
 

  
Abstract--Micro Combined Heat and Power (CHP) systems for 

single or small ensembles of (residential) buildings are seen 
advantageous to combine both decentralized power supply and 
rather high overall efficiency. The latter presupposes flexible and 
adaptive plant management which has to mediate between energy 
cost minimization and user comfort aspects. The successful use of 
Computational Intelligence (CI) techniques for this purpose is 
focused and shown with several examples. 

 

Index Terms--Distributed generation, Combined Heat and 
Power (CHP), Energy management, Computational Intelligence 
(CI) 

I.  INTRODUCTION 
ICRO Combined Heat and Power (CHP) systems 
powering up to approximately 10 kWel are considered as 
a future key technology for energy supply of buildings 

and settlements from the viewpoints of both heating systems 
manufacturers and energy suppliers; such CHP plants can be 
based on conventional Diesel, gas or biomass motors, gas or 
steam turbines, as well as Stirling engines or fuel cells [1]. In 
combination with public gas and electricity supply these 
technologies are well suited for cardinal provision of electric 
and thermal energy in single or multi-family residences and 
buildings with mixed occupancy of habitation and business 
establishments. It is evident that reasonable economic operation 
of CHP systems can only be achieved if peak demand is being 
moderated; for electrical peaks the public grid connection 
provides a sound basis, whereas thermal peaks can be smoothed 
out by both thermal storage and an auxiliary boiler. Efficient 
operation of such plants pivotally depends on both their sound 
design for the particular building under regard as well as on 
powerful strategies for energy and load management. Energy 
management in this context means cost-efficient supply of all 
(electrical and thermal) loads by intelligent and anticipatory 
operation of all interacting system components, in particular the 
CHP unit. Load management means the controlled arresting and 
releasing of the operation of certain devices, especially larger 
electro-thermal loads with a significant power demand – for 
instance a washing machine. 

So far, commercial CHP plants do not include sophisticated 
control structures for flexible and automatic adaptation of their 
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operation to the individual customer behavior, given tariffs and 
local infrastructure. The existing conventional energy 
management systems usually control the power of the CHP unit 
with respect to the actual heat consumption, but do not apply 
past or forecasted quantities; user specific consumption 
behavior as well as dynamic weather influences (such as outside 
temperature, wind, insolation) are not adequately considered. 
The potential of installed CHP plants therefore cannot 
completely be exploited. 

 In the frame of a current research project – accompanied by 
manufacturers of CHP plants, network operators and natural gas 
service providers – efficient strategies for a powerful energy and 
load management of a micro CHP based energy supply for 
buildings has been developed and verified on a sound 
simulation of the complete CHP system [2]. Besides regarding 
the operational demands and boundaries of the plant 
components involved, the energy management is designed to 
fulfill comfort demands by flexible adaptation to user habits 
(evaluation of past and consequential prognosis of future 
consumption) as well as local tariffs and infrastructure, and 
therefore provides economic generation of electricity and heat 
under inclusion of environmental compatibility. The load 
management controls the operation release time of certain 
(mainly larger electro-thermal) devices based on evaluation of 
past user behavior – considering both comfort demands and 
economic aspects. The management functionalities were 
elaborated and verified on a detailed operational simulation of 
the complete CHP system under regard; system characterization 
and first results were presented in [2]. 

Both flexibility and user adaptability of this system greatly 
result from the internal employment of various techniques of 
Computational Intelligence (CI) which were only briefly 
mentioned in [2]; therefore, the specific focus of this paper is on 
the customization and successful application of these CI 
techniques to the given purpose. 

II.  SYSTEM UNDER REGARD 
The principal structure of a micro CHP system for domestic 

supply including electricity (el) and thermal (th) flows is shown 
in Fig. 1. The CHP unit supplies the electrical and thermal 
circuits of the building(s). Heavy variations of the thermal load 
are smoothed out by both the thermal storage and the peak 
boiler, whilst the public electric power system acts as an 
(expensive) electricity buffer, limited by the admitted exchange 
power only. 
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Anticipatory and cost optimal ad hoc determination of 

devices commitment and time dependent CHP power set-points 
is a demanding task under regard of the following diversified 
constraints [2]: 

• current system state (e.g. electrical and thermal load, storage 
filling level); 

• operating point dependent component characteristics (e.g. 
electrical vs. thermal output of the CHP unit); 

• operational constraints (e.g., minimal operation times or 
intervals between activation of components); 

• interdependencies in components’ co-operation; 
• varying tariffs for both electrical power exchange with the 

public grid and CHP fuel (e.g., natural gas from public 
supply); 

• forecasted electrical and thermal loads; 
• potential commercial contracts. 
Flexible and cost-optimal system operation under these 

conditions as well as continuous adaptation to the local 
infrastructure, given tariffs and the individual customer 
behavior were achieved by development of the CI based 
modules of energy management, load forecast and load 
management which are focused on in the following. Coupling 
of these management modules with a Matlab/Simulink® based 
simulation of the CHP system in high temporal resolution and 
simulation fidelity [3] (60 sec calculation step rate was applied 
here) allows to test and verify the CHP management modules 
under operational realism before their implementation into a 
real residential supply system. 

III.  FLEXIBLE AND ADAPTIVE SYSTEM MANAGEMENT 
 The three developed powerful management modules 
consisting of 

• energy management providing prudent and cost optimal 
CHP unit set-points, 

• load forecast incorporating anticipated load trajectories into 
current decisions and 

• load management enhancing system efficiency by means of 
controlled arresting and releasing large electro-thermal loads 

are based on predefined system features and exhibit on-line data 
processing. 

A.  Energy Management 
The energy management generates the actual CHP set-points 

based on past, current and forecasted loads, tariff information as 
well as current and past operating states, Fig. 2; in particular the 
constraints as listed in section II. are regarded. 

 
 Input variables: 
• date / time 
• el. / therm. loads 
• CHP operating points  
• tariffs el / fuel 
• outdoor temperature 
• insolation 
• humidity 

CHP 
Set-point 

 
Energy 

Management 

 The relevant features are allocated to an Adaptive Network 
Fuzzy Inference System (ANFIS [4], see section IV. A.) as 
inputs; if required, the selection of these features can be 
supported by correlation methods which are also implemented. 
The adaptation to local tariffs and changing user habits is done 
by off-line application of the well-known procedures of 
optimization and generalization: In a first step archived load 
curves are used to determine the corresponding optimal CHP 
set-points based on metaheuristic optimization techniques (see 
section IV. B.). In a second step the identified set-points as 
well as the corresponding input features (see Fig. 2) are used 
to extend the knowledge base by means of the implemented 
training algorithm (see section IV. A.). Periodic appliance of 
this process results in a continuously improving on-line 
management of the CHP system. Even though the user is free 
to select the objective function (e.g. minimization of 
emissions), overall cost minimization will be most commonly 
used in practical applications, achieved by proper CHP power 
set-point setting and – if actually applied – load management:  

 

costtotal = costfuel + costel from grid – revenuesel to grid + costassets  
                                                     (1) 

 
    min costtotal    =    f(CHP set-point, tariffsel,fuel, loadmanaged)

   
CHP set-point, loadmanaged                                                                                   (2) 

 

B.  Load  Forecast 
As determined above, the prospective electrical and thermal 

loads are influential input features of the energy management; 
thus, an effective forecast has to be provided.  While numerous 
load forecast tools for large electrical grids are existing [5], little 
information is on-hand about applications in distributed systems 
(e.g. residential buildings or settlements). Therefore, as a first 
approach, general features such as outdoor temperature, global 
insolation, humidity and others were used as inputs for an 
ANFIS – test data were available from [6]. The investigation 
revealed that, based on these features, a data set of at least one 
year was necessary in order to generate acceptable forecast 
results for residential buildings. Hence, the time delay between 
installation and operability as well as the computational time 
demand of several days (PC with 512 MB, 1300 MHz) ruled out 
the practical application of this method for distributed systems. 
As another approach, by means of autocorrelation, characteristic 
features for the forecast of electrical and thermal loads in 
residential buildings could be identified. In both cases current 
and archived loads proved to have the highest information 
content. Thus, the load prognosis was transformed from 
reasoning based on general features to an identification of 
typical load sequence patterns as exemplarily shown in Fig. 3 
with an excerpt of a real load curve; in consequence, the task of 
ANFIS became a multidimensional non-linear extrapolation. 

Fig. 2.   Energy management. 

Fig. 1.  Micro CHP system structure. 
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Fig. 3  Recognition of typical load sequences. 
 

Fig. 4 exemplifies the forecasted discrete load values for the 
following 90 minutes based on 13 past electrical load values 
(over 3 hours) in a 15 min time pattern. Based on this principle 
the electrical load at specific, discrete times in the future (e.g., 
i = 15, 30, 60, 120 minutes ahead) is continuously predicted. 

 

 
 

Fig. 4  Time-frame for load forecast. 
 

The quality of the prognosis, in this case characterized by the 
mean forecast error mfe(Ti) 
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with  n:    number of 15 min time steps,  
e.g., for 3 days: n = 3 ּ 96 = 288 

    Ti:   forecast horizon, e.g., 15 min   
    Pprog+Ti: forecasted load at Ti 
    Pmeas:  measured load at Ti 
 

over 3 days, is shown in Fig. 5. 
 

 It is evident that for a one-family house the mfe appears 
relatively high compared with, e.g., load forecast for a large 
power system, since the usage of each particular device strikes 
through; under this aspect and consideration of the 
tremendously higher max/min load ratio of a single house the 
prognosis quality achieved is acceptable, see Fig. 6, and could 
not be exceeded by other means. For instance, the result of 
conventional forecast based on general input features (e.g., 
temperature etc.) – which was also entered in Fig. 5 for 
comparison – proves to be significantly worse.  

From Fig. 5 it can further be seen that a data set of one day 
for the load pattern based ANFIS training is insufficient while a 
period of two weeks training data already has a high 
information content concerning the consumer behavior in the 
near future (< 45 min). 

 

Fig. 5  Forecast error and adaptation. 
 

Further extension of the training data period even leads to 
slight worsening of forecast results in consequence of over-
fitting. With a training data set of 26 weeks maximal prognosis 
quality is achieved for longer term forecast (> 45 min). 

Comparative investigation of the load pattern based forecast 
method for an ensemble of 69 one-family houses procured 
forecast errors in the range of 5…7% only, thus proving the 
cardinal qualification of the approach. Besides the improvement 
of  prognosis quality the applied method of load sequence 
pattern recognition could reduce both the data set required for 
sound training (from ca. 2 years to 2 weeks) – thus leading to 
faster adaptation to the consumer behavior on site – as well as 
the ANFIS training time from ca. 2 days to few minutes. 

 
 

Owing to the chaotic and hardly predictable instantaneous 
values of the hot water demand in single houses, the expected 

cumulative thermal energy demand (hot water and heating) 
within the next 2 hours is forecasted. The actual difference is 
balanced by the thermal storage, see Fig. 1. 

Both the electrical and thermal sequence recognition based 
load forecasts purely rely on past and current power 
consumption. By continuous subjoining of the actual load data 
to the existing data archive and periodic ANFIS training week 
by week the knowledge base is steadily amended, thus 
incrementally adapting the system to the consumer attitudes. 

Fig. 6  Example of electrical 15 minutes load forecast. 

time
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C.  Load Management 
In excess of the energy management described above the 

load management – optionally applicable as concomitant 
module – procures further enhancement of CHP system 
efficiency by 

• attempt to preferentially achieve in-house consumption of 
electricity generated by the CHP unit, 

• peak power shaving and 
• operation of flexible loads at lower tariff times. 
The basic idea lies in splitting the sum of consumption into 

the particular electrical and thermal loads flexloadload_no taking 
part in the load management, as well as a remaining part 
restload which cannot be influenced. 

∑
=

+=
n

noload
elnoloadelel trestloadtflexloadtload

1_
_, )()()(      (4) 

and 

∑
=

+=
m

noload
thnoloadthth trestloadtflexloadtload

1_
_, )()()(       (5) 

with   n:  number of electrical loads taking part in load management 
m: number of thermal loads taking part in load management 

Consumer acceptance studies have been carried out 
regarding load management appliance; Table I highlights 
general findings, whereby the heavy electro-thermal devices 
such as washing machine and dishwasher have been identified 
to have the highest acceptance. 

 

TABLE I 
CONSUMER ACCEPTANCE STUDIES REGARDING LOAD MANAGEMENT 

load type light hot water kitchenware 
acceptance no no hardly 

load type dishwasher, washing machine, 
dryer 

refrigerator, 
freezer 

acceptance yes yes 
 

An individual time-frame is assigned to each device 
participating in the load management in order to restrain the 
management’s influence to practicable and accepted time 
horizons, and thereby customizing the load management 
module. As an example, the load management is admitted to 
release operation of the washing machine within a period not 
later than 2 hours after the user has initiated the starting 
procedure if the corresponding time-frame is set to 120 
minutes. 

Enabling the load management is treated as an additional 
variable within the optimization process of the energy 
management which already was described in section III. A., 
thus adapting the favorable operating times of participating 
devices to the CHP set-points and actual tariffs. As a result the 
load management module provides a schedule of preferential 
operation times for each participating device one week in 
advance.  

By overruling the proposed schedule, the user still can give 
emphasis on his comfort demands in which higher associated 
costs have to be accepted. Automatic communication between 
the management module and the participating devices avoids 
additional user effort. Even if remote control particular 
devices is not yet state of the art, there is current work in 
progress to establish such techniques, using for instance power 
line or wireless communications [7], [8]. 

IV.  APPLICATION OF COMPUTATIONAL INTELLIGENCE  
As mentioned above the energy management – optionally 

complemented by the load management functionality – is 
based on the two procedures of optimization and 
generalization. While the optimization is applied periodically 
in off-line mode (e.g., for the upcoming week in advance) thus 
admitting the employment of metaheuristic approaches 
(subsection B.) , the generalization means adaptation of the 
optimized CHP operation patterns to the actual influence 
factors (input features according to Fig. 2); this task was 
solved by application of an Adaptive Network Fuzzy Inference 
System (ANFIS, [4]) which had already proven of value in the 
load forecast functionality (section III. C.) as well as in many 
other on-line applications worldwide. 

A.  ANFIS Generalization 
While the membership functions and rules of a conventional 

fuzzy inference system typically are set up by a human, for 
complex systems this task can be automated by use of an 
ANFIS which in the meantime is available as tool within the 
Matlab/Simulink® environment. The adaptation of parameters 
is achieved by a hybrid learning algorithm (least-
squares method and back-propagation), whereby the 
computational effort is essentially determined by the number 
of rules. In case of grid partitioning this number of rules 
directly follows from the combination of all system input 
variables and the membership functions of each input; in this 
case, known under the name of curse of dimensionality, the 
number of rules can be tremendously high even if the number 
of inputs is only moderately large (above ~ 5). Given that only 
few of the formed rules really contribute to the requested 
mapping of input features to the output signal, most of them 
are subsequently restrained within the learning process by 
slashing their firing strength. Due to the high number of rules 
this process takes considerable computation time. 

The alternative method of subtractive clustering [9] allows 
for dimension reduction by classifying the input data into 
clusters belonging together, and thus generates only the 
minimum number of rules required to distinguish between 
them. Due to the significant reduction in computational time 
this method was applied here. Based on an ANFIS with 
subtractive clustering of rules both the derivation of actual 
CHP set points according to given input parameters in real 
time, as well as the periodic (weekly) adaptation to user habits, 
local tariffs and infrastructure changes within few minutes are 
successfully fulfilled. 

B.  Optimization 
As to be seen from the enumeration of system operating 

conditions in section II. the optimization of CHP unit 
operation and device arresting and releasing is a high-
dimensional mixed integer problem. Therefore, metaheuristic 
methods appear eligible, the more so as they are robust, 
unpretentious in application and do not tend to be captured in 
local minima; furthermore, computation time demand seems 
uncritical in consequence of their off-line application (see 
section III. A.). Three typical metaheuristic approaches were 
comparatively applied to the described plant optimization task: 
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• Genetic Algorithm (GA) [10]; 
• Particle Swarm Optimization (PSO) [11]; 
• Ant Colony Optimization (ACO) with the extension to 

mixed-integer problems as presented in [12]. 
Finally the optimization efficiency was enhanced by co-
operative application of these approaches. 

For efficiency comparison the three approaches were 
alternatively employed for the determination of CHP (gas motor 
driven generator set) power set points over one week, based on 
given measured shapes of electrical and thermal consumption of 
a one-family house as well as a time variable electricity and gas 
tariff structure; objective was the cost optimal energy supply. 
As commensurable measure of the efficiency of approaches the 
number of objective function calls NO was evaluated which 
were needed to undercut a given operation cost limit; for all 
three approaches investigated this number of objective function 
calls is likewise the product of the number of individuals 
involved and the number of generations required. Since all 
approaches applied have a stochastic search behavior the 
investigation – as a compromise between significance and 
temporal effort – was actually based on 5 runs. The results are 
summarized in Table II. All approaches were able to 
accomplish the optimization task but the duration was rather 
different ranging from numbers of minutes up to several hours. 
Therefore, in order to enhance the efficiency, a combined co-
operative application of two or even all three algorithms was 
implemented: 

• The different approaches handle the optimization in 
parallel, with independent individuals. 

• The approaches run on separate LAN coupled computers. 
• Each approach transmits its current best result and the 

appertaining variables to a central database before every 
start of a new generation. 

• Each approach grabs the actual database entry as new start 
parameters before the next generation is initiated in case 
that a better solution is found there, and thus takes profit of 
the advances made by the other approaches. 

In Table II the results gained with this co-operative method 
applying the metaheuristic algorithms ([10], [11] and [12]) are 
opposed to those of single approach application (all results are 
based on 5 runs, see above). It can clearly be seen that the Ant 
Colony Optimization (ACO) behaves superior to the other two 
approaches, and that by co-operation a further significant 
improvement is achieved. In consequence of the stochastic 
search behavior of all three approaches the ratio of the maximal 
and minimal number of objective function evaluations 
NOmax/NOmin can be considered as a measure for the robustness 
of the approach and points out the favorable co-operation for the 
given task. 

TABLE II 
NUMBER OF  OBJECTIVE FUNCTION EVALUATIONS NO IN COMPARATIVE 

SINGLE AND CO-OPERATIVE APPLICATION OF METAHEURISTIC APPROACHES 
 Single use Co-operation 

Method ACO GA PSO ACO GA 
NOmin 1930 3100 9780 945 1750 

NOmax/min 2,1 5,4 5,4 1,3 1,5 
 Co-operation Co-operation 

Method ACO GA PSO GA PSO 
NOmin 1830 3375 3375 1750 1400 

NOmax/min 1,3 1,3 2,0 4,0 6,1 
 

V.  OPERATING RESULTS FOR CHP SYSTEM 
The operating results exemplarily presented in the following 
were achieved by application of the described management 
functionalities to the simulation of a commercially available gas 
motor driven micro CHP system according to Fig. 1 with the 
modeling tool as described in [2]. Measured electrical and 
thermal consumption curves of a one-family house over more 
than one complete year in 15 min steps were available from [6], 
and time variable electricity tariffs as well as a constant gas 
tariff were applied. All operational constraints as mentioned in 
section II. were considered by the management. 

In Fig. 7 the plant operation during one sample day, procured 
by the management system in real time, is shown. At first 
glance a coherency of electrical consumption and operation of 
the CHP unit cannot be recognized. But if the electricity tariffs 
for both delivery and feed-in – also shown in Fig. 7 – are 
considered, too, there is more evidence: generally the plant is 
operated if there is a noticeable local electricity consumption 
forecast during times of high tariff for electricity drawn from 
the public system. The thermal storage – see Fig. 1 – decouples 
electrical and thermal consumption; in the example shown here 
this permits the energy management to shut down the CHP unit 
at night time and in the afternoon, Fig. 7. The cost factor for 
each start-up of the unit and the limitation of set-point changes 
which are considered by the management as well lead to a 
sparing plant operation (few operation cycles and power 
changes) which can also be recognized in Fig. 7. 
 The load management was released for several electro-
thermal devices – Table I – with an admitted operation time 
shift by max. ± 24 h in this particular example; the effect can 
immediately be noticed in Fig. 7 by comparison of the 
originally forecasted and the actually managed electrical load 
curves. The load management essentially effects that 

• the flexible loads are preferentially operated at times of low 
tariff for electricity drawn from the public system (Ia in 
Fig. 7) or when the CHP unit is running (Ib and Ic) and 

• load peaks are significantly reduced (IIa,b in Fig. 7). 
A monetary comparison of different CHP operation modes is 

finally shown in Table III; in the right column the total 
operation costs of the system over one sample winter week are 
entered. It is apparent that CHP operation with the energy 
management enabled is saving approximately 17% of cost 
compared to no CHP operation (that is, complete electricity 
demand covered by external grid and thermal demand covered 
by peak boiler). Having the load management released for one 
day (see above) is saving another 6%. In contrast, blindfold 
CHP operation at either nominal or minimal constant power is 
even more expensive than no CHP operation at all. 

 

TABLE III  
 COMPARISON OF ENERGY COSTS IN DIFFERENT OPERATIONAL MODES. 

CHP operation mode Weekly cost [€] 

Constant nominal power 139,16 

Constant minimal power 54,14 

No CHP operation 53,22 

CHP with energy management only 44,00 

CHP with energy and load management 41,07 

The 14th International Conference on Intelligent System Applications to Power Systems, ISAP 2007 November 4 - 8, 2007, Kaohsiung, Taiwan

552



 

 

 
Fig. 7  Plant operation over one sample day. 

VI.  CONCLUSION AND OUTLOOK 
The developed and described management system for micro 

CHP plants based on CI techniques proved excellent 
performance in various scenarios simulated under operational 
realism on a PC as exemplarily shown: the (economic) 
efficiency of system operation is significantly enhanced and 
flexible adaptation to given and changing user habits is 
afforded. Practical application of the approach in a real CHP 
plant appears feasible by 

• relocation of the management software from PC to a micro-
controller based control box installed at the site of the CHP 
plant; 

• connection of controllable electrical devices (first models 
providing an external interface are already available in the 
upper market segment of, e.g., washing machines) by 
domestic bus, (W)LAN or power line communication, Fig. 
8. 

 
 

Fig. 8  Integration of domestic CHP plant control. 
 

In this context it appears also possible to couple the local 
control of the domestic CHP plant – for instance via the internet 
– with a central server which then could undertake the system 
training and adaptation remotely as external service delivery, 
Fig. 8. This would disburden the local control from these tasks – 
admitting to implement it on a simpler and less expensive type 
of controller – and would also give the perspective to integrate 
the operation of many micro CHP systems into superior central 
control as a virtual power plant. 
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