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A definition:

e Large amount of collected and stored data to be used for further analysis

- too large for traditional data processing applications.

Benefits: We can do things that we could not do before!

- Healthcare: 20% decrease in patient mortality by analyzing streaming patient data.
- Telco: 92% decrease in processing time by analyzing networking and call data
- Utilities: 99% improved accuracy in placing power generation resources by analyzing 2.8

petabytes of untapped data

Note: Remember that you must invest in security to protect your information.
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Big data:

e Collect -, store - and draw conclusions from the data »

e Some problems:

- =
USING IT
IS THE HARDEST PART.

e extract knowledge from the data: Knowledge is based on information or relevant data
e what to collect: variety, importance,
* how to store: volume, structure

e Privacy, security

A.J. Han Vinck, Yerevan, September 2016
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What kind of problems to solve?

I'VE oNLY MANAGED To
COLLECT A 100MB oF DATA
oN OUR CUSTOMERS.

: THEY’RE A BORING BUNCH
There are: oF PEOPLE!

- Technical processing problems
how to collect and store

t 3

- Semantic-content problems
what to collect and how to use

© D.Fletcher for CloudTweaks.com
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claude shannon

1916-20186

Two contributions of great importance

Communication Theory of Secrecy Systems*

By C. E. SHANNON
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1956, Shannon and the ,BANDWAGON?*

e Shannon was critical about , his information theory“

tions. I personally believe that many of the concepts
of information theory will prove useful in these other
fields—and, indeed, some results are already quite

promising—but the estak
is not a trivial matter of
domain, but rather the
hypothesis and experim

1003 of fields
(2012)

Information Theory

Secondly, we must keep our own house in nrst class
order. The subjeet of information theory has cer-
tainly been sold, if not oversold. We should now turn
our attention to the business of research and devel-

opment at the highest se
tain. Research rather tha
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tain. Research rather than exposition is the keynote,
and our eritical thresholds should be raised. Authors
should submit only their best efforts, and these only
after careful criticism by themselves and their col-
leagues. A few first rate research papers are preferable
to a large number that are poorly conceived or half-
finished. The latter are no credit to their writers and
a waste of time to their readers. Only by maintaining




nice picture (often used) to illustrate the idea of content

Context =>
Understanding=>
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semantics are used to make decisions or draw conclusion
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Shannon and Semantics

The fundamental problem of communication is that of reproducing at one point either exactly or ap--
proximately a message selected at another point. Frequently the messages have meaning: that 1s they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irelevant to the engineering problem. The significant aspect is that the actual
message 1s one selected from a set of possible messages. The system must be designed to operate for each
possible selection. not just the one which will actually be chosen since this 1s unknown at the time of design.

Shannon 1916-2016
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Extension from the Shannon Fig.1 to the system using semantics
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Figure 3.2. The above transactional diagram can be understood
as an extension of Shannon’s original diagram




How to store/ large amounts of data?

-

data

data

=

data

- » . . . . Distributed: need for communication

‘ High density: need for error control

ARE Tou
SURE THIS 15
Howd wE GET

DATA INTD
THE Cloun?
* Cloud: out of control: need for trust 11"
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How to access large amounts of data?

Problems: - where? —who? — how?

concentrated

Distributed

A.). Han Vinck, Yerevan, September 2016
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Shannon’s reliable information theory

The fundamental problem of communication is that of reproducing at one point either exactly or ap--
proximately a message selected at another point. Frequently the messages have meaning: that 1s they refer-
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are urelevant to the engineering problem. The significant aspect 1s that the actual
message 1s one selected from a set of possible messages. The system must be designed to operate for each
possible selection. not just the one which will actually be chosen since this 1s unknown at the time of design.

IHFORMATION
MoueCi TRANSMITTIR BICOIVER  DESTIMATION

Communication: transfer of information

knowledge is based on information
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Reliable transmission/storage: Shannon NO SEMANTICS !

* For a certain transmission quality (errors):

Data rate 1
e codes exist (constructive) m
e that give P(error) => 0 &l
e at a certain maximum (calculable) efficiency (capacity)

Quality of the channel
)



Large memories are not error freel

e SSD drives use BCH codes that can correct 1 error or detect 2 errors.
- Can we improve the lifetime of SSD when using stronger codes?
- How big is the improvement?

My MsC computer (1974)
44 kB main memory!

3,8 TByte
SAMSUNG 1 Mbyte hard disk

A.). Han Vinck, Yerevan, September 2016 14



Assuming that memory cells get defective: Memory of N words

On the Influence of Coding on the Mean Time to
Failure for Degrading Memories with Defects

HAN VINCK anp KAREL POST, MEMBER, IEEE

2

Admin—2
k min

GAIN in MTTF = = N 4min=1

d

operational state to the permanent defect state. We give bounds on
the MTTF and show that, for memories with N words of % infor-
mation bits, coding gives an improvement in MTTF proportional to
(k/n)Nmn 2/0dwn 1 where d,, and (k/n) are the minimum dis-
tance and the efficiency of the code used, respectively. Thus the time gain
for a simple minimum-distance-3 code is proportional to YN . We also

For a simple d,., = 3 code the gain is proportional to VN

If, on the other hand, chip surface is costly or the system is
unrepairable (satellite systems), then one is interested in the
average amount of chip surface needed to realize a time 7. The
chip surface gain is defined as

kT
MTTF (uncoded) &
Y= nT = ; n-
MTTF (coded)

Chip surface needed to realize time T
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Shannon‘s information theory  NosemanTicst

The fundamental problem of communication is that of reproducing at one point either exactly or ap--
proximately a message selected at another powmt. Frequently the messages have meaning: that 1s they refer-
to or are correlated according to some system with certamn physical or conceptual enftities. These semantic
aspects of communication are urelevant to the engineering problem. The significant aspect is that the actual
message 1s one selected from a set of possible messages. The system must ast be designed to operate for each
possible selection. not just the one which will actua]l} be chosen since this is unknown at the time of design.

- Assign - log,p(x) bits to a message from a given set
=> likely, short => unlikely, large

IHFORMATION
JOURCE  TRA

- Shannon showed how and quantified:

the minimum obtainable average assighed length

H(X) =->p(x) log p(x) (SHANNON ENTROPY )
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Exact: representation costly (depends on source variability!)
Need a good algorithm (non exponential in the blocklength n)

A.J. Han Vinck, Yerevan, September 2016 17



NOTE: In big data
we are interested in the NOISE!

'CARTOONSTOCK

cid

ISeanchllDfndes644!

" Take this report and reduce it to an acronym. "

No exact reconstruction: good memory reduction, but in general we lose the details
- how many bits do we need for a particular distortion?
- need to define the distortion properly!
A.J. Han Vinck, Yerevan, September 2016 18




New data of length n

compress Store match #

,Close” match from memory difference

and difference

If we use N sequences from the memory, we need:
k = log,N bits for the memory data + H(difference) for the new data

Memory can be updated. (frequency of using a word)

Optimization: # of words in memory versus difference

19




e Use prediction

New data of length n

predictor

compress
difference

H(difference) for the new data

As for video stream coding using
Hufmann codes

Example: video coding using DCT and Hufmann coding

A.J. Han Vinck, Yerevan, September 2016
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N A previous paper! the entropy and redundancy of a language have
been defined. The entropy 1s a statistical parameter which measures,

in a certain sense, how much mformation 1s produced on the average for
each letter of a text 1n the language. If the language 1s translated into binary
digits (0 or 1) in the most efficient way, the entropy # 1s the average number
of binary digits required per letter of the original language. The redundancy,

TEXT//

— ] e—

REDUCED TEXY

' \L- PREDICTOR

-

—

COMPARISON

CRIGINAL
TEXT

——

S

PREDICTOR

—

Fig. 2—Communication system using reduced text.
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* Metering: only the difference with the last value is of interest
* |f typical consumption, within expectations, encode difference
* |f a-typical, encode the real value

Typical range for

I/expected values

—»
»

Jan Febr March
Total consumption in time
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An important issue is outlier and anomaly detection

e Qutlier = legitimate data point that’s far away from the mean or
median in a distribution

Pegian

Ex: used in information theory

 Anomaly = illegitimate data point that’s generated by a different
process than whatever generated the rest of the data

Ex: Used in authentication of data N %

A.J. Han Vinck, Yerevan, September 2016 23




A
L

TYPICAL SOMEWHAT TYPICAL ATYPICAL

What is normal?

A.J. Han Vinck, Yerevan, September 2016 24




e Information theory focusses on typicality:
- set of most probably outputs of a channel/source
- uses measures like entropy, divergence, etc...

Definition 1. Entropy-typical sequence. A sequence ™ is said to be typical with respect to an e > 0
and Px(-) if

1
— ElogzP},}(:z:“) —H(X)| <e.

Note that this is equivalent to,
2—?1[H{X}+E] < P;(In) < 2—n.[H(X}—E]_

This notion of typicality is only concerned with the probability of the sequence and not the
actual sequence itself. Next we define a stronger notion of typicality, called letter-typicality.

A.J. Han Vinck, Yerevan, September 2016 _
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Theorem 1. Suppose that 0 < € < px, 2" € T'(Px) and X" is emitted by a DMS, Px(-). We
have,

i) 9-n(1+€)H(X) < P}?(In) < 9-n(l-€)H(X)
ii) (1 - GE(H))Qn(l—E]H{X} < |T?(PX]| < 2!’1(1-|—E)H(.X].
iii) 1 - 6,(n) < PIX"  T"(Py)] < 1.

For large n and small €, the intuition for these results is as follows. The first results states that
the probability of typical sequences is concentrated tightly around 2 (X) | The second result says
that there are approximately InH(X) sequences in the typical set T""(Py) and the third result states
that with high probability any sequence emitted by the DMS is typical.

A.J. Han Vinck, Yerevan, September 2016
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example
E
PROBLEM:
We need the entropy!
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e Given a finite set of observations can we estimate the entropy of a source?

in the Shannon entropy [1] with the choice p; = 3+, the naive estimate
M X M
- Z: p; Inp;, == Z i In p;. (2)
=1 i=1
leads to a svstematic underestimation of the entropy
H.

Many papers study this topic, especially in Neuro science.

Ref:
Estimanion.al EolrepyapaMiulaal Tatomaation Estimation of the entropy based on its polynomial representation,
e Phys. Rev. E 85, 051139 (2012) [9 pages], Martin Vinck, Francesco
1am raninski . . . . . .
liam@ens.nyu.edu P. Battaglia, Vladimir B. Balakirsky, A. J. Han Vinck, and Cyriel M.
Center for Neural Science, New York University, New York, NY 10003, U.S.A.
A,( Pennart
A.J. Han Minck, Yerevan, September 2016 28




Information retrieval

f-f!;targ
T fvemation

e

I CAN'T FINU THE BOOKS ON
INFORMATION RETRIEVAL."

A.J. Han Vinck, Yerevan, September 2016
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e Do you have a particular property? ( = identification)

?
example: is yellow a property ? =
=> search in the data base

e |s this a valid property? ( = authentication)

example: is yellow a valid property? >
=> search in the property list

A.J. Han Vinck, Yerevan, September 2016 30



test for validity of a property can be done using the Bloom filter

e T properties, every property to k,1°s in random positions in a n array

Property 1 Property 2
0 0 1 1 0 1 0 0 1 0
n
Property 1 Property ?

e Check property: check the map (k positions) of a property in the n array

Performance: P(false accepted) = {(1-(1-1/n)k"}k=> 2% fork=n/TIn2



Bloom (1970), quote.

The same idea appeared as “superimposed codes,” at Bell Labs,
which | left in 1969.

Nonrandom Binary Superimposed Codes
W. H. KAUTZ, memBER, 1EEE, AND R. C. SINGLETON, SENIOR MEMBER, IEEE

every sum of up to T different code words logically includes no code word
other than those used to form the sum (Problem 2).

A.J. Han Vinck, Yerevan, September 2016 32



Superimposed codes: check presence of a property

e Start with N x n array, every property corresponds to a row. Every row pn,1‘s

Property: the OR of any subset of size T does not cover any other row

301 1 1 Signature or descriptor list: the OR of < T rows

Check for a particular property: property covered by the signature?

Example:
1001011
1010010 notcovered, not included in the OR

RN 1001010 covered, included in the OR

Code existence: Probability( a random vector is covered by T others) => 0 for p = In2/T (same as before) and
since we have a specific code, n > TlogN




example

> : a i . =2 r .
Wenxin Liang!?, Takeshi Miki, and Haruo Yokota®*

Table 1. Examples of file signatures

Fi F
Keyword |Signature Keyword |Signature
Lear 1000001 Hamlet 0100001
King 0100010 King 0100010
Duke 0101000 Mother 0100100
Brother 1100000 Brother 1100000
File signature] 1101011 || File signature| 1100111

Table 2. Examples of drops

Query keywords

Query signature Fi

F>

King, brother 1100010 actual droplactual drop
King, mother 0100110 no match |actual drop
Lear, King 1100011 actual drop| false drop

Superimposed Code-Based Indexing Method for Extracting MCTs

A.J. Han Vinck, Yerevan, September 2016
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Code Example

 BOUND: Tlog,N < n < 3T?log, N

property binary representation

1 001 001 010
2 001 010 100
3 001 100 001
4 010 001 100
5 010 010 001
6 010 100 010
7 100 001 001
8 100 010 010
9 100 100 100
10 000 000 111
11 000 111 000
12 111 000 000

Any OR of two property vectors
does not overlap
with another property



How to retrieve information from a big set: Superimposed codes

A SIMPLE MULTI-SORTER POR SEPARATING EDGE-PUNCHED CARDS*

By AL
Chamistry Duprnman, Rassbhorss Nailons] Labasssary, Upass, Ling Ialssd, Mew Task

Iz the usmal tecknique of manual sorting
of panched cards, a needle is used to separate
about 200 cards at & time.’ With some skill,
4L

y 2000, the time re-
quired to recover cards with the desired infor-
matics becomes sxceasive, By using sevaral
meedies to search for several properties of the
desired isformation simultancously, this time
will be shortened. Commercially available
multi-aortars ave axcellant for large instal-
latians, bul seem to be excessive in cost for an
ence file.

panched eard, are barsed in & brass bar (8 X 0.7
X 0.1 cu. inch was used]. A b
welded to the bar. Needles of tool steel (0.1
fittad

ge of the punched cards were taped
or greoved oo the bar, along the heles. The
needles sasily cas be serewed into the dosired
heles. In the author's experience, the use of
three sorting rods limits the number of retained
cards sufficiestly. About 200 cards, or a handfal,
can be sorted st & tims, The handle (s ahsks

For eatendnd rosting work, it may
be clamped to & vibrating metor (a Vibromischer,
A, G, far Che Apparatebau, Zurlch, operated
at lownes amplitude to avoid tearing the cards,

holes, fitting the positions of the holes of the wan found satisfactary).
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We need associative memory!

A.J. Han Vinck, Yerevan, September 2016 36



Nonrandom Binary Superimposed Codes

W. H, KAUTZ, memsEr, 18EE, AND R. C. SINGLETON, SENIOR MEMBER, IEER

a given small positive integer m, every sum of up to m
different code words is distinet from every other sum
of m or fewer code words (Problem 1), or logically in-

More general, take distinct for 1, 2, ..., m

A.J. Han Vinck, Yerevan, September 2016
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references
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e W.H. Kautz

e CALVIN N. MOOERS, (1956) "ZATOCODING AND DEVELOPMENTS IN INFORMATION RETRIEVAL", Aslib
Proceedings, Vol. 8 Iss: 1, pp.3 - 22

* My own:ON SUPERIMPOSED CODES A.J. Han Vinck and Samuel Martirossian
in Numbers, Information and Complexity
editors: Ingo Althofer, Ning Cai, Gunter Dueck - 2013 - Technology & Engineering
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TENTHIN

PLEASE

PRIVATE |

KEEP OUT!|

CHALLENGE #3
Privacy Concerns
A strong push toward big
data that's unchecked by

privacy concerns can lead

to unacceptable risk and
ethical conflicts.

Base!lne

“Your recent A
score and
23.5% wealea

Problems:

- Data privacy
- Data protection/security

“MY BIOM
JUST ToLp

Overnight
Period

o'l

. Refrigerator

qlﬂlli.llzﬂﬂl“ﬂ!ﬂU?WW1011121311151'17“15“]1222300

Without detailed knowled ge of appliance signatures, intuitive observation with power consumption variations indicates human activity.

A.J. Han Vinck, Yerevan, Seplecrhie rEiGik Gemoirs of a Smart Meter,” Molina-Markham, et.al, 2nd ACM Workshop On Embedded Sensing Sy3éhs For Energy-
Efficieney In Buildings (BuildSys 2010), Zurich, Switzerbmd, November 2, 2010,

Time (Hours) vs Power Usage (KW)



~
Part 1 Part 2 --- Part n  (for example every part 56 bits)

dependency exists between parts of the message

encypher
key
n cryptograms, dependency exists between cryptograms
decypher Attacker:
key h cryptograms to analyze for
particular message of n parts

Part 1 Part 2 Part n



Part 1 Part 2 -«-- Part n

source encode

encypher

1 cryptogram

............................ decypher‘

Source decode

Part 1 Part 2 --- Part n

(for example every part 56 bits)

Attacker:

- 1 cryptogram to analyze for
particular message of n parts

- assume data compression factor n-
to-1

Hence, less material for the same
message!
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4. variations?

N

1. Conversion to binary

U

Enrollmens

Claimed identity

-
@ ) | jroe

5

Feature
‘ Matching
(1 matching)

template

\

Biometric ;.00 cmission template l Database
Sensor
Verification True/False
Enrollment

3. Privacy

=) | o

Feature /
- Matching -
(N matchings] N

Biometric  transmission

Sensor

Identification

Database

template 1

f 2. Complex searching f(N)

A.J. Han Vinck, Yerevan, September 2016
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database

Enrollment:

verification:

PROBLEM: BIO differs and thus also the hash!

Advantage no memorization

A.J. Han Vinck, Yerevan, September 2016 43 ? \




secret

[7]

PERSPECTIVE OF SHANNON'S
SECRECY SYSTEM

4 S

Encoder Decoder

Figure 1: Shannon’s secrecy system.

"transformed
cryptography from an art
to a science."

For Perfect secrecy we have a necessary
condition:

H(SIX) = H(S)
=> H(S) < H(B)

i.e. # of messages < # of keys

A.J. Han Vinck, Yerevan, September 2016 44




For Perfect secrecy H(S|X) = H(S)
=> H(S) < H(B) — H(E)

i.e. we pay a price for the noise!

Figure 2: An extension of Shannon’s secrecy system.

A.J. Han Vinck, Yerevan, September 2016
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Shannons noisy key model used for biometrics

Figure 2: An extension of Shannon's secrecy system.

Data Base
———]

,Random”
linear codeword with k ,,info” symbols

A.J. Han Vinck, Yerevan, September 2016

RS = € 1 e
B Limit on
- - error correcting capability

Ari Juels

Decoder=>E=>BPEDPE=B

- and privacy

Correct guess => 27k
Larger k less errors corrected, more privacy
Smaller k more errors corrected, less privacy

46




Biometrics challenge: get biometric features into binary

A.J. Han Vinck
. Han Vinck, Yerevan, September 2016
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identification
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Examples where information theory helps to solve problems in big data

- data compression/reduction with/without distortion

- data quality using error correction codes ,s o

- data protection: cryptographic appproach

- outlier/anomaly/classification

- information retrieval

{ £ [t 7T LIRR I o AL e :
Lol 5.} AT B g e L e et r
'@Eanta‘a"tiﬁﬁpm' A R Rt ' wia kSt o v

In theory, there is no difference between theory and

practice. But in practice, there is.
A.J. Han Vinck, Ye }E)gf Berra




The end

My website: https://www.uni-due.de/dc/

My recent (2013) book with some of my research results (free Download)

https://www.uni-due.de/imperia/md/images/dc/book_coding_concepts_and_reed_solomon_codes.pdf

A.). Han Vinck, Yerevan, September 2016



v PRINCETON
UNIVERSITY
Motivation: Data Security

* The smart grid cyber layer will generate considerable electronic data:
- Power flow sensors, phasor measurement units, smart meters, etc.

* The utility of this data depend on its accessibility.

*  But, itcanalso leak information that should be kept secure, or private.

* How can we characterize this fundamental tradeoff?

A.J. Han Vinck, Yerevan, September 2016
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PRINCETON
UNIVERSITY
Ex. 1: Smart Meter Privacy

* Smart meter data is useful for price-aware usage, load balancing
e But, itleaks information aboutin-home activity

Usage (wv)
-

o NN
[ S S L R T R T N N N S
RAE AR 4R AR 4F 4 4R 4R 4R 4E A A 4

A.J. Han Vinck, Yerevan, September 2016
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One Figure Contained within Molina-Markham, ef.al. Published Sfudy Referenced by ‘Lessons from Dutch Case' Report

. = e Evening .ﬂ;.nt.lvltiés.:
] Di . Showers,
Privacy? Geting e .

Ready to ' . on Computer
Leave: : T
Showers,
Breakfast,
alc

Overnight
Period

Refrigerator
S

Dutch anti-smart meter logo; %o o1 02 03 04 05 06 o7 o8 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

roughly equivalent to “Smart Time {Hours) vs Power Usage (kW)
Metering Equals Spying”

oo

‘Without detailed knowled ge of appliance signatures, intuitive obhsarvation with power comsum ption variations indicates human activity.

Credit- “Private Memowrs of a Smart Meter.” Molma-Markham . et al. Znd ACM Warkshoo On Embedded Sensing Svstems For Energy -
Raising Public Awareness to Smart Grid, Smart Meter, and Radiofrequency (RF) Issues: Privacy, Health,
Cybersecurity, Safety, Economics, Societal Impacts, Environmental Impacts, Consumer Choice and Rights

o

NON-IONIZING
4 RADIATION RISKS o2




references

e http://nlp.stanford.edu/IR-book/newslides.html

A.J. Han Vinck, Yerevan, September 2016
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Information theory: channel coding theorem (1)

e for a binary code with words of length n, and rate (efficiency) R = k/n
the number of code words = 2k

To achieve the Shannon Channel Capacity and Pe => 0, n => infinity
an thus also k => infinity

Hence:
coding problem (# of code words = 2¥how to encode!)
and also decoding problem!

A.). Han Vinck, Yerevan, September 2016 54



Topics we can work on based on past performance

e Information theoretical principles for anomaly detection
e Biometrics and big data

* Memory systems and big data

 Privacy in smart grid

* Information retrieval and superimposed codes



Use error correcting code for noiseless source coding

2k code words of length n; Correct 2"H(P) noise vectors
where
2k x 2nHlP) = 2n or  k/n=1-H(p) (atcapacity)

O

2

27k

A.J. Han Vinck, Yerevan, September 2016
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An obvious algorithm (like Lempel and Ziv)

Typical sequence of length n next sequence of length n

- —

Stored sequence of length ~ 2™

Updated sequence

Test whether a string of length n is in the STORED sequence somewhere

If yes, then typical If not, then a-typical

data

Since the probability of a typical sequence isx 2™ we expect all typlcal seqguences in the stored sequence

_,
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Uniquely decipherable codes

decipherable code:

the OR of < T bmary vectors of length M 1s unique

ANSWERS: WHO?

Condition on M

@M1 sy (NJ

i=1 \ 1

|

M >Tlog:N

A.J. Han Vinck, Yerevan, September 2016
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The book co-authored with Warren Weaver, The Mathematical Theory of Communication, reprints
Shannon's 1948 article and Weaver's popularization of it, which is accessible to the non-specialist.2! In
short, Weaver reprinted Shannon's two-part paper, wrote a 28 page introduction for a 144 pages bool # d
changed the title from "A mathematical theory..." to "The mathematical theory..." _




I'llustration-of-the authentication problem using-a-memorized-password

database

Enrollment: p’ssword - Fashpud) || ) compare

verification: password

A.J. Han Vinck, Yerevan, September 2016 60 %



We use information and communication theory

The Most
Important
Manﬁﬁﬁ

. lou've
Never

Heard Of

THE

MATHEMATICAL

THEORY OF

COMMUNICATION

Communication Theory of Secrecy Systems*

By C. E. SHANNON

CLAUDE E. SHANNON

WARREN WEAVER

A.J. Han Vinck, Yerevan, September 2016




PERSPECTIVE OF SHANNON’S For Perfect secrecy we have a necessary
SECRECY SYSTEM condition:

B | | H(S1X) = H(S)

secret S [ .. X — S

=> H(S) < H(B)
oo —— i.e. # of messages < # of keys

Figure 1: Shannon’s secrecy system.

ﬂ Wiretap channel model

sender -
e “ ﬁ S(‘DB@B—S. S > S receiver
— > recelver sender
D> |2 I

sS®B ‘ »  wiretapper

» eavesdropper

*




B -7 B For Perfect secrecy H(S|X) = H(S)

S X § H(S) < H(B) — H(E)

Encoder Decoder

i.e. we pay a price for the noise!

Figure 2: An extension of Shannon's secrecy system.

S I
O X

s s@®E s s®E
: B
s®B sS®B

Aaron A.J. Han Vinck, Yerevan, September 2016
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Solution given by the Juels Wattenberg scheme: USING BINARY CODES

PERSPECTIVE OF SHANNON'S

SECRECY SYSTEM

Kl
Encoder [ X Decoder [l !

Figure 1: Shannon’s secrecy systen.

ks } ------------- - data base

fingerprint b fingerprint b

. c(r) c(r)® b | store | (M) @b % r
S e D . |c®b @ :

Generate oneout” [T }&
of 2k codewords c(r)

Han Vinc

Condition: given c¢(r) ® b it is hard to estimate b or c(r)

Guess: one out of 2k codewords

A.J. Han Vinck, Yerevan, September 2016



safe storage: how to deal with noisy fingerprints ?

B gy B
S Encoder X Decoder s
Eavesdropp
-

Figure 2: An extension of Shannon’s secrecy system.

fingerprint b fingerprint b*=b®e
pommmommmmmoooe } ————————————— - data base l o
r i C(r‘) @ C(I") ® bi . store C(r) ®b > @ @_a;_,.__.i——» r
| . . |c(r)®b | 5
- S & DECODE one out
enerate one out of 2% codewords c(r) => r

of 2k codewords c(r)

Condition: given c¢(r) ® b it is hard to estimate b or c(r)

Guess: one out of 2k codewords

A.J. Han Vinck, Yerevan, September 2016
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reconstruction of original fingerprint

e ——— nr

—_— —_—
[
—

u An exiension of Shalmon’s secrecy sysiei.

fingerprint b

o } ------------- : data base

fingerprint b*=b ®e

|

store |C(r)®b

r _;_*.c(r') o ek

_________________________________

Generate (random) one
out of 2k codewords c(r)

Han Vinck

DECODE c(r)

___________

| c(r)®e | )
’ c(r)®b ® | . |

A
v

v

b can be reconstructed and used as correct password |

A.J. Han Vinck, Yerevan, September 2016
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authentication, how to check the result?

fingerprint b*=b ®e

DECODE c(r)

@b g 9% e ey

cweb | | > @ b’ JhGSh(r",b‘)
database | | o ow |0 it
’ hash(r,b) is b" a noisy version of b ?

correct when r‘=r !




Entropy, mutual information
e H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)

e 1(X;Y) = H(X) = H(X]Y) = H(Y) = H(Y|X) = H(X) + H(Y) = H(XY)

68



How can we reduce the amount of data (1)

e Represent every possible source output of length n by a ,,binary“
vector of length m.

* Noiseless: exact representation costly (depends on source variability!)
* Need a good algorithm (non exponential in the blocklength n)

* Noisy: good memory reduction, but in general we loose the details
* how many bits do we need for a particular distortion
* Need to define the distortion properly!

NOTE: We are interested in the NOISE!

A.). Han Vinck, Yerevan, September 2016 69



How can we reduce the amount of data? (2)

e Assign - log p(x) bits to a message => likely, small => unlikely, large
e Shannon showed how to do this

then, the minimum obtainable average assighed length is

H(X) =- Sp(x) log p(x)  (SHANNON ENTOPY )

e Suppose that we use another assignment — log q(x)

e The difference (DIVERGENCE) in average length is

D(P|Q) :=- > p(x) log p(x) — ->p(x)logq(x) = O!

A.J. Han Vinck, Yerevan, September 2016
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What do we need?

e Good knowledge of the structure of the data for

e Good prediction
e High compression rate

 Variability for non-stationary data statistics



* We need to develope decision mechanisms!

A.J. Han Vinck, Yerevan, September 2016 72
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Open-Minded
For Perfect secrecy H(S|X) = H(S)

———————— -

Encoder Decoder

H(S) < H(B) — H(E)

Eavesdroppet

: , _ i.e. we pay a price for the noise!
Figure 2: An extension of Shannon’s secrecy system.

A\ Wiretap channel model
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S X & For Perfect secrecy H(S|X) = H(S)
Encoder - Decoder :
H(S) < H(B) — H(E)
”
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. . _ i.e. we pay a price for the noise!
Figure 2: An extensmn of Shannon’s secrecy system.

Error
m o
S TN\ s®E
—'\/ -
s®B
P

Error
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,Random” linear codeword
Data base C(r) ? B + B

Secrecy rate C, = H(B) - H(E) = # secret bits/transmission

A.J. Han Vinck, Yerevan, September 2016




