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A Class of Binary Rate One-Half Convolutional 
Codes that Allows an Improved Stack Decoder 

ADRIANUS J. VINCK, MEMBER, IEEE, A. J. P. DE PAEPE, AND J. PIETER M . SCHALKWIJK, 
SENIOR MEMBER, IEEE 

Abstmct-A class of bii rate one-half convolutional codes that 
allows a modified stack decoder are intmh~ced. ‘Ihe distribution of the 
number of computations per decoded frame is greatly improved. Simti- 
tions indicate tbat for a binary symmetr ic chamel with transition probhil- 
ityp=2+ tbe modified stack decoder requires less than one-fifth tbe 
stack size of the classical implementation. 

I. INTR~DUOH~N 

T HIS INTRODUCTORY section applies to general  
binary rate k/n convolutional codes. In Section II we 

specialize to rate one-half to describe a  class of codes that 
allows an  interesting mod ification of the stack decoding 
algorithm [l]-[2]. Section III presents our simulation re- 
sults. 

Let G  be  a  conventional convolutional encoder  [3] 
whose rows are the first k rows of a  polynomial n  X n 
matrix B with polynomial inverse B -‘. The  generator 
matrix G  has an  instantaneous polynomial inverse G  -’ 
and  a  syndrome former HT consisting of the first k 
columns and  the last n  - k columns of B -*, respectively. 
The  last n  - k rows of B are the transpose of the inverse of 
H. Summarizing, 

B-‘=[G-‘,HT]. 

Let nr, n, and  y be  respectively the message vector, the 
channel  noise vector, and  the received data vector. The  
components of these vectors are a  formal power series in 
the delay operator D. Given y and  given an  estimate fi of 
the channel  noise one  can form an  estimate P of the 
message vector as follows: 

O=(~+ii)G-~=(tt~G+~~)G-~+riG-~=ttt+e+E. 

As in [4], given the syndrome vector 
z=yHT=(mG+n)HT=nH=, 
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we directly form an  estimate t? of the message error vector 
e  = nG -‘. Note that 

fi=fiB-‘B=(riG-‘,riHT)B=(8,z) =8G+zH-IT. 

(1) 
Therefore with maximum likelihood (ML) decoding the 
estimator should find that codeword e^G closest to ZH - “, 
since the resulting message error estimate 8  corresponds to 
a  noise estimate A of m inimum Hamming weight. 

II. SPECIAL R = l/2 CODES-COMPUTATIONAL 
SAVINGS 

In [4] we introduced a  class I,,,, of binary rate (n- 
1)/n convolutional codes that al lowed a  Viterbi decoder  
[5] of reduced complexity. Similarly one  can [6] define a  
class JL.,~ of rate l/n convolutional codes that allows a  
stack decoder  [1], [2] of reduced complexity. In this paper  
we study the most important of these codes, the class L2,“,, 
of binary rate one-half codes G  = [ g,,g,] where g, #g, and  

g1,v= 3 1 (24 
g1j = g,,, forO<j<Z-1, (2b) 

iv4 g,,g,) = 1. (24 
Note that because of condition (2b) these codes have a  
bad  distance profile [7] and  hence it is somewhat surpris- 
ing that they perform so well in conjunction with sequen-  
tial decoding. If condition (2~) is satisfied it follows from 
the invariant factor theorem [3] that the code G  = [ g,,g,] is 
noncatastrophic. 

We  now explain how the symmetries of L2,v,l can be  
used to advantage in stack decoding. Let 

ZiD , i ii. . . ..- *,o,+* ,..., 
i-t-I+1 

represent the last I elements, up  to and  including the 
present, of a  message error sequence estimate e’( - co; t). 
G iven the syndrome sequence z(- co; t) let ‘i( - co; t) be  
the corresponding estimate of the noise vector sequence 
(see (1)). Now consider a  vector sequence 

rl(t--2+l;t)= i i&D’, tc..., -1,0,+1,***, 
i=t-I+1 

where 
i i iE{(090)Y(171)}9 for all i. 
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There are 2’ such vector sequences S(t - I + 1; t). Further 
note that because of (2b) one can always find an 
Z(t-Z+l;t) such that n”(t-I+l;t)=Z(f-I+l;t)G, i.e., 
e’(t-I+l;t)=n’(t-I+l;t)G-i. Now, given our original 
message error sequence estimate e^( - co; t) one can find 
2’-1 new estimates 6?‘(-co;t)=e(-co;t)+&t--I+l;t), 
one for each nonzero value of ti(t - I+ 1; t). If we define 
the norm f[e^( - co ; t)] to equal the Fano norm [8] of the 
corresponding noise sequence ri( - cc ; t) = B( - co ; t) G  + 
z( - cc ; t)H - lr (this norm is finite since we assume that all 
sequences start at some finite time in the past), then the 
normf[V(--oo;t)] of a(-cc;t)=e^(-co;t)+E(t-I+l;t) 
is given by 

f[e^‘(-co;~)]=f[e(-oo;t)]+ i_$l+,A[fii;i], (3) 

where 

1-P -2log-, 

A[w]= +210glr~ 

1 

if x=(1, l), andy=(O,O) 

- 
P ’ 

if x=(1,1), andy=(l,l) 

0, otherwise. 

If g,,,#g*,,, a class of 2’ message error sequence estimates 
Z( - co; t) upon extension gives rise to two new classes of 
estimates e^( - 00 ; t + I), each of size 2’. If g,,, = 1, then one 
new class contains the extensions 6( - cc ; t + 1) of those 
I?(- co; t) for which gtV1+, = (0, + ), and the other new class 
contains the extensions of those estimates that have fit-,+ i 
=(l;). If g,,,= 1, the old class of estimates e^( - cc ; t) 
splits into two parts of 2’-’ estimates each, according to 
whether iZt-r+I=(*,O) or (e, 1). On extension, each of 
these sets of 2’-’ estimates e^( - co; t) gives rise to a com- 
plete image class of 2’ estimates e^( - co; t + 1). With each 
class of 2’ message error sequence estimates we can 
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TABLE I 
STACKCONTWTSAFTXR REORDERING 

Infonmtion : 1 0 1 0 0 Encoder : G  = (l+D+L? , 1+D2) 

Transmitted : 11 10 00 10 11 
-1 T 

zm ) : 10 11 00 10 01 

Received : 01 10 01 10 11 
-1 

nG : 0 1 1 1 0 _ _ - 

t ime : 

Classical stack algorithm Modified stack algorithm 

Stack content after reordening time : Stack content after reordening 

1 o,-9 ; l,-9 ; 1 l(1) ,-9 

2 1,-g ; oo,-18 ; Ol,-18 2 01(O) ,-7 i 10(l) ,-18 

3 lO,-7 ; oo,-18 ; Ol.-18 ; ll,-29 3 011(l) ,-16 i 10(l) ,-1s i 000(O) ,-27 ; 

4 lOO,-16 ; lOl,-16 ; 00,-18 ; 01.718 4 0111(O) ,-14 10(l) ; ,-18 i 0100(l) ,-25 : 

ll,-29 000(O) ,-27 

5 lOl,-16 ; oo,-18 .; Ol.-18 ; lOOO,-25 5 01110(0) ,-12 10(l) ; ,-18 ; 0100(l) ,-25 ; 

lOOl,-25 ; ll,-29 000(O) ,-27 ; 01101(1) ,-45 ; 

6 lOlO,-14 ; oo,-18 ; Ol.-18 i lOOO,-25 

1001,-25 i ll,-29 i loll.-36 

7 lOlOO,-12 ; oo,-18 i Ol.-18 ; lOOO,-25 

lOOl,-25 ; 11,-29 ; 10101,-34; loll,-36 

associate a representative member. A whole parent class 
of 2’ estimates can now be extended into two image 
classes by finding the representative and its associated 
metric for each image class given the representative and 
its metric for the parent class. We arbitrarily select as the 
class representative that estimate Z( - co; t) for which the 
corresponding ri = tG + ZH -lr satisfies ii E { (0, O),(O, l)}, 
t - I+ 1 < i < t. Note that the class representative e^( - cc; t) 
has the maximum norm within the class. Let ‘i( - co; t) = 
e^( - oo; t) G  + z( - cc ; t)H - ” be the noise vector sequence 
estimate that corresponds to the representative e^( - co; t) 
of the parent class. Then for one of the image classes the 
representative e^‘( - co; t + 1) has an associated noise 
sequence ri’( - cc ; t + 1) that coincides over (- co, t] with 
&( - cc; t). The other images class, however, has a repre- 
sentative e^“( - co; t + 1) for which the associated noise 
sequence ri”(- co; t + 1) coincides over (-co, t] with 
ri(- co;t)+ii,where ii=(l, l)D’-‘+I. By (3), addition of ri 
decreases the norm (because the representative had the 
highest norm within the parent class) by - 21og( 1 -p)/p 
if and only if the representative e^( - co; t) of the parent 
class had an associated noise vector sequence estimate 
fi( - co; t) such that At-*+, = (0,O). Note that for a repre- 
sentative S( - co; t), the associated noise vector sequence 
estimate ri(-“o;t) has ~i~{(O,O),(O,l)},t-Z+l<i<t. 
Hence in the stack decoder we need an indicator register 
I[0 : I - 11, with content C(l[i : i]) equal to zero or one 
according to whether n,- i equals (0,O) or (0,l). 

Table I traces the steps of the competing stack decoders 
when decoding a specific data vector sequence y. The left 
part of Table I that applies to the classical stack decoder 
is taken from [8]. The right part applies to our modified 
stack decoder. C(I[I- 1: I- 11) is given in parentheses 
following the stack contents. As described above, this 
number is used in computing the normfl&“( - co; I+ l)] of 
one of the two new representatives. From Table I we see 
that for this specific decoding job the modified stack 
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Fig. 1. Distribution of number of computations per frameg =2-‘. 
Fig. 2. Distribution of number of computations per frame at R,,, 

decoder requires fewer computations and less storage. In 
the next section we describe some simulations of the 
classical and modified stack decoding algorithms. 

TABLE II 
ERASURES AND ERROM FOR DIFFERENT STACK&ES 

pB,=O.O3125 

III. SIMULATIONS 

A simulation run corresponds to the transmission of 
10000 frames of L =256 binary message digits each, 
where each frame is followed by a tail of Y (the constraint, 
length of the code) consecutive zeros. The simulations 
were carried out for both a constraint length Y = 10 opti- 
mum distance profile (ODP) code [7] using the classical 
stack decoder and for various Lz,,,l codes using the mod- 
ified stack decoder. 

stack number of frames number of frames 
depth in error with N/L > 30 

classical modified classical modified 

25 515 39 0 0 

50 170 13 30 2 

75 49 7 64 3 
100 20 5 57 2 

200 3 5 23 1 

500 4 5 5 I 

1000 3 5 2 0 

Fig. 1 is a plot of the fraction of frames (out of 10000) 
requiring more than N computations to decode versus 
N/L. Note that the minimum number of computations 
per frame equals the frame length L+ v. Hence the 
minimum value of N/L equals 1 + v/L. The dashed 
curve is for the constraint length v = 10 ODP code with 
classical stack decoding. The other curves are for L, 141, 
L 

TABLE III 
ERMUIWS ANDERRORSFORDIPFBRENTSTACKSI~,BS~~~~= 0.045 

stack number of frames number of frames 
depth in error with N/L > 30 

classical modified cla55ical modified 

2,12,3, Ls ,4,7, L, 22 , ,, and L, so ,s codes, respectively. 
Increasing the constraint length for the ODP codes be- 
yond v = 10 does not have an appreciable effect on the 
dashed curve in Fig. 1. The same holds true for the I= 15 
curve and the L2,,,, codes. Comparing the I= 15 curve for 
modified stack decoding with the dashed curve for classi- 
cal stack decoding we observe a significant reduction in 
the number of computations per frame. Thus the reduc- 
tion in the number of computations observed in Table I of 
the previous section holds true in our simulations. 

25 2120 375 0 0 

50 1019 131 101 30 
75 433 43 315 68 

100 204 29 367 59 

200 55 31 220 32 
500 31 39 100 II 

1000 32 42 46 a 

Fig. 2 is similar to Fig. 1, except that for p = 0.045 the 
stack decoder is operating at the computational cutoff 
rate R,, [8]. 

In Table I we also observed that the modified stack 
decoder needs less storage. Tables II and III compare the 
constraint length v = 10 ODP code with classical stack 
decoding to an L,,,,, ,5 code with modified stack decoding. 
The distance profiles for the ODP L,,,,,,, codes are 2 3 3 
44556667 and 2’534556778899..., 
respectively. Note that for a stack depth of 500 the classi- 
cal decoder has four errors and five erasures (in 10000 

frames). The modified stack decoder only requires a stack 
depth of 100 for the comparable performance of five 
errors and two erasures. Hence for p =2-5 the modified 
stack decoder requires one-fifth the storage of the classical 
stack decoder for comparable performance. 

IV. CONCLUSION 

This paper describes a new class L, y I of binary rate 
one-half convolutional codes and a modified stack decod- 
ing algorithm. For a representative value p = 2-’ of the 
transition probability of the binary symmetric channel the 

\ new stack decoder requires less than one-fifth the storage 
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of the classical stack decoder for comparable perfor- research and Mrs. G. H. Driever-van Hulsen for the 
mance. The distribution of the number of computations accurate typing of the manuscript. 
per decoded frame for L2,Y,r codes with modified stack 
decoding compares favorably with a similar distribution 
for ODP codes decoded in the classical manner. The L, I, 
codes can also be used to advantage in soft-decision 
decoding. 
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For the same class L+, a reduced state decoder has 
been implemented. At each instant a small stack (of about 
32 entries) contains the most probable paths, all of the 
same length. Preliminary results indicate that this simple 
decoder yields a number of errors roughly equal to the 
combined number of errors and erasures of the modified 
stack decoder. 

We are presently investigating how a Fano decoder can 
make use of the symmetries of the class Lz,v,, of binary 
rate one-half convolutional codes, 
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