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Abstract—The noiseless wire-tap channel of type II with coset coding
scheme was provided by Ozarow and Wyner. In this correspondence, the
user is split into multiple parties who are coordinated in coding their data
symbols by using the same encoder. The adversary can tap not only par-
tial transmitted symbols but also partial data symbols. We are interested in
the equivocation of the data symbols to this adversary who has more power
than that of Ozarow and Wyner.
The generalized Hamming weight of Wei and the dimension/length pro-

file (DLP) of Forney are extended to two-code formats: relative generalized
Hamming weight and relative dimension/length profile (RDLP). Upper and
lower bounds of the new concepts are investigated. They are useful to de-
sign a perfect secrecy coding scheme for the coordinated multiparty model.
Under a general secrecy standard, the coordinated model can provide a
higher transmission rate than an uncoordinated (time-sharing) model.

Index Terms—Dimension/length profile (DLP), generalized Hamming
weight, relative dimension/length profile (RDLP), relative generalized
Hamming weight, wire-tap channel of type II.

I. INTRODUCTION

The wire-tap channel invented by Wyner [16] was extensively
studied by many authors in binary and nonbinary cases. In an appli-
cation of linear codes to cryptology, Ozarow and Wyner provided a
noiseless wire-tap channel of type II with coset coding scheme in
[12]. This scheme is to use qr cosets of an [n; n � r] linear code
over GF (q), where each coset corresponds to r data symbols. The
user is composed of a sender and a receiver. The sender has r data
symbols to convey to the receiver by encoding them into an n-tuple
randomly in a corresponding coset. The redundancies are used to
confuse an adversary who has full knowledge about the code and
cosets, and has the ability to tap � symbols of his choice from the
n-tuple. By checking the cosets, the receiver can retrieve the r data
symbols from the n-tuple. The adversary tries to retrieve the r data
symbols by guessing the coset. For the given [n; n� r] code, he gets a
corresponding minimum uncertainty by choosing the positions of the
� tapped symbols.

This minimum uncertainty, i.e., equivocation, was described by the
generalized Hamming weight presented by Wei [15], which played
an important role in coding theory. For example, it was used in con-
nection with trellis complexity by Forney [6], in the analysis of reli-
ability-based decoding, and so on. Helleseth, Kløve, and Mykkeltveit
also contributed a lot to the original idea [7].

In this correspondence, the user of the noiseless wire-tap channel
of type II with coset coding scheme is split into multiple parties (for
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example, m senders and m corresponding receivers). They are coor-
dinated in coding their data symbols by using the same encoder. A se-
rious case is that the data symbols of nonlegitimate parties are leaked to
the adversary, i.e., the adversary can tap not only� transmitted symbols
but also partial data symbols. We are interested in the equivocation of
legitimate parties’ data symbols to this adversary who has more power
than that of [12].
In Section II, a coordinated two-party wire-tap channel of type II is

introduced over GF (2). We assume that the second party is nonlegiti-
mate, i.e., his data symbols are leaked to the adversary. The equivoca-
tion of the first party’s data symbols to this more powerful adversary is
calculated in Theorem 1. These results can be generalized for multiple
parties over GF (q) easily.
In Section III, the dimension/length profile (DLP), the inverse di-

mension/length profile (IDLP). and the length/dimension profile (LDP)
[6] are extended to two-code formats: relative dimension/length profile
(RDLP), inverse relative dimension/length profile (IRDLP), and rela-
tive length/dimension profile (RLDP). These two-code formats are de-
termined from each other, see Theorems 2 and 3; and used to analyze
the equivocation in the coordinated multiparty model, see Corollary 1
and the remark of Theorem 3. In addition, the LDP is a sequence of the
generalized Hamming weight, and the RLDP can be called a sequence
of relative generalized Hamming weight.
For a given pair of codes, the adversary can minimize the uncertainty

by selecting the positions of his tapped symbols. In Section IV, we con-
sider some suitable pairs of codes in such a way that the equivocation is
as large as possible. We provide an upper bound on the equivocation in
Theorem 4, and present some pairs of codes achieving the bound. This
bound has two other equivalent forms, one of which is a generalization
of the Singleton bound. Some equivalent conditions for achieving the
bounds are also investigated.
The bounds are useful to design a perfect secrecy coding scheme

for the coordinated multiparty wire-tap channel of type II, see Propo-
sition 4 and Theorem 5 of Section V. Since perfect secrecy cannot be
obtained in many cases, �(or less)-perfect secrecy is also considered.
Under a general secrecy standard, it is possible for the coordinatedmul-
tiparty model to provide a higher transmission rate than an uncoordi-
nated (time-sharing) multiparty model.
Final conclusions are presented in Section VI.

II. COORDINATED TWO-PARTY WIRETAP CHANNEL OF TYPE II

In this section, we are interested in a coordinated two-party wire-tap
channel of type II with coset coding scheme over GF (2).
In the general noiseless wire-tap channel of type II with coset coding

scheme over GF (2) [12], let S be the data bits of a sender, which is a
random vector of length r with uniform distribution over GF (2)r . Let
A be an r � n matrix with rank r over GF (2). For a given S = sss, the
coset coding scheme is to encode S into X = xxx uniformly from the
solutions of A � xxxT = sssT

p(X = xxx j S = sss) =
1

2
; if A � xxxT = sssT

0; otherwise
(1)

whereX is transmitted as a random vector of length n to a receiver. It is
easy to verify thatX is uniformly distributed on GF (2)n. The receiver
can retrieve the r data bits by calculating A �XT . Denote

X = (X1; . . . ; Xn) and xxx = (x1; . . . ; xn):

The redundant n�r bits are used to confuse an adversary, who has full
knowledge of the matrix A and has ability to tap � transmitted bits

Z
� = fXt : t 2 �g (2)
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Fig. 1. A coordinated two-party wire-tap channel of type II when S2 are
leaked.

where � � f1; . . . ; ng and j� j = �. For the given matrix A, the ad-
versary tries to retrieve the r data bits by guessing the n�� remaining
bits ofX , and gets a corresponding minimum uncertainty by selecting
the positions of the � tapped bits. The minimum uncertainty

�� := min
�:j� j=�

H(S j Z�) (3)

is called equivocation and described by the generalized Hamming
weight [15]. A goal for the sender is to maximize the equivocation by
searching for a suitable matrix A. Another interesting parameter is
the minimal number of further tapped bits for the adversary to get one
additional data bit, which was considered in [2]–[4]. For some other
variations of the channel in cryptosystems, see [9], [11].

In this section, we consider a serious case: some data bits are leaked
to the adversary, i.e., the adversary can tap not only � transmitted bits
but also partial data bits. It is easy to see that this adversary has more
power than that of [12]. The user (a sender and a corresponding re-
ceiver) is split into two parties (two senders and two corresponding
receivers), see Fig. 1. They are coordinated in coding their data bits by
using the same encoder of the matrix A. Let S = (S1; S2), where S1

is the data bits of the first sender with r1 components and S2 is of the
second sender with r2 = r � r1 components. Assume that the second
party is nonlegitimate, i.e., S2 is leaked to the adversary. We are in-
terested in the equivocation of the first party’s data bits to this more
powerful adversary

�1j2;� := min
� :j� j=�

H(S1 j Z�
; S

2): (4)

The following results are for two parties over binary field, but can be
generalized to multiple parties over GF (q) easily. For the q-ary case,
the entropy is the q-ary entropy, see [13, p. 15].

Theorem 1 provides an algebraic expression of the equivocation (4),
where the matrix A is expressed as

A :=
A1

A2
r�n

A
1 := (A1

1; . . . ; A
1
n)r �n; A

2 := (A2
1; . . . ; A

2
n)r �n

and A�
t (1 � � � 2; 1 � t � n) is a column vector with r� compo-

nents.

Theorem 1: In the model of Fig. 1 for a coordinated two-party
wire-tap channel of type II over binary field, we have

�1j2;� = min
':j'j=n��

rank
A1
l ; . . . ; A

1
l

A2
l ; . . . ; A

2
l

� rank A
2
l ; . . . ; A

2
l (5)

where ' = fl1; . . . ; ln��g � f1; . . . ; ng.

Proof: From the definition (4) and the chain rule of entropy, it is
easy to verify that

�1j2;� = min
� :j� j=�

H(S1 j Z�
; S

2);

= min
� :j� j=�

[H(S1
; S

2 j Z�)�H(S2 j Z�)] (6)

where � is a subset of f1; . . . ; ng with size � and Z� = fXt : t 2 �g.
Let fl1; . . . ; ln��g = f1; . . . ; ngn� . We will show that

H(S1
; S

2jZ�) = rank
A1
l ; . . . ; A

1
l

A2
l ; . . . ; A

2
l

(7)

and

H(S2jZ�) = rank A
2
l ; . . . ; A

2
l : (8)

This theorem can be obtained by using (6)–(8). Without loss of gener-
ality, assume that � = f1; . . . ; �g. Then

fl1; . . . ; ln��g = f1; . . . ; ngn� = f�+ 1; . . . ; ng:

The proof of (7) is the same as the following algebraic proof of (8).
Denote � = rank(A2

�+1; . . . ; A
2
n). For fixed (x1; . . . ; x�) and

given S2 = sss2, let � be the set of solutions for (x�+1; . . . ; xn) in (9)
or (10)

A
2

x1
...
xn

= (sss2)T (9)

i.e.,

(A2
�+1; . . . ; A

2
n)

x�+1
...
xn

= (sss2)T�(A2
1; . . . ; A

2
�)

x1
...
x�

: (10)

Then j�j = 0 or 2n����. Note that � can be empty.
It follows from the coding method thatX1; . . . ; Xn, S1, and S2 are

all uniformly distributed. Furthermore, X1; . . . ; Xn are independent,
and S1 and S2 are also independent. Then

p(X1 = x1; . . . ; Xn = xn j S2 = sss
2)

= p(X1 = x1; . . . ; Xn = xn; S
1 = sss

1 j S2 = sss
2)

= 2�r p(X1 = x1; . . . ; Xn = xn j S1 = sss
1
; S

2 = sss
2)

where

(sss1)T = A
1 � (x1; . . . ; xn)

T
:

If (9) is satisfied, i.e., ifA2 �xxxT = (sss2)T , we haveA �xxxT = (sss1; sss2)T

and then

p(X1 =x1; . . . ; Xn = xn j S2 = sss
2)

= 2�r � 2�(n�r) = 2�(n�r )
: (11)

Otherwise,

p(X1 = x1; . . . ; Xn = xn j S2 = sss
2) = 0:

Since � = f1; . . . ; �g, by using (11)

p(S2 = sss
2 j Z� = (x1; . . . ; x�))

= p(S2 = sss
2 j X1 = x1; . . . ; X� = x�)

=
p(X1 = x1; . . . ; X� = x� j S2 = sss2)p(S2 = sss2)

p(X1 = x1; . . . ; X� = x�)

= p(X1 = x1; . . . ; X� = x� j S2 = sss
2)2��r
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Fig. 2. The equivocation �1j2;� in Example 1.

= 2��r

(x ;...;x )

p(X1 = x1; . . . ; Xn = xn j S
2 = sss2)

= 2��r

(x ;...;x )2�

2�(n�r )

= 2��n j � j

= 0 or 2��:

Note that
sss
p(S2 = sss2 j Z� = (x1; . . . ; x�)) = 1. Therefore,

fsss2 : p(S2 = sss2 j Z� = (x1; . . . ; x�)) = 1=2�g = 2�:

Thus, H(S2 j Z� = (x1; . . . ; x�)) = � and H(S2 j Z�) = �, and
(8) is obtained.

Theorem 1 shows that the equivocation to a more powerful adversary
can be investigated by analyzing the difference between the ranks of a
matrix and a submatrix. For the case r2 = 0, the Wyner–Ozarow’s
result is retrieved.

Example 1: In the model of Fig. 1, for r = 4 and n = 7, let A be a
generator matrix of the binary [7; 4; 3] Hamming code

A =

0 1 0 0 1 0 1

0 0 1 0 1 1 0

1 0 0 0 0 1 1

0 0 0 1 1 1 1

:

Assume that S1 is a random vector with r1 = 2 components of the
legitimate party, and S2 is a random vector with r2 = 2 components
of the nonlegitimate party. Then

A2 =
1 0 0 0 0 1 1

0 0 0 1 1 1 1
:

The equivocation �1j2;� of S1 to the more powerful adversary is ob-
tained in Fig. 2 via Theorem 1.

It follows that the perfect secrecy�1j2;� = 2 is achieved if and only
if � � 2. Furthermore, the equivocation drops at � = 3 because at this
point the first row of A can be punctured, and drops again at � = 5
because at this point the first two rows of A can be punctured.

Further investigations of the properties of equivocation and secrecy
will be given later.

III. RELATIVE DIMENSION/LENGTH PROFILE (RDLP)

For linear block codes, the DLP, the IDLP, and the LDP, were intro-
duced in [6]. In this section, these concepts are extended to two-code
formats by adding a modifier “relative”: RDLP, IRDLP, and RLDP.
These two-code formats behave similarly to Forney’s concepts. They
are useful for the study of the equivocation to the more powerful adver-
sary introduced in Section II, see Corollary 1 and the remark of The-
orem 3.

Let J be a subset of I = f1; . . . ; ng. For an [n; k] linear code C ,
its subcode CJ is defined as f(c1; . . . ; cn) 2 C : ct = 0 for t 62 Jg.
Its projection PJ (C) is defined as fPJ (ccc) : ccc = (c1; . . . ; cn) 2 Cg,
where PJ (ccc) is a vector of length n, and the tth component of PJ (ccc)
is given by ct if t 2 J and given by 0 if t 62 J . A relation between CJ

and PJ (C) is presented in Lemma 1.

Lemma 1 (First Duality Lemma [6]): For an [n; k] linear code C
and a set J � I = f1; . . . ; ng

dim[PJ (C)] + dim(CI�J) = k:

For example, let C be a binary [7; 4; 3] Hamming code with the
generator matrix A of Example 1. Assume that J = f3; 4g. Then
I � J = f1; 2; 5; 6; 7g. The code CI�J has generator matrix

1 0 0 0 0 1 1

0 1 0 0 1 0 1
:

The code PJ (C) has generator matrix

0 0 1 0 0 0 0

0 0 0 1 0 0 0
:

It is easy to see that dim[PJ (C)] = 2 and dim(CI�J) = 2.
Let C1 be an [n; a1] linear code and C2 be an [n; a2] subcode of

C1. The RDLP of C1 and C2 is defined as a sequence

K(C1; C2) = fKi(C
1; C2) : 0 � i � ng

where

Ki(C
1; C2) := maxfdim(C1

J )� dim(C2
J ) :j J j= ig: (12)

The IRDLP of C1 and C2 is defined as

K(C1; C2) = fKi(C
1; C2) : 0 � i � ng

where

Ki(C
1; C2) := minfdim[PJ (C

1)]� dim[PJ (C
2)] :j J j= ig:

(13)
Let � denote the empty set. Then the DLP and the IDLP of C1 can be
retrieved fromK(C1;�) andK(C1;�), respectively. By using these
two-code formats, Theorem 1 can be described as follows.

Corollary 1: In the model of Fig. 1, let C1 be a code with the gen-
erator matrixA andC2 be a subcode with the generator matrixA2. For
0 � � � n

�1j2;� = Kn��(C
1;C2):

TheRDLP and the IRDLP behave similarly to theDLP and the IDLP.
Theorem 2 shows that the RDLP and the IRDLP can be determined
from each other.

Theorem 2: For an [n; a1] linear code C1 and an [n; a2] subcode
C2, their RDLP and IRDLP are related by

Ki(C
1; C2) = (a1 � a2)�Kn�i(C

1;C2) for 0 � i � n:

Proof: By using Lemma 1, for 0 � i � n

Ki(C
1; C2)

= minfdim[PJ (C
1)]� dim[PJ (C

2)] : jJ j = ig

= minf(a1 � a2)� dim(C1
I�J) + dim(C2

I�J) : jJ j = ig

= minf(a1 � a2)� dim(C1
J ) + dim(C2

J ) : jJ j = n� ig

= (a1 � a2)�Kn�i(C
1;C2):
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Then, it is easy to see from Corollary 1 and Theorem 2 that
K(C1; C2) is a measure of the certainty of the first party’s data
symbols to the more powerful adversary. Let i denote the number of
tapped symbols. The certainty Ki(C

1; C2) is nondecreasing with i

from

K0(C
1
; C

2) = K0(C
1
; C

2) = 0

to

Kn(C
1
; C

2) = Kn(C
1
; C

2) = a1 � a2

see Proposition 1. The increment at each step is at most 1.

Proposition 1: Let C1 be an [n; a1] linear code, and C2 be an
[n; a2] subcode. For 0 � i � n � 1

0 �Ki+1(C
1
; C

2)�Ki(C
1
; C

2) � 1 (14)

0 �Ki+1(C
1
; C

2)�Ki(C
1
; C

2) � 1: (15)

In addition, it is easy to see that

K0(C
1
; C

2) = K0(C
1
; C

2) = 0

and

Kn(C
1
; C

2) = Kn(C
1
; C

2) = a1 � a2:

Proof: From Theorem 2, it is easy to see that (14) and (15) are
equivalent. Here, we only give a proof of (15). For any fixed subset
J � I = f1; . . . ; ng and an index t 62 J , let

f = dim[PJ (C
1)]� dim[PJ (C

2)]

and

g = dim[P
J ftg(C

1)]� dim[P
J ftg(C

2)]:

We have to consider the following two cases.

1) dim[P
J ftg(C

2)] = dim[PJ (C
2)]. We have

f + 1 � g � f: (16)

2) dim[P
J ftg(C

2)] = dim[PJ (C
2)] + 1. By considering a

code as a matrix (each row is a codeword), we know that the
tth column of P

J ftg(C
2) is linearly independent of all the

columns of PJ (C
2). Then the tth column of P

J ftg(C
1) is

also linearly independent of all the columns of PJ (C
1). There-

fore,

dim[P
J ftg(C

1)] = dim[PJ (C
1)] + 1

and

g = f: (17)

From (16) and (17), it follows that f + 1 � g � f . Therefore, it is
easy to verify that

Ki(C
1
; C

2) + 1 � Ki+1(C
1
; C

2) � Ki(C
1
; C

2)

and (15) is obtained.

For the Wyner–Ozarow scheme, it was shown in [15] that the ad-
versary can obtain at least r symbols of information if and only if he
can tap at least dr transmitted symbols, where dr is the rth generalized
Hamming weight of a linear code. For the more powerful adversary,
some corresponding results are as follows.

Let C1 be an [n; a1] linear code and C2 be an [n; a2] subcode of
C1. The RLDP of C1 and C2 is defined as a sequence

M(C1
; C

2) = fMj(C
1
; C

2) : 0 � j � a1 � a2g

where

Mj(C
1
; C

2) := minfjJ j : dim(C1

J )� dim(C2

J ) � jg: (18)

If C2 is the empty set �, the jth generalized Hamming weight of code
C1 is retrieved. The RLDP can be called a sequence of relative gener-
alized Hamming weight. A relation between the RLDP and the RDLP
is shown in Theorem 3. Theorems 2 and 3 imply that the RDLP, the
IRDLP, and the RLDP can be determined from each other.

Theorem 3: For an [n; a1] linear code C1 and an [n; a2] subcode
C2

minfi : Ki(C
1
; C

2) � jg =Mj(C
1
; C

2)

and

maxfj : Mj(C
1
; C

2) � ig =Ki(C
1
; C

2)

where 0 � j � a1 � a2 and 0 � i � n.
Proof:

minfi : Ki(C
1
; C

2) � jg

= minfi : 9jJ j = i such that dim(C1

J )� dim(C2

J ) � jg

= minfjJ j : dim(C1

J )� dim(C2

J ) � jg = Mj(C
1
; C

2);

and

maxfj : Mj(C
1
; C

2) � ig

= maxfj : 9jJ j � i such that dim(C1

J )� dim(C2

J ) � jg

= maxfdim(C1

J )� dim(C2

J ) : jJ j � ig = Ki(C
1
; C

2):

Remark: For 0 � � � n and 0 � j � a1 � a2,K�(C
1; C2) � j

if and only ifMj(C
1; C2) � �. Therefore, in the model of Fig. 1, the

adversary can obtain at least j information bits of S1 if and only if he
can tap at least Mj(C

1; C2) transmitted bits from X , where C1 is a
linear code with the generator matrix A and C2 is a subcode with the
generator matrix A2.

From Proposition 1, we know that Ki(C
1; C2) is nondecreasing

with i from K0(C
1; C2) = 0 to Kn(C

1; C2) = a1 � a2. The in-
crement at each step is at most 1. In addition

fi : Ki(C
1
; C

2) = jg \ fi : Ki(C
1
; C

2) � j + 1g = �:

Then, it follows from Theorem 3 that

Mj(C
1
; C

2) = minfi : Ki(C
1
; C

2) � jg

= minfi : Ki(C
1
; C

2) = jg

where 0 � j � a1 � a2. SoMj(C
1; C2) is strictly increasing with j

and thus,

Mj(C
1
; C

2) = minfjJ j : dim(C1

J )� dim(C2

J ) = jg:

Therefore, Proposition 2 follows.

Proposition 2: For an [n; a1] linear code C1 and an [n; a2]
subcode C2, Mj(C

1; C2) is strictly increasing with j. Moreover,
M0(C

1; C2) = 0 and

Mj(C
1
; C

2) = minfi : Ki(C
1
; C

2) = jg

= minfjJ j : dim(C1

J )� dim(C2

J ) = jg

where 0 � j � a1 � a2.

Example 2: Let C1 be the binary [7; 4; 3] Hamming code with the
generator matrixA of Example 1. LetC2 be the subcode with the gen-
erator matrix A2. Then

K(C1
; C

2) = f0; 0; 0; 1; 1; 2; 2; 2g

K(C1
; C

2) = f0; 0; 0; 1; 1; 2; 2; 2g

M(C1
; C

2) = f0; 3; 5g:

The properties of Theorem 2, Proposition 1, Theorem 3, and Proposi-
tion 2 are all satisfied. We know from the remark of Theorem 3 that
the adversary can get at least 1 information bit of S1 if and only if
he can tap at least M1(C

1; C2) = 3 transmitted bits; and get at least
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2 information bits if and only if he can tap at least M2(C
1; C2) =

5 transmitted bits.

IV. A GENERALIZATION OF THE SINGLETON BOUND

For a given pair of codes C1 and C2, it follows from Corollary 1
that the adversary with parameter � can obtain a minimum uncertainty,
i.e., the equivocation, by selecting the positions of the � tapped sym-
bols. We try to search some suitable pairs of codes in such a way that
the equivocation is as large as possible. In this section, we provide an
upper bound UP (K) on the equivocation, and present some pairs of
codes achieving the bound. This bound has two other equivalent forms
LO(K) and UP (M), where UP (M) is a generalization of the Sin-
gleton bound. Some equivalent conditions for achieving the bounds are
also investigated.

For any two integer sequences f�0; . . . ; �ng and f�0; . . . ; �ng, we
say that f�0; . . . ; �ng is upper-bounded by f�0; . . . ; �ng if �i � �i
for 0 � i � n. We say that f�0; . . . ; �ng is lower-bounded by
f�0; . . . ; �ng if �i � �i for 0 � i � n. The following Lemma 2
is useful to establish the main results of this section. It presents an
upper bound and a lower bound for a special kind of nondecreasing
sequences.

Lemma 2: Let f�i : 0 � i � ng be an integer sequence of length
n + 1. If �i is nondecreasing with i from �0 = 0 to �n = k where
k � n, and the increment of each step is at most 1, then

f�i : 0 � i � ng � f�i : 0 � i � ng :=f0; 1; 2; . . . ; k; . . . ; kg (19)

where minfi : �i = kg = k, and

f�i : 0 � i � ng � f
i : 0 � i � ng := f0; . . . ; 0; 1; 2; . . . ; kg
(20)

wheremaxfi : 
i = 0g = n� k. Furthermore, for k = n, if (19) and
(20) are both satisfied, we have

f�i : 0 � i � ng = f0; 1; 2; . . . ; ng:

Proof: Formula (19) follows from �0 = 0 and �i+1 � �i + 1.
Formula (20) follows from �n = k and �i�1 � �i � 1.

The bounds UP (K), LO(K), and UP (M) are provided in The-
orem 4. In Proposition 3, we show that if one of these bounds is
achieved, so are the other two. Then, some equivalent conditions and
examples achieving these bounds are provided.

Theorem 4: For an [n; a1] linear code C1 and an [n; a2] subcode
C2, their inverse RDLPK(C1; C2) is upper-bounded by UP (K)

fUP (K)i : 0 � i � ng :=

f0; . . . ; 0; 1; 2; . . . ; a1 � a2; . . . ; a1 � a2g (21)

where maxfi : UP (K)i = 0g = a2. Furthermore, their RDLP
K(C1; C2) is lower-bounded by LO(K)

fLO(K)i : 0 � i � ng :=

f0; . . . ; 0; 1; 2; . . . ; a1 � a2; . . . ; a1 � a2g (22)

wheremaxfi : LO(K)i = 0g = n� a1. Their RLDPM(C1; C2) is
upper-bounded by UP (M) (a generalized Singleton bound)

fUP (M)j : 0 � j � a1 � a2g :=

f0; n� a1 + 1; n� a1 + 2; . . . ; n� a2g: (23)

Proof: First, we show that Ka (C1; C2) = 0. Since
dim(C2) = a2, there is a set J � f1; . . . ; ng such that jJ j = a2 and
dim[PJ (C

2)] = a2. Therefore,

dim[PJ (C
1)]� dim[PJ (C

2)] = 0

since

dim[PJ (C
2)] � dim[PJ (C

1)] � jJ j:

So Ka (C1; C2) = 0.
Second, it follows from Ka (C1; C2) = 0 and Proposition 1 that

Ki(C
1; C2) is nondecreasing with i from Ka (C1; C2) = 0 to

Kn(C
1; C2) = a1 � a2, and the increment of each step is at most 1.

Then, by using Lemma 2, K(C1; C2) � UP (K).
Third, it is easy to see from the upper boundUP (K) and Theorem 2

that K(C1; C2) � LO(K).
Finally, the upper bound UP (M) is obtained below. From the

second part of this theorem, we have Kn�a (C1; C2) � a1 � a2.
Then by using the relation ofM(C1; C2) andK(C1; C2) in Theorem
3, it follows that

Ma �a (C1
; C

2)=minfi : Ki(C
1
; C

2) � a1 � a2g�n� a2:

Moreover, Proposition 2 shows thatMj(C
1; C2) is strictly increasing

with j. Therefore, M(C1; C2) is upper-bounded by UP (M) since
Ma �a (C1; C2) � n� a2 andM0(C

1; C2) = 0.

It follows from the upper bound UP (M) that for 1 � j � a1 � a2

Mj(C
1
; C

2) � n� a1 + j: (24)

The Singleton bound is retrieved from UP (M) when C2 = �. A
relation among the boundsUP (K),LO(K), andUP (M) is presented
in Proposition 3.

Proposition 3: For an [n; a1] linear codeC1 and an [n; a2] subcode
C2, if one of the bounds UP (K), LO(K), or UP (M) is achieved,
then so are the other two. Furthermore, UP (K) is achieved if and
only if Ka (C1; C2) = a1 � a2, LO(K) is achieved if and only
if Kn�a (C1; C2) = 0, and UP (M) is achieved if and only if
M1(C

1; C2) = n � a1 + 1.
Proof: The first part of this proposition is obvious since

K(C1; C2), K(C1; C2), and M(C1; C2) can be determined from
each other via Theorems 2 and 3. A proof of the second part is given
as follows.
Assume that Ka (C1; C2) = a1 � a2. We know from Theorem 4

that Ka (C1; C2) is always 0. Then, it follows from Proposition 1
that Ki(C

1; C2) is nondecreasing with i from Ka (C1; C2) = 0 to
Ka (C1; C2) = a1 � a2. The increment at each step is at most 1. By
using Lemma 2, we have

fKi(C
1
; C

2) : a2 � i � a1g = f0; 1; . . . ; a1 � a2g:

Therefore, K(C1; C2) achieves the upper bound UP (K). This im-
plies that UP (K) is achieved if and only ifKa (C1; C2) = a1 � a2.
By using the same arguments, LO(K) is achieved if and only if

Kn�a (C1; C2) = 0.
Assume thatM1(C

1; C2) = n�a1+1. We know from Theorem 4
thatMa �a (C1; C2) � n � a2. Then, it follows from Proposition 2
that Mj(C

1; C2) is strictly increasing with j from M1(C
1; C2) =

n � a1 + 1 to Ma �a (C1; C2) = n � a2, and M0(C
1; C2) = 0.

Therefore, M(C1; C2) achieves the upper bound UP (M). This im-
plies thatUP (M) is achieved if and only ifM1(C

1; C2) = n�a1+1.

The Singleton bound can be retrieved from UP (M) when C2 = �,
i.e., C1 is a maximum distance separable (MDS) code if and only if
one of the following conditions is true:

• M1(C
1;�) = n � a1 + 1;

• Kn�a (C1;�) = 0, i.e.,

maxfdim(C1

J ) : jJ j = n� a1g = 0

where J � f1; . . . ; ng.
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Therefore, for any MDS code C1 and any subcode � � C1, we have

maxfdim(C1
J )� dim(�J ) : jJ j = n� a1g = 0

where J � f1; . . . ; ng, i.e., we haveKn�a (C1;�) = 0. For the pair
of codes C1 and�, the bounds UP (K), LO(K), and UP (M) are all
achieved.

Corollary 2: For any MDS code C1 and any subcode � � C1, the
bounds UP (K), LO(K), and UP (M) are all achieved.

Note that C1 need not be MDS for achieving the bounds. For ex-
ample, let C1 be a binary non-MDS code with a generator matrix A
and C2 be a subcode with a generator matrix A2, where

A=

0 0 1 1 1

1 0 1 0 0

0 1 0 1 0

and A2=
1 0 1 0 0

0 1 0 1 0
: (25)

It is easy to verify that the bounds UP (K), LO(K), and UP (M) are
also achieved sinceK2(C

1; C2) = 0. More research about the bounds
are provided in [10].

V. SECRECY SYSTEM

A. Perfect Secrecy

The strongest possible notion of security of a cryptosystem is the
perfect secrecy defined in [14]. Almost-perfect secrecy is considered
when the perfect secrecy is hard to be achieved. Perfect secrecy and al-
most-perfect secrecy are also investigated in some other cryptosystems,
for examples, see the wire-tap channel [16], the broadcast channel [5],
and the generalized privacy amplification [1].

In the model of Fig. 1 of the coordinated two-party wire-tap channel
of type II, denote

a1 = r and a2 = r2:

“Perfect secrecy with respect to �1j2;�” is denoted by

min
� :j� j=�

H(S1 j Z�; S2) = H(S1): (26)

It is easy to see from Corollary 1 that (26) is equivalent to

Kn��(C
1; C2) = a1 � a2 (27)

where a1 is the dimension ofC1 and a2 is the dimension of the subcode
C2. But it follows from Theorem 4 that (27) is not possible for n�� <
a1. In this section, we consider a suboptimal case “�-perfect secrecy
with respect to �1j2;�”

Kn��(C
1;C2) � d�(a1 � a2)e (28)

where� is a little less than 1. Some equivalent expressions of�-perfect
secrecy are presented in Proposition 4.

Proposition 4: In the model of Fig. 1 for the coordinated two-party
wire-tap channel of type II, let C1 be a linear code with the generator
matrix A and C2 be a subcode with the generator matrix A2. Denote
a1 = r and a2 = r2. Then the channel has �-perfect secrecy with
respect to �1j2;� if and only if

K�(C
1; C2) � � (29)

where � = b(1� �)(a1 � a2)c, which is also equivalent to

M�+1(C
1; C2) � �+ 1: (30)

Fig. 3. A time-sharing two-party wire-tap channel of type II.

Proof: This proposition can be derived from (28) by using The-
orem 2 and Theorem 3.

Unfortunately, high transmission rate and high secrecy cannot be
obtained at the same time. A relation between the transmission rate and
the parameter � is given in Theorem 5 for the coordinated two-party
wire-tap channel of type II. If the channel has �-perfect secrecy with
respect to �1j2;�, it follows from (23) and (30) that

n� a1 + � + 1 �M�+1(C
1; C2) � �+ 1: (31)

Therefore,

n � �+ a1 � � = �+ d�(a1 � a2) + a2e: (32)

In other words, if n < �+d�(a1�a2)+a2e, there is no channel with
�-perfect secrecy for the legitimate party S1 against the more powerful
adversary with parameter �. This implies Theorem 5.

Theorem 5: In the model of Fig. 1 for a coordinated two-party
wire-tap channel of type II, if the channel has �-perfect secrecy with
respect to�1j2;�, the transmission rate r=n is upper-bounded by

r

�+ d�(r � r2) + r2e
: (33)

Moreover, the upper bound is achieved if and only if the equalities of
(31) hold.

For Example, in the model of Fig. 1, if the matrices A and A2 are of
Example 1, then for � = 4, r = 4, r2 = 2, and � = 0:5, the transmis-
sion rate 4=7 reaches the upper bound (33) since M2(C

1; C2) = 5.
Another example is for perfect secrecy, i.e., � = 1. We can takeA and
A2 from (25). Then for parameters � = 2, r = 3, r2 = 2, and � = 1,
the upper bound 3=5 is achieved.

B. A Comparison With Time-Sharing Model

A time-sharing multiparty wire-tap channel of type II is a true mul-
tiuser model with independent parallel channels, see Fig. 3. Since the
encoders are independent, we do not consider the nonlegitimate party
case. In this subsection, by a comparison with the time-sharing model
under a general secrecy standard, we show that it is possible for the
model of Fig. 1 to provide a higher transmission rate when S2 is not
leaked to the adversary.
In the model of Fig. 1, suppose that S2 is not leaked to the ad-

versary. Let �1j;� denote min� :j� j=�H(S1 j Z�) and �2j;� denote
min� :j� j=�H(S2 j Z�). By using the same arguments of Theorem 1
and Corollary 1, we have

�1j;� = Kn��(C
3;�) and �2j;� = Kn��(C

2;�)
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whereC3 is an [n; r1] linear code with the generator matrixA1 andC2

is an [n; r2] linear code with the generator matrixA2. As mentioned in
Section V-A, perfect secrecy of each party, i.e.,

Kn��(C
3;�) = r1 and Kn��(C

2;�) = r2 (34)

cannot be achieved for n � � < r1 and n � � < r2, respectively. A
weaker secrecy standard is �-perfect secrecy of each party, i.e.,

Kn��(C
3;�) � d�r1e and Kn��(C

2;�) � d�r2e (35)

where � is a little less than 1. By using the same arguments as those of
(32), we have n � � + d�r1e and n � � + d�r2e. Then Corollary 3
follows.

Corollary 3: In the model of Fig. 1, suppose S2 is not leaked to
the adversary. If the channel has �-perfect secrecy of each party, the
transmission rate r=n is upper-bounded by

r

�+maxfd�r1e; d�r2eg
: (36)

A time-sharing two-party wire-tap channel of type II described in
Fig. 3 is a system of two single wire-tap channels of type II arranged
in parallel. For a comparison with Fig. 1, denote the message length
of input S� by r� , and denote the corresponding codeword length of
X� by n� , where � = 1; 2. An adversary can look at a selection of
�� positions from X� . Let r = r1 + r2, n = n1 + n2, and � =
�1+�2. If the channel has �-perfect secrecy of each party, i.e., if each
party has �-perfect secrecy with respect to the corresponding ��j;� ,
then it is easy to see from (32) that n� � �� + d�r�e. Therefore, the
transmission rate r=n is upper-bounded by

r

�+
1���2

d�r�e
(37)

since

n =
�

n� �
�

(�� + d�r�e) = �+
�

d�r�e:

Observe that the upper bound (37) is much smaller than the upper
bound (36). An explanation is that, in (36), the data of one party can be
used by another party to confuse the adversary, which is not possible
in (37). In other words, more redundancies are needed in (37) for each
party to confuse the adversary. Therefore, if the channel is requested
to have �-perfect secrecy of each party, it is possible for the model
of Fig. 1 (when S2 is not leaked to the adversary) to provide a higher
transmission rate than the time-sharing model of Fig. 3.

Example 3: In the model of Fig. 1 for a coordinated two-party
wire-tap channel of type II, assume that S2 is not leaked to the
adversary. Let the matrix A be over GF (8)

A =

!6 !5 !5 !2 1 0 0

0 !6 !5 !5 !2 1 0

0 0 !6 !5 !5 !2 1

0 ! !2 !3 !4 !5 !6

! ! ! ! ! ! !
5�7

where GF (8) = F2[x]x +x+1 and ! is the primitive element x. Let
r1 = 3 and r2 = 2. Then the corresponding matrix A1 generates a
[7; 3] Reed–Solomon code CR, see [8, p. 145]; and the corresponding
matrixA2 generates a [7; 2] linear codeCL. It is easy to verify that the
channel has perfect secrecy of each party when � = 4 since �1j;4 =

K3(C
R;�) = 3 and �2j;4 = K3(C

L;�) = 2. Its transmission rate
r=n = (r1 + r2)=n = 5=7 reaches the upper bound (36). But we
know from (37) that, for r1 = 3, r2 = 2, and � = 4, if a time-sharing
two-party wire-tap channel of type II has perfect secrecy of each party,
the transmission rate is at most 5=9.

VI. CONCLUSION

In this correspondence, by studying the coset coding method in a
coordinated two-party wire-tap channel of type II, we provide some
new concepts: RDLP, relative generalized Hamming weight, and so
on, to describe the relation between a linear block code and a subcode.
The original concepts; DLP and generalized Hamming weight, were
introduced in [6] and [15], respectively. Our new concepts are used to
investigate the equivocation to a more powerful adversary who can tap
not only partial transmitted symbols but also partial data symbols.
Upper and lower bounds of the new concepts are considered. Some

equivalent conditions for achieving these bounds are provided. These
bounds are useful to design a perfect secrecy coding scheme for the
coordinated model. Unfortunately, perfect secrecy cannot be achieved
in many cases. Then, �-perfect secrecy is also considered, where � is
a little less than 1.
For a comparison with a time-sharing model of Fig. 3, we suppose

in Fig. 1 that S2 is not leaked to the adversary. Under a general secrecy
standard, the model of Fig. 1 can provide a higher transmission rate
than the time-sharing model. An explanation is that, in (36), the data of
one party can be used by another party to confuse the adversary, which
is not possible in (37).
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On the Scaling Laws of Dense Wireless Sensor Networks:
The Data Gathering Channel

Hesham El Gamal, Senior Member, IEEE

Abstract—We consider dense wireless sensor networks deployed to
observe arbitrary random fields. The requirement is to reconstruct an
estimate of the random field at a certain collector node. This creates a
many-to-one data gathering wireless channel. In this note, we first char-
acterize the transport capacity of many-to-one dense wireless networks
subject to a constraint on the total average power. In particular, we show
that the transport capacity scales as �(log ( )) when the number of
sensors grows to infinity and the total average power remains fixed. We
then use this result along with some information-theoretic tools to derive
sufficient and necessary conditions that characterize the set of observable
random fields by dense sensor networks. In particular, for random fields
that can be modeled as discrete random sequences, we derive a certain
form of source/channel coding separation theorem. We further show that
one can achieve any desired nonzero mean-square estimation error for
continuous, Gaussian, and spatially bandlimited fields through a scheme
composed of single-dimensional quantization, distributed Slepian–Wolf
source coding, and the proposed antenna sharing strategy. Based on our
results, we revisit earlier conclusions about the feasibility of data gathering
applications using dense sensor networks.

Index Terms—Distributed source–channel coding, relay channel, sensor
networks, the many-to-one channel, the separation principle.

I. INTRODUCTION

In a seminal paper, Gupta and Kumar have shown that the capacity of
large scale ad hoc wireless networks scales as �(

p
N) as the number

of nodesN per unit area grows to infinity [1]. This result means that the

capacity per node only scales as �( 1

N
), and hence, goes to zero as

N !1. While this result advises against deploying dense ad hoc net-
works, the situation may be different in the context of wireless sensor
networks. The enabling observation in this context is that the traffic
generated at the different sensors is not independent as in the case of
ad hoc networks studied by Gupta and Kumar [2], [3]. In fact, the corre-
lation between the traffic generated at adjacent sensor nodes increases
as the density of the sensor nodes per unit area grows. Therefore, as
N ! 1, the high correlation between the different observations will
result in a traffic per sensor node that goes to zero [2], [3].

There is, however, another important difference between the sensing
application and the model used by Gupta and Kumar which was
recently observed in [4]. The scenario investigated in [1] assumes
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peer-to-peer communication where the information generated at an
arbitrary node is transported to another arbitrary node. The sensing
application, however, implies a fundamental difference in the topology
of the network from this peer-to-peer scenario. In this note, we focus
on the case where all the sensing information must be collected at a
single node. We will refer to this scenario as the many-to-one channel
and to the information sink as the collector node. This architectural
difference in the network topology has implications on the maximum
traffic carrying capacity of the network. For example, in [4], the
authors used the modeling assumptions of [1] to derive the following
upper bound on the capacity of this many-to-one channel: Based on the
assumption that every node can transmit or receive a maximum ofW
bits per second [1], it is straightforward to see that the capacity of the
many-to-one channel is upper-bounded by W . The first contribution
of this note is to show that this result is, in fact, over-restrictive.
In particular, we show that the transport capacity scales as

�(log(N)) when the number of sensors N grows to infinity and the
total average power remains fixed. An important part of our approach
is a novel transmission scheme that exploits the high density of sensor
nodes to facilitate antenna sharing at minimal cost in resources. We
show that this scheme achieves the same scaling law as the optimal
approach while employing single user receivers (i.e., receivers that
attempt to detect only one information stream at any point in time
treating all other information streams as noise). One of the interesting
insights allowed by our proof is that, contrary to the peer-to-peer
scenario, spatial reuse of the bandwidth does not factor prominently
in this many-to-one case. In a nutshell, one san say that the single sink
node in the many-to-one channel acts like a bottleneck, as predicted by
[4]. The cost entailed by this bottleneck is, however, not as dramatic as
argued in [4] (instead of lowering the traffic from�(

p
N) to�(1), we

show that the traffic is only reduced to �(log(N))). It is worth noting
that the transport capacity result can be obtained from the transmission
protocol proposed by Gastpar and Vetterli for large relay networks1

[5]. In the sequel, we will elaborate more on the link between our work
and [5].
We then use this result to characterize the set of observable2 random

processes by this class of dense sensor networks. For random fields
that can be modeled as discrete random sequences, we derive neces-
sary and sufficient conditions for observability. We further establish a
certain form of source/channel coding separation in this scenario. The
significance of this separation theorem is that it allows for constructing
low-complexity coding and decoding algorithms. Next, we investigate
the more realistic, and challenging, scenario of continuous random pro-
cesses. In this case, we show that all Gaussian and spatially bandlimited
processes can be estimated at the collector node, subject to any nonzero
constraint on the mean-square error, using a simple strategy composed
of single-dimensional quantization, Slepian–Wolf distributed source
coding, and the proposed antenna sharing approach. Toward the end
of the note, we shed some light on the limitation of the multiple-access
formulation used earlier to investigate the capacity of the many-to-one
channel [6].

II. SYSTEM MODEL AND ASSUMPTIONS

For simplicity of presentation, unless otherwise stated, we consider
the scenario where the N sensor nodes are distributed uniformly over
the surface of a sphere with a unit radius. The collector node is assumed
to be at the center of the sphere, and hence, all the source nodes are

1The link between our work and [5] was pointed out by one of the reviewers.
2This notion of observability will be rigorously defined in the sequel.
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