rather
than the exact PEP.



892 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004

Fig. 3. Union bound and simulation results for the complex impulsive noise channel (T = 10 ) using the Chernoff bound on the PEP,GGG := FFF , and 4-QAM
modulation.

The figure shows that the union bound decreases with increasing
codeword length n and that for SERs of practical interest large diver-
sity gains are achieved. In contrast, in the high-SNR domain, it can be
observed that the gaps between the lower union bound, the codes of any
length n, and even uncoded transmission become smaller. This is ex-
plained by (10) showing that for SNR!1, the maximum PEP code-
words of every finite-length diversity code have minimum Euclidean
distance. These maximum PEP codewords dominate the union bound’s
behavior for SNR!1. Since the minimum Euclidean distance is the
same for all codeword lengths n and the lower bound, see (13), the gain
in SNR converges toward zero. This holds for every finite-length diver-
sity code with the same modulation alphabet U .

Note that, in contrast, on the Rayleigh-fading channel with perfect
CSI diversity codes can achieve a gain in SNR also for SNR!1, see
Section III-C-III and [2], [6], [8].

Example IV.2: The coding scheme defined in Example IV.1 is now
applied to the impulsive noise channel withT = 10�3. Fig. 3 compares
the union bound on the symbol error rate with simulation results. It can
be observed that, for small SERs, the gaps between the union bounds
and the simulation results become small. Therefore, in the high-SNR
region and for this example, the union bound is a suitable performance
measure. We numerically verified for n = 4 that the remaining gap
results from employing (9) instead of the exact P (ccc! ccc0) to compute
the union bound.

A. Maximum PEP Codewords

The following theorems study the PEPs of a large class of diversity
codes and give insight into the behavior of diversity codes as the code-
word length n is increased.

Theorem IV.1 (PEP, Perfect CSI): The set of channels providing
Es 1=�2s < 1 and Es 1=�4s < 1 is considered. The diversity
block code C is defined by the encoding operation ccc = GuGuGu. Let any
two components u; u0 2 U of the information vector uuu have a finite
Euclidean distance, i.e., 0 < M1 � ju � u0j with some constant M1.

For the unitary n � n generator matrix GGG = [gk;l], it is assumed that
limn!1

p
njgk;lj � M0 < 1 holds for all gk;l and some constant

M0. Then, for n ! 1, the PEP between any codewords ccc; ccc0 2 C,
ccc 6= ccc0 with finite Euclidean distance jddd(ccc; ccc0)j � M2 < 1 achieves
the lower bound given by Theorem III.5

P (ccc! ccc0) =
1

2
erfc

jddd(ccc; ccc0)j2
8

Es

1

�2s
:

This theorem is now applied to identify the largest PEP distance vector
in a class of diversity codes for n ! 1:

Theorem IV.2 (Maximum PEP, Perfect CSI): The set of channels
providing Es 1=�2s < 1 and Es 1=�4s < 1 is considered. The
diversity block code C is defined by the encoding operation ccc = GuGuGu.
Let any two components u; u0 2 U of the information vector uuu have a
finite Euclidean distance, i.e., 0 < M1 � ju� u0j with some constant
M1. For the unitary n � n generator matrix GGG = [gk;l], it is assumed
that limn!1

p
njgk;lj � M0 < 1 holds for all gk;l and some con-

stant M0. Then, for n ! 1, the maximum PEP distance vector for
any codeword pair ccc; ccc0 2 C, ccc 6= ccc0 is given by

max
ccc;ccc 2C;ccc6=ccc

P (ccc! ccc0) =
1

2
erfc

jddd(ccc; ccc0)j2
min

8
Es

1

�2s

where

jddd(ccc; ccc0)jmin = min
ccc;ccc 2C;ccc6=ccc

jccc� ccc0j

is the minimum Euclidean distance of C.
As an example, the two previous theorems can be applied when GGG

is the discrete Fourier or the Walsh–Hadamard matrix. The theorems
show that all codeword pairs with finite Euclidean distance approach
the lower bound on the PEP as the codeword length is increased. This
is interesting since two uncoded vectors with a small Euclidean dis-
tance also always have a small diversity, leading to the bad perfor-
mance of uncoded transmission. The diversity encoder removes this
disadvantageous property and therefore achieves a diversity gain. The
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fact that the above theorems hold for every diversity code defined by
a—loosely speaking—nonsparse generator matrix GGG and large n sup-
ports the observation made in [8] for several randomly selected and
algebraically constructed diversity codes that all show a similar perfor-
mance for large n.

V. CONCLUSION

This correspondence analyzes the memoryless GMN channel with
perfect CSI. Under only minor assumptions for the statistics of the
channel state, lower and upper bounds on the achievable PEP are de-
rived for both finite and infinite codeword lengths. It is shown that,
depending on the particular GMN channel under investigation, both
Euclidean distance and diversity play an important role in code de-
sign. Then, the concept of diversity codes is introduced. For a large
class of diversity codes with nonsparse generator matrices it is shown
that, when increasing n, all codewords with finite Euclidean distance
approach the lowest possible PEP that can be achieved by diversity
encoding, i.e., by rotating the codewords in the n-dimensional space
while keeping their Euclidean distances constant. This illustrates that
the diversity encoder removes the disadvantageous combination of a
small Euclidean distance and a small diversity occurring with uncoded
transmission. Therefore, applying the codes under investigation to the
GMN channel leads to a diversity gain.

APPENDIX

A. Proof of Theorem III.2

To simplify the notation, only the case is considered where the
channel state sk is a discrete random variable with sk 2 f0; 1; . . .g. An
extension of the proof to continuous state vectors is straightforward.
Without loss of generality, i = 1 and j = 2 is chosen. The formula
for P (ccc ! ccc0) given in Theorem III.1 is rewritten by expanding the
expectation operator over the channel states s1, s2

P (ccc! ccc0) = Es ;...s

1

l=0

P (sk = l)2�(d1; d2)

+

1

m=l+1

P (sk = l)P (sk = m)�(d1; d2) (14)

where the abbreviations

�(d1; d2) := erfc '+
d21 + d22
8�2l

�(d1; d2) := erfc '+
d21
8�2l

+
d22
8�2m

+ erfc '+
d20
8�2l

+
d21

8�2m

and

' :=

1

k=3

d2k=8�
2
s

are introduced. In the following, all parameters other than d1, d2 are
treated as constants. Applying the condition M2 = d21 + d22 = const
shows that �(d1; d2) is only a function of M2 and therefore constant.
Substituting with z := d21 and M2 = d21 + d22 in �(d1; d2) yields the
function ~�(z;M). Straightforward computation shows that

~�(M2=2� x;M) = ~�(M2=2 + x;M)

holds for 0 � x � M2=2, i.e., ~�(z;M) is symmetrical to M2=2.
Moreover, since the condition @

@y
~�(z;M) > 0 holds for �2l 6= �2m

and ~�(z;M) is continuous, it follows that ~�(z;M) is a convex function
in z. Both the convexity and the symmetry show that ~�(z;M) achieves

its absolute minimum for z = M2=2 and its maxima for z = 0 and
z = M2, respectively. This implies that �(d1; d2) achieves its absolute
minimum for d21 = M2=2 and its maxima at d1 = 0 and d1 = M ,
respectively, and that no other extremum exists.

The PEP given by (14) is calculated by summing over the �(d1; d2)
and �(d1; d2). Since �(d1; d2) is a constant and the �(d1; d2) achieve
their maxima and minima all for the same d1, d2, also the PEP achieves
its maxima and minima in these points. This proves the theorem.

B. Proof of Theorem III.3

The set 
 of all distance vectors with Euclidean distance jddd(ccc; ccc0)j
is defined as


 := f(d1; . . . dn) M2 =

n

k=1

d2k g:

Consider a vector ddd(l=1) 2 
, ddd(l=1) 6= dddmin different from the min-
imum as proposed by the theorem. Theorem III.2 ensures that a vector
ddd(l+1) 2 
 can always be derived from ddd(l) which achieves a PEP
smaller than ddd(l). This is done by applying the following algorithm:
choose an arbitrary value i = 1; . . . ; n � 1 for which the components
of ddd(l) satisfy d(l)i 6= d

(l)
i+1. Then, the components of ddd(l+1) are chosen

as

d
(l+1)
i = d

(l+1)
i+1 := d

(l)
i

2
+ d

(l)
i+1

2
=2

and d(l+1)k = d
(l)
k for all k 6= i, i+1. If ddd(l+1) 6= dddmin holds, the algo-

rithm is applied again to ddd(l+1). Since in each iteration the PEP is de-
ceased, we refer to the above algorithm as downhill algorithm. It is ob-
vious that after infinitely many iterations liml!1 ddd(l)dddmin is achieved.
Since the algorithm always converges into dddmin independently of the
starting vector, dddmin is the absolute minimum.

For the formal proof that the downhill algorithm converges
into dddmin, the algorithm is described by ddd(l+1)

2
= ���iiiddd

(l)2, with
ddd(l)

2
:= (d

(l)
1

2
; . . . d

(l)
n

2
) and the n � n matrix ���iii with elements

�i;i = �i+1;i = �i;i+1 = �i+1;i+1 = 0:5, �k;k = 1, k 6= i, i+1, and
all other �k;j = 0. When applying the algorithm consecutively for
i=1; 2; . . . ; n�1 and repeating this form times, the result is give by
���mddd(l)

2
with ��� := n�1

i=1 ���iii. Evaluating the eigenvalues and vectors
of ��� shows that for m ! 1 each element in ���m equals 1=n, and
therefore liml!1 ddd(l) = dddmin holds.

C. Proof of Theorem III.4

By converting the “downhill algorithm” applied in the proof of The-
orem III.3 into an “uphill algorithm,” the theorem immediately follows.

D. Proof of Theorem III.5

The following derivation of the PEP is similar to [2]. The PEP
P (ccc ! ccc0), see (8), is rewritten in the form

P (ccc! ccc0) = lim
n!1

EsfP (ccc! ccc0jsss)g

=
1

2
lim
n!1

1

�1

erfc
1

8
x p(Xn = x)dx (15)

where the definition Xn := n

k=1 d
2
k=�

2
s is introduced. In the fol-

lowing, a lemma according to Helly, see [5], will be employed. The
lemma states that

lim
n!1

1

�1

g(x)dFn(x) =
1

�1

g(x)dF1(x)

where Fn(x) and F1(x) are the probability distributions of Xn and
limn!1Xn, respectively, and g(x) is some bounded, continuous
function. Note that the Stieltjes integral is used in the above equation.
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However, in the following, the less formal description using pdfs
and the delta distribution to jointly describe discrete and continuous
random variables is employed. Applying Helly’s lemma to (15) yields

P (ccc! ccc0) =
1

2
erfc

1

8
x p(X1 = x)dx (16)

where the notation p(X1) := limn!1 p(Xn) is used. pX (�) is
calculated by rewriting Xn in the form

Xn =
1

n

n

k=1

(
p
ndk)

2=�2s =:
1

n

n

k=1

Yk:

The strong law of large numbers states

P lim
n!1

Xn � 1

n

n

k=1

Es fYkg = 0 = 1

and according to Kolmogoroff it can be applied if the condition
1
k=0

�2Y =k2 < 1 holds, see, e.g., [5], where the variance �2Y of
the random variable Yk is given by

�2Y = n2d4k Es 1=�4s � Es 1=�2s :

From the requirements limn!1(
p
ndk) � M0 < 1, Es 1=�4s �

M1 < 1, and Es 1=�2s � M2 < 1 with the constants M0, M1,
M2 it follows for Kolmogoroff’s condition
1

k=0

1

k2
(Es fY 2

k g � Es fYkg2) �M4

0 (M1 �M2)

1

k=0

1

k2
<1:

This means that the condition is fulfilled and therefore the strong law
of large numbers can be applied, i.e., p(X1) = �(X1 �M) with

M :=
1

n

n

k=1

Es fYkgjddd(ccc; ccc0)j2Es

1

�2s

and the Dirac distribution �(�). Utilizing p(X1), (16) can be solved.
This yields the bound P (ccc! ccc0) = 0:5 � erfc( M=8) as stated in the
theorem.

Finally, it has to be shown that the above bound is a lower bound.
From Theorem III.3, it is known that P (ccc ! ccc0) is minimized for
n ! 1 if dk := jddd(ccc; ccc0)j=pn holds. This vector also fulfills the
requirements of Theorem III.5 and achieves the bound as stated above.
Hence, the bound given in the statement of the theorem is indeed a
lower bound.

E. Proof of Theorem IV.1

To be able to apply Theorem III.5, for each component dk = jck �
c0kj of the distance vector ddd(ccc; ccc0) the condition

lim
n!1

p
ndk <1 (17)

must be fulfilled. In the following, it is shown that this condition holds
which completes the proof. We define the vector��� := uuu� uuu0, where
uuu, uuu0 are two information vectors with components uk , u0k 2 U . The
mappings ccc = GGGuuu, ccc0 = GuGuGu0 assign a codeword to each of the in-
formation vectors. Then, applying the condition given by (17) to the
components of the distance vector ddd(ccc; ccc0) yields

lim
n!1

p
ndk = lim

n!1

p
n

n

l=1

gk;l�l

� lim
n!1

n

l=1

p
njgk;lk�lj

= lim
n!1

flj� 6=0g

p
njgk;lk�lj: (18)

We denote the number of components �l 6= 0 by jflj�l 6= 0gj. It is
upper-bounded by jflj�l 6= 0gj � jddd(ccc; ccc0)j2=M2

1 � 1. Moreover,

since the generator matrix is unitary, j�lj2 � jddd(ccc; ccc0)j2 holds. Sub-
stituting with these bounds and the assumption limn!1

p
njgk;lj �

M0 < 1 in (18) yields

lim
n!1

p
ndk � jddd(ccc; ccc0)j2

M2

1

M0jddd(ccc; ccc0)j2 <1
where this term is finite since M0 and M1 are constants independent
of n.

F. Proof of Theorem IV.2

For n ! 1, the set of all possible distance vectors in the code is
divided into the set of vectors with finite and infinite jddd(ccc; ccc0)j, respec-
tively. Theorem IV.1 shows that, for n ! 1, the PEP of all distance
vectors with finite jddd(ccc; ccc0)j only depends on jddd(ccc; ccc0)j. Clearly, within
this set, the maximum PEP is achieved by the distance vector with the
minimum Euclidean distance jddd(ccc; ccc0)jmin

P (ccc! ccc0) � 1

2
erfc

jddd(ccc; ccc0)j2
min

8
Es

1

�2s
: (19)

If jddd(ccc; ccc0)j is not finite, employing the upper bound on the PEP given
by Theorem III.4 yields

P (ccc! ccc0) � Es

1

2
erfc

jddd(ccc; ccc0)jp
8�2s

:

For any arbitrary fixed noise variance �2w = Es �2s , this bound is a
strictly monotonic decreasing function of jddd(ccc; ccc0)j approaching zero
for jddd(ccc; ccc0)j ! 1. Hence, this bound, and therefore also the real
PEP is always smaller than the PEP given by (19). It follows that, for
n ! 1, the maximum PEP in C is given by (19) which proves the
statement of the theorem.
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On Multicarrier Signals Where the PMEPR of a Random
Codeword is Asymptotically

Masoud Sharif, Student Member, IEEE, and Babak Hassibi

Abstract—Multicarrier signals exhibit a large peak-to-mean envelope
power ratio (PMEPR). In this correspondence, without using a Gaussian
assumption, we derive lower and upper probability bounds for the PMEPR
distribution when the number of subcarriers is large. Even though the
worst case PMEPR is of the order of , the main result is that the PMEPR
of a random codeword = ( . . . ) is log with probability
approaching one asymptotically, for the following three general cases: i)
’s are independent and identically distributed (i.i.d.) chosen from a com-

plex quadrature amplitude modulation (QAM) constellation in which the
real and imaginary part of each has i.i.d. and even distribution (not
necessarily uniform), ii) ’s are i.i.d. chosen from a phase-shift keying
(PSK) constellation where the distribution over the constellation points is
invariant under 2 rotation, and iii) is chosen uniformly from a com-
plex sphere of dimension . Based on this result, it is proved that asymp-
totically, the Varshamov–Gilbert (VG) bound remains the same for codes
with PMEPR of less than log chosen from QAM/PSK constellations.

Index Terms—Multicarrier signals, orthogonal frequency-divisionmulti-
plexing (OFDM), peak-to-mean envelope power ratio (PMEPR), spherical
codes, symmetric constellations.

I. INTRODUCTION

Multicarrier modulation has been proposed in different broad-band
wireless and wireline applications such as wireless local area networks
(WLAN) and digital subscriber line (DSL). Even though multicarrier
modulation has a nice performance in a multipath fading environment,
it suffers from high amplitude variation which is unfavorable from a
practical point of view. Different schemes have been proposed to re-
duce the peak-to-mean envelope power ratio (PMEPR) such as coding
methods, clipping, reserved carriers, and probabilistic methods such as
selective mapping and partial transmit sequence [1]–[7].

Unfortunately, the worst case PMEPR of multicarrier signals is
rather high and is of the order of n where n is the number of subcar-
riers. On the other hand, the numerical evaluation of the distribution of
PMEPR shows that encountering the worst case n is highly unlikely
[8]–[13]. This in fact motivates the problem of finding the PMEPR
distribution to quantify how severe that is. In [8], [9], by assuming
that the multicarrier signal is a Gaussian process, an expression for
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the probability distribution of PMEPR is derived. This is a very strong
assumption, and when the codewords are chosen from fixed constel-
lations, is mathematically not valid for the joint distribution of n or
more samples [14]. Recently, in [12], an upper bound for the PMEPR
distribution is shown for quadrature amplitude modulation/phase-shift
keying (QAM/PSK) with M2 points and uniform distribution over
the constellation points, and it is shown that the probability of
encountering a PMEPR of greater than (1 + �) logn is going to zero
as n increases. On the other hand, in [13], using techniques different
from ours, a lower bound for the distribution of PMEPR is obtained
when codewords are uniformly distributed over a complex sphere.
[13], however, does not perform an asymptotic analysis, which is
what we do here. In this correspondence, we generalize the results
to a larger class of constellations with even distribution over the
constellation points, and we show a stronger result, namely, with high
probability the PMEPR behaves like logn + O(log logn). In other
words, encountering a PMEPR of less than logn + O(log logn) is
also highly unlikely.

The results are based on a generalization of the well-known
result of Halasz [15] for Littlewood trigonometric polynomials with
equiprobable coefficients chosen independently from f+1;�1g [10],
[6], [12]. In summary, we show that, with probability approaching
one, any codeword either with entries chosen independently from the
symmetric QAM/PSK constellations or chosen uniformly from a com-
plex sphere has PMEPR of logn + O(log logn) for a large number
of subcarriers. We then use this result to determine the achievable rate
of codes with given minimum distance and bounded PMEPR.

The rest of the correspondence is outlined as follows. Section II in-
troduces the notation, multicarrier signals, and the PMEPR of a code-
word. The lower and upper probability bounds for the PMEPR distri-
bution are derived in Section III. In Section IV, we discuss the conse-
quences of the bounds and we obtain a Varshamov–Gilbert (VG) type
bound for the achievable rate of codes with bounded PMEPR and with
given minimum Hamming distance.

II. DEFINITION

The complex envelope of a multicarrier signal with n subcarriers
may be represented as

sC(t) =

n

i=1

cie
j2�if t; 0 � t � 1=f0 (1)

where f0 is the subchannel spacing and C = (c1; . . . ; cn) is the com-
plex modulating vector with entries from a given complex constella-
tion. The admissible modulating vectors are called codewords and the
ensemble of all possible codewords constitute the code C. For mathe-
matical convenience, we define the normalized complex envelope of a
multicarrier signal as

sC(�) =

n

i=1

cie
j�i; 0 � � < 2�: (2)

Then, the PMEPR of each codeword C in the code C may be defined
as

PMEPRC(C) = max
0��<2�

jsC(�)j
2

EfkCk2g
: (3)

Similarly, the PMEPR of the code C, denoted by PMEPRC , is defined
as the maximum of (3) over all codewords in C. It is clear from the def-
inition of PMEPR that if all the carriers add up coherently, the PMEPR
can be of the order of n.

In this correspondence, we will consider two classes of codes,
namely, complex symmetric q-ary codes in which each coordi-
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