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Abstract— This paper presents an application of Artificial 

Neural Network (ANN) for monitoring power system voltage 
stability. The training of ANN is accomplished by adapting 
information received from local and remote measurements as 
inputs and fast indicators providing voltage stability information 
of the whole power system and one at each particular bus as 
outputs. The use of feature reduction techniques can decrease the 
number of features required and thus reduce the number of 
system quantities needed to be measured and transmitted. In this 
paper, the effectiveness of the proposed algorithm is tested under 
a large number of random operating conditions on the standard 
IEEE 14-bus system and the results are encouraging.  Fast 
performance and accurate evaluation of voltage stability 
indicators have been obtained. Finally, the idea of applying load 
shedding based on voltage stability indicator as one of potential 
countermeasures is described. 

 
Index Terms— Voltage Stability, Artificial Neural Network, 

Online monitoring system, Feature reduction 

I. INTRODUCTION 
OLTAGE stability  has been of the keen interest of 
industry and research sectors around the world since the 

power system is being operated closer to the limit whereas the 
network expansion is restricted due to may reasons such as 
lack of investment or serious concerns on environmental 
problems. There are several works previously proposed to 
predict the voltage stability and proximity to voltage collapse 
based on conventional approach, for example PV and QV 
curves, sensitivity based indices [1] and continuation methods 
[2]. Other methods, such as bifurcation theory [3], energy 
function [4] singular value decomposition [5], etc have been 
also reported in the literature. These methods provide 
complete and accurate results but they are usually hampered 
by the fact that they consume long computing time because of 
the requirement for repetitive power flow calculations.  

To suit the online monitoring requirement, fast, accurate 
and easily interpretable indicators are desired. Few examples 
of pioneering but still popular indicators are the L-index [6] 
and Voltage Collapse Proximity Index (VCPI) [7]. These 
indicators provide sufficiently accurate assessments but, 
however, they usually require complete topological 
information of the system under consideration.  
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Recently, the wide area monitoring system consisting of 
phase measurement units (PMUs) and high-speed 
communication links provides snapshots of current power 
system variables where PMUs are connected. Based on the 
simple method proposed in [8] for determining Thevenin 
equivalent parameters, few voltage stability indicators can be 
determined based only on voltage and current information 
provided by PMU at local buses. Examples of those are Power 
Transfer Stability Index (PTSI) [9], Power based Voltage 
Stability Margin (PVSM) [10]. This method is very suitable 
for implementing on a protective device because no 
communication for system data acquisition is required and its 
action can be autonomously undertaken.  

Online voltage security assessment is a very useful but not 
yet becomes a widely used tool that measures the distance 
from the current operating condition at any time to the critical 
point. Artificial neural network have recently received 
widespread attention from researchers for this application. 
Most of ANN applications have been implemented using 
multi-layered feed-forward neural networks trained by back 
propagation because of their robustness to input and system 
noise, their capability of handling incomplete or corrupt input 
data.  However, in typical power systems there are voluminous 
amount of input data. Then, the success of ANN applications 
also depends on the systematic approach of selecting highly 
important features which will result in a compact and efficient 
ANN. Different feature reduction methods are compared in 
this paper. 

This paper is organized as follows. The method of real-time 
tracking of Thevenin equivalent and brief summary of 
considered indices are presented in Section II. Section III 
presents the design of the proposed method. Simulation results 
are given in section IV and section V concludes the paper and 
suggests the future work. 

II. DETERMINATION OF FAST VOLTAGE STABILITY 
INDICATORS 

In this part, several voltage stability indicators are 
calculated. It should be mentioned here that this paper aims at 
implementing these already proposed indicators by ANN. The 
capability of monitoring proximity to voltage collapse was 
tested beforehand, but unfortunately due to space limitation 
and scope of this paper the complete results cannot be 
presented. However, the corresponding references given in the 
earlier section will enable the avid readers to regenerate the 
same results. 
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A. Tracking Thevenin Equivalent 
This step is necessary for deriving two indicators which will 

be presented in the next section. 
Consider a load bus k having a load demand of Sk= Pk+jQk 

connected to the rest of power system as shown in Fig. 1.The 
voltage equation at bus k at time t taken from measurement j 
in Fig.1 (b) can be expressed as;  

                 t
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TH IZUU ,, +=                             (1) 

 Splitting (1) into two equations of real and imaginary parts, 
one can immediately notice that at least two set of voltage and 
current information of bus k at time t ( t

jkU , and t
jkI , , 

repectively) are required to solve such an equation. Using the 
above formulations with two set of measured quantities (j=2), 
(1) can be transformed to;  
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                                  ⇒ Ax=b   
where It

kr,j and It
km,j are real and imaginary part of It

k,j 
,respectively; Ut

THr and Ut
THm  are real and imaginary part of 

Thevenin equivalent voltage at time t (Ut
TH), respectively; Rt

TH 
and Xt

TH  are resistive and reactive parts of Thevenin 
equivalent impedance at time t (Zt

TH), respectively; and Ut
kr,j 

and Ut
km,j  are real and imaginary part of Ut

k,j, respectively. 
 

 
Fig.1. Representation of local bus k and the rest of system  
 

In this paper, two measurements taken at time t are 
simulated by adding a very small perturbation of apparent load 
so that (2) becomes numerically solvable. It should be worth 
mentioning that the measured data Uk

t and Ik
t may practically 

contain some noise and error which may cause estimate of 
Thevein parameters inaccurate. It is therefore desirable that 
more than two set of measurement quantities collected from 
past loading conditions should be used and apply the least 
square technique according to (3); 

                             bAAxA TT =                         (3) 
where AT denotes the transpose of A. 

 

B. Voltage Stability Indicators  
Brief description of each voltage stability indicator 

considered in this paper is summarized in this section. The 
first three require the complete system information including 
the network topology while the last two utilize only the 
information available at local buses. 
 
Minimum Singular Value 
 The proximity to voltage collapse can be traced by 
monitoring zero-convergence of the smallest singular value. 
For the real n × n Jacobian matrix, the singular value 
decomposition is given by,  

 T
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 where U and V are n × n orthornomal matrices whose ith 
columns are singular vectors ui and vi, respectively and ∑ is a 
diagonal matrix of positive real singular value σi such that 
σ1≥σ2 ≥ …≥σn .The matrix J under consideration in this case is 
the power flow Jacobian matrix (FJ) which is expressed as;  
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Voltage Collapse Proximity Index  

The voltage collapse proximity index (VCPI) can be 
calculated based on the voltage phasor information of 
participating buses and topological data of the system. The 
VCPI of bus k can be found from,  
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U′m in (6) is characterized by  
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L-Index  
 The Line (L) index can be derived from information of a 
normal power flow solution. It can be calculated for each bus j 
according to,  

       ∑
∈

−=
Gi j

i
jij U

U
FL

α
1           (8) 

where αG is the set of generator buses; Uj is the complex 
voltage of bus j and Fij is the complex gain matrix determined 
by 

                            ][][ 1
LGLL

LG YYF −−=            (9) 
where [YLL] is the load bus self admittance matrix and [YLG] 

is the mutual admittance matrix between generator and load 
buses.  
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Power Transfer Stability Index 
 The power transfer stability index (PTSI) represents the 
ratio of load bus apparent power to maximum allowable one 
.With the knowledge of Thevenin equivalent parameters, PTSI 
can be determined from,  

                   2
))cos(21(2

TH

THL

U
ZSPTSI ϕβ −+=           (10) 

 where the Thevenin impedance in a polar form is 
β∠= THTH ZZ ; the apparent load impedance is ϕ∠= LL ZZ ; 

UTH is the absolute of Thevenin equivalent voltage and SL is 
the apparent load power.  
 
Power based Voltage Stability Margin 
 Based on the fact that the magnitude of load impedance 
becomes equal to the magnitude of Thevenin impedance at the 
maximum loadability point, the power based voltage stability 
margin (PVSM) can be expressed as,  

           
)(βZZZZ
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2
  (11) 

 
Fig.2. Voltage of load buses at various system loading levels  
 
An extensive study was carried out on the IEEE 14-bus 

system whose schematic diagram is shown in Fig. A1 of the 
appendix, Real and reactive power demands at all load buses 
are uniformly increased and various indicators are calculated. 
During such an incident, load bus voltages are measured and 
plotted against the corresponding system apparent load power 
as shown in Fig.2. One can observe that bus voltage itself is 
not a good indicator of voltage collapse proximity because it 
changes quite slightly up to a certain system loading level but 
beyond that point bus voltages decline abruptly. This is an 
undesirable behavior of a good indicator in practical 
applications. System operators would prefer to have a 
meaningful indicator ready at their hand so that they can 
realize whether the system is being securely operated and how 
further they can load the system without jeopardizing system 
security. 
  Figs. 3 and 4 depict the characteristic of PVSM and L-index 
responding to such a load increase scenario discussed earlier, 
respectively. Each line of these two graphs indicates the value 
of indicator observed at the load bus. The system is 
approaching the voltage collapse point as reflected by the 
PVSM of zero and L-index of one. It could be noted that all 
indicators exhibit nearly the same performance in predicting 

the voltage collapse. The only difference is the information 
required for analysis. 

 
Fig.3. PVSM of load buses at various system loading levels 
 

 
Fig.4. L-index of load buses at various system loading levels 

 
 Zero-convergence of minimum singular value of full load 

flow Jacobian (FJ) and different sub-matrices (J1, J4 and J4R) 
can be also used as an indicator. MSV of sub-matrices can be 
analyzed in real practice because it can save computing burden 
from computing MSV of FJ and providing meaningful 
sensitivity information. The sub-matrix J1 provides sensitivity 
information between real power injection and angle at buses 
(P-δ sensitivity). As seen from Fig.5, MSV of J1 is quite 
insensitive to load change and thus be not a good indicator 
since voltage stability problem deal primarily with reactive 
power. J4 and J4R provide sensitivity information between 
reactive power injection and voltage at buses (Q-V 
sensitivity). J4R considers further the weak coupling between 
reactive power and angle (by assuming ∆P in (5) equal to 
zero) where 2

1
1344 JJJJJ R
−−=  . In this paper, as the size of 

test system is relatively small and Q-V sensitivity is not 
considered, MSV of FJ is used in the proposed ANN-based 
monitoring system.   

It should be mentioned here that L-index and PVSM 
provide information at local buses. The most critical bus 
deserving special attention can be promptly identified. In this 
case the bus with the highest L-index value (bus 14) can 
represent the stability status of the whole power system, so 
does the case of PVSM where the lowest PVSM is the 
representative of the system indicator. MSV shows only the 
stability information of the whole system. Further analysis is 
required to identify the critical bus. 
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Fig.5. Minimum singular value at various loading levels 
 

III. PROPOSED ANN-BASED METHOD  

A. Generation of training data  
Training data sets for ANN training are generated by 

varying both real and reactive loads at all the buses randomly 
in the range of 60% −120% of their base case values at the 
constant power factor and utilizing the corresponding power 
flow solutions. All generators in the system share the 
additional generation needed to meet the increased load 
demand equally. Power flow program is conducted at all steps 
and corresponding voltage stability indicators are calculated. 
The Power System Analysis Toolbox (PSAT) [11] was used as 
a computing tool. Collection of these data constitutes the 
training data set.  
 

B. Feature reduction 
The process of eliminating the data that are repetitive in 

nature and choose only those which contain maximum 
information regarding the whole set of input data is called 
feature reduction [12]. The concept of such a method can be 
further divided into feature selection and feature extraction. 
By feature selection, physical meaning of features is not 
changed in any way. In this paper, we adopt few clustering 
algorithms (as listed methods 1 to 3 in Table I) to group M 
available system variable to G clusters such that variables in 
those clusters share similar characteristics. Then, only 
independent features which provide significant information in 
each cluster are selected to form a reduced set of system 
variables.  

On the other hand, the features are transformed to a reduced 
order feature space in feature extraction. Such a 
transformation changes the physical meaning of features. 
Principal component analysis (PCA), one of the well-known 
feature extraction techniques, is applied in this paper (as listed 
method 4 in Table I). It should be noted that not all principal 
components must be considered, but only those corresponding 
the largest n eigenvalues of the correlation matrix are usually 
sufficient. The whole concept of feature reduction technique 
applied to power system can be summarized as Fig.6.  

 
Fig.6 Framework of feature reduction system 
 

C. Type of the ANN 
A multi-layered feed-forward neural network has been 

proved suitable for most power system problems. The 
architecture of the ANN used in this paper consists of an input 
layer, a hidden layer and an output layer. The number of 
inputs depends on the number of used features. The number of 
output neurons is equal to 8 for the case of PTSI, PVSM, L-
index and VCPI (the latter two are not evaluated at slack and 
voltage controlled buses as they are always zero as long as the 
bus voltage is maintained) and 1 for the case of MSV. The 
number of neuron in hidden layer is fixed to 15.  

 
Fig.7 Procedures of ANN-based monitoring system 

 
The designed networks are trained by the back-propagation 

algorithm using Lavenberg-Marquardt optimization. Early 
stopping regime is also applied to improve ANN 
generalization by preventing the training from overfitting 
problem [13]. In the context of neural network, overfiiting is 
also known as overtraining where further training will not 
result in better generalization. The error of validation set is 
periodically monitored during the training process. The 
training error usually decreases as the iteration grows, so does 
the validation error. When the overtraining starts to occur, the 
validation error typically tends to increase. Therefore, it would 
be useful and time saving to stop the training after the 
validation has increased for some specified number of 
iteration. The whole ANN process can be depicted as shown in 
Fig. 7 where the inputs are received from the outputs of the 
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feature reduction system shown in Fig.6. MATLAB neural 
network tool box is used as a computing tool.  

IV. SIMULATION RESULTS  
The standard IEEE 14-bus system is used to test the ability 

of the proposed ANN-based voltage stability monitoring 
system. It has a slack bus (bus 1), 4 voltage controlled buses 
(buses 2,3,6,8), 9 load buses without attached generation 
(buses 4,5,7 and 9-14) and 2 additional loads are connected to 
voltage controlled buses 2 and 3. The base load of the test 
system is 385.95  MVA. In this paper, real and reactive power 
demand (Pd,Qd), real and reactive power generation (Pg,Qg) 
and voltage magnitude and angle of each bus (Ub,δ) are 
obtained from power flow calculations of random operating 
states and constitute as a full set of measured quantities. 
Reactive power limits are imposed at all PV buses except bus 
1 which is assumed to be an infinite bus. The entire data set 
consists of 3000 samples, with 20% validation and 20% 
testing.  

The performance of the proposed ANN-based method is 
presented in terms of errors which are defined as the 
maximum error (emax) and RMS error (erms) 

 
NOqOTe qqmax ,...,2,1 |},max{| =−=  (11) 
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where Tq = [tq1, tq2, …, tqp
max] is the target vector at the qth 

neuron of the output layer, Oq = [oq1, oq2, …, oqp
max]   is the 

output vector at the qth neuron of the output layer, pmax is the 
maximum number of patterns and NO is the number of 
neurons in the output layer.  

Different feature reduction methods are applied in this 
paper and their details are shown in Table I. It can be observed 
that even different features were selected based on different 
feature selection techniques, but the most of selected features 
are real and reactive power quantities. One may draw some 
conclusion that ANN-based voltage stability monitoring 
problem can be sufficiently described with minimum 
information of voltage at buses. 

TABLE I 
ANN INPUT FEATURES BASED ON DIFFERENT FEATURE 

REDUCTION METHODS 

Method
No. 

Feature 
reduction 
method 

No. of 
features 

used 
Features 

1 Distance 
based 
clustering  

14 Qd5,Ub13,Qg3,Ub14,Pd13,δ12,Qg2, 
Qd14,Pd4,Qd12,Pd10,Qg1, δ4, Qd2 

2 Hierarchical  
clustering 

14 Pd9,Qg3,Pd2,Qd3,Pd13,δ11,Qg1, 
Pd11,Qg6,Qg2,Pd4,Pd3,Ub11,Pg1 

3 Competitive 
learning 

14 Pd5,Qg2,Qd11,Ub11,Pd11,δ13, 
Pg1,Ub5,Pd13,Qg1,Qg3,Pd3,Pd6,Qg6

4 Principal 
component 
analysis 

11 Features are transformed to 
the new feature space and the 
size is reduced.  

Once the ANN is well trained (confirmed by conducting 

post regression analysis), it is tested with the remaining 600 
loading patterns. Estimation error of each pattern, defined as 
the ratio of difference between target and output values to its 
respective target, is calculated. Figs. 8 to 10 depict the 
estimation error at bus 14 in case of L-index and PVSM and 
the one of MSV for the whole system. The case of L-index is 
chosen as a simplified indicator derived from power flow 
equation, so does VCPI. Similarly, PTSI which is derived 
from tracking Thevenin equivalent is not shown here as it 
performs like PVSM. These results show and prove the ability 
of ANN to monitor the stability indicators for unforeseen 
patterns stored in the testing set as shown in Figs.8(b) to 10(b).  

 
Fig.8. L-Index estimation error at bus 14 for the (a) training and (b) testing  

 

 
Fig.9. PVSM estimation error at bus 14 for the (a) training and (b) testing 

 
From Figs.11 and 12, it can be seen that voltage stability 

indicators (L-index and PVSM, respectively) determined by 
the proposed ANN-based method at all load buses are very 
close to the solution obtained from the analytical method. Test 
results are compared among those considered feature 
reduction techniques (methods 1 to 4 as listed in Table I). 
Table II summarizes the maximum and rms errors for all the 
test patterns of all considered indicators. 
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Fig.10. MSV estimation error for the (a) training and (b) testing  

 
TABLE II 

SUMMARY OF ESTIMATION ERROR BASED ON DIFFERENT 
FEATURE REDUCTION TECHNIQUES 

 Method 1 Method 2 Method 3 Method 4 
 emax erms emax erms emax erms emax erms 
L 0.0006 0.0001 0.0009 0.0001 0.0005 0.0001 0.0003 0.0001
VCPI 0.0015 0.0002 0.0017 0.0003 0.0017 0.0003 0.0007 0.0001
MSV 0.0008 0.0001 0.0009 0.0001 0.0008 0.0001 0.0010 0.0003
PTSI 0.0059 0.0003 0.0065 0.0005 0.0076 0.0006 0.0026 0.0006
PVSM 0.0029 0.0003 0.0034 0.0004 0.0049 0.0005 0.0033 0.0010
 

 
Fig.11. Comparison between NN outputs and targets in case of L-Index 

 
Fig.12. Comparison between NN outputs and targets in case of PVSM  
 

This discussion below tries to exploit conceptual idea of 
load shedding scheme that incorporates the security feature of 
voltage stability. Since a fast ANN-based monitoring system 
was successfully developed and presented in this paper, it 
would be therefore productive if potential extension of such a 

system were presented here. As widely accepted, load 
shedding is among technically and economically effective 
countermeasures against voltage instability. 

 
Fig.13. Conceptual idea of load shedding based on L-index (a) indicator 
profile in the initial case (Lini) and subsequent shedding steps (L1 to L3) (b) 
voltage profile in the initial case (Uini) and subsequent shedding steps (U1 to 
U3) 

In Fig.13, the system load starts to be shed from the initial 
operating point (denoted by Lini and Uini in the figure) of the 
IEEE 14-bus system with the attempt to rise all load bus 
voltage above the predefined threshold (as set in this case at 
0.95 pu). In this example, 1% of each load is shed in each 
shedding step (step 1 to 3). The corresponding bus voltages 
can be shown as in Fig. 13 (b). It can be seen that voltage of 
four (out of nine) buses become now above the threshold and 
the values of L-index decrease (meaning that distance to the 
voltage collapse point is enhanced). However, the task left to 
system operators is to ensure that low voltage at any bus will 
not occur and the system remains in a state far from voltage 
collapse.  The current practice adopted in Fig.13 is still 
inadequate. A systematic approach is required in order to 
bring all load bus voltage above 0.95 pu and guarantee 
adequate voltage security margin (L indices should be above 
the threshold). Two important issues for a load shedding 
policy must be identified. These include bus location and 
amount of load to be shed. It should be noted that due to 
operating restriction, there are different maximum limits of 
load that can be shed at each bus. This is one of the constraints 
that should be included in the analysis method. Any of 
optimization techniques can be formulated to solve this 
problem. 

Beside the load shedding scheme, some other 
countermeasures, for example generation rescheduling or 
managing reactive power resources can be also carried out. It 
is therefore very useful if fast and accurate tool become for 
system operators to study a large number of contingencies in 
offline mode so that recommendation for appropriate 
countermeasures can be readily devised in online operation. 
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V. CONCLUTIONS AND FUTURE WORKS 
In this paper, a fast method for monitoring voltage stability 

margin using ANN is proposed. Several indicators were used 
to define the proximity of the system to voltage instability. 
The proposed ANN-based system was successfully 
implemented to predict the voltage stability indicators for 
random operating conditions of the IEEE 14-bus system. The 
simulation results reveal the followings;  
1. The variation of the indicators presented in section II with 
respect to change in system load is so smooth and predictable 
that the system security can be periodically monitored. It 
should be emphasized here that only one or few indicators 
may be chosen in real practice. This papers aims at comparing 
some of those already proposed in literatures. 
2. Feature reduction is crucial for the success of ANN 
application, although each has its own merit and demerit. 
Feature selection based on clustering technique can identify 
important parameters directly measurable from the power 
system. In this paper, 14 out of 49 features (28%) are shown to 
be adequate in describing the problem. This method has some 
drawbacks in that those 14 features were selected from 
different clusters sharing the same characteristics. These 
chosen features may not necessarily be to characterize the 
whole system. On the other hand, feature extraction is fast and 
highly accurate. However, this method requires full set of 
system information which may not be obtainable in practical 
cases. 
3. The results of voltage stability indicators predicted by the 
proposed ANN-based method are very close to the actual 
values calculated. Additionally, the response time of the ANN 
model is extremely fast. 

The proposed method is quite promising for real world 
application.  Further studies can focus on artificial intelligence 
methods, such as particle swarm optimization or evolutionary 
programming, applying to optimize preventive and corrective 
controls with minimum cost while ensuring system security 
and reliability. Incomplete and noise contained input data 
which represent practical situations can be considered.  

 
APPENDIX 

 
Fig.A1. The IEEE 14-bus test system [11]  
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