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Abstract--This paper deals with robust dynamic security 

assessment for large interconnected power systems. Special 
interest is focused on the prediction of critical inter-area 
oscillatory modes of power systems based on neural networks. 
After selection of inputs for the neural network and proper 
training, the stability condition of the power system can be 
predicted with high accuracy. Hereby, the neural network 
outputs are assigned to activations of sampling points in the 
complex plain depending on the distances to the eigenvalues. This 
method depends highly on the reliability of the measured input 
data. Missing or bad input data will automatically lead to false 
prediction results. This paper proposes different methods, which 
improve the prediction robustness by detecting bad data inputs 
and outliers. In a second step, input signals identified as bad data 
inputs will be restored to their correct value. 
 

Index Terms--Oscillatory Stability, Interconnected Power 
Systems, Dynamic Security Assessment, Neural Networks, 
Robustness, Outliers, Bad Data Detection and Restoration 

I.  INTRODUCTION 

Inter-area oscillations in large-scale power systems are 
becoming more common especially for the European 
Interconnected Power System UCTE/CENTREL. The system 
has grown very fast in a short period of time due to the recent 
east expansion. This extensive interconnection alters the 
stability region of the network, and the system experiences 
inter-area oscillations associated with the swinging of many 
machines in one part of the system against machines in other 
parts. Moreover, for certain load flow conditions, the system 
damping changes widely [1], [2]. The deregulation of 
electricity markets in Europe aggrieved the situation once 
more due to the increasing number of long distance power 
transmissions. The network is becoming more stressed also by 
the transmission of wind power. The installed capacity of 
wind generators achieved in Germany already about 12 GW. 
New wind farms with several hundred MW power will be 
connected directly to the high voltage grid, for which, 
however, this is not designed. Considerable changes in the 
load flow are expected also due to the decision of the German 
government to close down nuclear power plants during the 
next few years. 
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In fact, the European Power System is designed rather as a 
backup system to maintain power supply in case of power 
plant outages. The system is operated by several independent 
transmission utilities, joint by a large mashed high voltage 
grid. Because of the increasing long distance transmissions, 
the system steers closer to the stability limits. Thus, the 
operators need computational real time tools for controlling 
system stability. Of main interest in the European Power 
System is hereby the oscillatory stability assessment (OSA). 
The use of on-line tools is even more complicated because 
TSOs exchange only restricted information. Each TSO 
controls a particular part of the power system, but the 
exchange of data between different parts is limited to a small 
number because of the high competition between the utilities. 
However, the classical small-signal stability computation 
requires the entire system model and is time consuming for 
large power systems. Therefore, this paper suggests using 
Neural Networks (NN) for a fast on-line OSA based only on a 
small set of data. 

Real time stability assessment has to be designed as a 
robust tool that is not influenced by time of the day, the 
season, the topology and missing or bad data inputs. 
Therefore, this paper focuses on the robustness issues of the 
proposed OSA. The basic approach will be explained shortly 
because it is already published in other papers [3] and [4]. 

II.  16-MACHINE DYNAMIC TEST SYSTEM 

 
Fig. 1  One-Line Diagram of the PST 16-Machine Test System 

 
The PST16 network (Figure 1) used in this study is a 

400/220 kV 16-machine test system. It allows to study 
different kinds of stability problems especially inter-area 
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oscillations and has been developed based on characteristic 
parameters of the European power system [5]. 

Since the operating point in real power systems changes 
continuously, 5 different operating conditions are considered. 
These operating conditions include high and low load 
situations like in winter and in summer, and change of the 
networks’ topology when transmission lines are switched 
(Table I). 

TABLE I 
APPLIED OPERATING CONDITIONS 

 

# Name Description 
1 Winter Base Case, Generation and Load at 100 % 
2 Spring Generation and Load decreased to 80 % 
3 Summer Generation and Load decreased to 60 % 
4 Winter S1 One Circuit of A to B Tie Line switched off 
5 Winter S2 One Circuit of B to C Tie Line switched off 

 
To generate training data for the NN, various load flow 

scenarios under the 5 operating conditions shown in Table I 
are considered. These scenarios are generated by real power 
exchange between 2 areas. The different load flow scenarios 
result in generating 5,360 patterns for NN training. 

III.  APPROACH FOR PREDICTING CRITICAL MODES BY NN 

Large power systems include many system variables, called 
features, such as transmission line flows, generated powers 
and demands. Therefore, the feature set is too large for any 
effective OSA method and creates the bottleneck problem for 
NN training [6]. For this reason, feature selection is 
performed once in the beginning. In the following OSA 
method, the initially selected features are used. The selection 
method is based on the principal component analysis (PCA) 
and the k-Means cluster algorithm [4]. In the first step, the 
PCA is applied to all features to reduce the data set. In the 
second step, the reduced data set is clustered by the k-Means 
algorithm. Because of the similarity between features within a 
cluster, one can be selected and the others can be treated as 
redundant information. In this study, a set of 50 features were 
selected and used as NN input. 

The proposed OSA method consists of three steps 
 

• Filtering and restoration of data 
• Classification of critical and non-critical scenarios 
• Eigenvalue mapping for critical scenarios  

 

The focus of this paper is directed on the first topic, which 
ensures that only a set of consistent data can proceed the NN. 
The second and third step represents the core of the method. 
However it has been discussed in former papers and therefore, 
it will be described here to the extent necessary for 
understanding the procedure. The three steps for robust on-
line OSA are shown in Figure 2. 

Once the input features have passed the filter, pre-
classification is performed as second step to decide if the 
presented pattern belongs to a sufficient damped load flow 
scenario or not. In this study, the decision boundary for 
sufficient and insufficient damping is at 4%. When a pattern 

includes no eigenvalues with corresponding damping 
coefficients below 4%, the load flow of this pattern is 
considered as sufficient damped. When at least one of the 
modes is damped below 4%, the load flow is considered as 
insufficient damped. Only those patterns, which include 
insufficient damped modes, are used to train eigenvalue 
mapping by the NN in the third step. In this way, this NN is 
focused on critical load flow scenarios, which allows to 
produce more accurate results. 

 
Fig. 2  Robust On-Line OSA Method using Neural Networks 

 
Fig. 3  Computed Eigenvalues of the PST 16-Machine Test System for 
Insufficient Damped Load Flow Scenarios and Sample Point Locations in the 
Observation Area 

 
The eigenvalue mapping is performed as proposed in [3] 

and [4]. It requires that the observation area in the complex 
eigenvalue space is defined first. It is located in the region of 
insufficient damping in the range between 4% and –2%. Then, 
this area is sampled along the real axis (σ) between 4% and –
2%. This is done 5 times for 5 different frequencies f. The 
sampled observation area of insufficient damping is shown in 
Figure 3, where the sample points are marked by circles. The 
sampling results in a set of 47 sample points. After the 
observation area is sampled, the sample points need to be 
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activated according to the positions of the eigenvalues. Thus, 
the distance between the eigenvalues and the samples is used 
to compute activation for the sample points. The closer the 
distance between an eigenvalue and a sample point, the higher 
the activation for this sample point. 

 
Fig. 4  Activation Surface constructed by Sample Point Interpolation and 
Boundary Level 

 
Fig. 5  Complex Eigenvalue Space with Predicted Regions and Real Positions of 
corresponding Eigenvalues 

 
The sample point activations are computed for all patterns. 

The data are then normalized and shuffled randomly before 
the 5 NN are trained independently. Once the NN are trained 
properly, the NN results need to be transformed from 
activation level into eigenvalue locations. This transformation 
is done using the sample point activations. For all patterns, the 
activation values given from the sample points are used to 
setup an activation surface, which is used to construct a 
region in which the real eigenvalue is located. The activation 
surface is constructed by linear interpolation between all rows 
and columns of sample points shown in Figure 3. The surface 
at the constant level of 0.5 is called boundary level. It results 
from the minimum activation, which is necessary to detect an 
eigenvalue in the complex space. However, the intersection of 
the activation surface and the boundary level leads to a region, 

which is called predicted region. For one pattern from the data 
set, the activation surface and the boundary level is shown in 
Figure 4. Figure 5 shows the view from above onto the 
boundary level. Thus, the predicted region in the complex 
eigenvalue space can be determined. 

By using the proposed NN based OSA method, a fast 
prediction of the eigenvalues is possible, provided that the 
method is robust in terms of the network situation. In fact, 
when the operating point of a given power system changes, 
the corresponding eigenvalues may shift significantly. 
Changes in the network topology, the load situation, and the 
voltage level will affect the position of the eigenvalues and 
therefore the stability situation in the power system. 
Therefore, robustness can be obtained by NN training with 
patterns including such cases. This is done using the operating 
conditions and load flow scenarios described in section 2. In 
the studied power system all scenarios have been considered 
by only one set of NN. That means, the designed OSA tool 
could be used over the whole year period at any operating 
conditions. However, it depends on the network and possible 
topological scenarios. Hence, if necessary, it is recommended 
to train separate NN for different situations like seasons or 
topology. 

IV.  BAD DATA DETECTION AND OUTLIER RESTORATION 

Most of the NN input information is obtained from the 
control center and therefore from the state estimator, which 
ensures verified data. However, there is still a risk for bad 
data when the data are transferred from external control 
centers to the TSO running the OSA. Furthermore, there 
might be some special NN input features, which will not pass 
the state estimator, i.e. particular generator data. State 
estimation methods have been improved for a long time and 
they are able to correct bad data measurements. But in fact, 
they require the entire system topology because they base on 
load flow equations. But usually, none of the TSOs has 
detailed knowledge of the entire power system topology up-
to-date for online OSA. For these reasons, alternative methods 
need to be applied for bad data detection and restoration, 
which do not base on the system topology and the load flow 
equations. 

A.  Similarity Analysis and Check of Limits 

The easiest method to find outliers is the comparison to the 
known limits of the data. Limits for particular measurements 
are known and can be found in the data set very fast. 
Therefore, any new pattern is verified first based on known 
general limits. However, outlier features can be located within 
the range, even when they are bad or with error since they 
don’t meet load flow conditions of the particular case. Only 
when the pattern set as a whole is investigated, the outlier can 
be detected. The similarity analysis bases on the idea to build 
a subset of patterns from the feature matrix, whereby the 
patterns in the subset are similar to a new given one. Then, the 
new pattern is compared feature by feature to the subset 
patterns. Features, which show a high error, might contain bad 
data. The subset can be selected manually, i.e. all patterns for 
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each Monday, or it can be selected using an algorithm like 
described in this paper. When a new pattern is presented to 
the detection algorithm, a subset of similar patterns from the 
feature matrix is built using the correlation coefficients. In the 
following, the new pattern is compared to the subset. Inlier 
factors show the deviation of each feature within the subset 
and outlier factors indicate the deviation of each feature 
between subset and the new pattern. A feature is flagged as 
outlier when its outlier factor exceeds the corresponding inlier 
factor. The proposed method works very accurate when the 
presented pattern contains few outliers resulting from small 
and medium errors. The lack of the method is the search for 
similar patterns in the entire feature matrix. For presented 
patterns containing many outliers or very high errors, the 
algorithm cannot find the corresponding patterns in the 
matrix. 

B.  Principal Component Residuals 

The theory of the principal component residuals is well-
known and described many times in literature, i.e. [7] and [8]. 
It bases on the PCA method, which is a projection of the 
features onto the axes of the orthogonal principal coordinate 
system. The standardized data matrix Z of size np ×  

includes p patterns and n original features. Its covariance 
matrix is called Σ. When PCA is performed, the result is the 
matrix T of size nn×  including the eigenvectors of the 
covariance matrix Σ. Usually the largest eigenvalues and the 
corresponding eigenvectors are of interest as they represent 
the matrix Z with sufficient accuracy. For bad data detection, 
however, the smallest principal components will be 
investigated due to the expectation of large values in case of 
bad data. The projections onto the smallest principal 
component coordinates are computed by 

rTZZY ⋅−= )(         (1) 

where rT  is a rn ×  matrix including the eigenvectors of T, 

which correspond to the smallest eigenvalues of the 

covariance matrix Σ and Z  is a matrix including the mean 
values of Z, which is zero for the normalized case. The rp ×  

matrix Y contains the principal component residuals, which 
are relevant for studying the deviation of an observation from 
a fitted linear subspace. When a pattern of the feature matrix 
corresponds highly to the transformation, it will be projected 
on the main largest principal axes only and the projections 
onto the last few principal axes should be nearly zero. When a 
row of Y shows values far from zero, the pattern 
corresponding to this row does not match the principal axes 
and thus it can be treated as an outlier pattern. 

If the principal components are calculated of a large 
consistent set of feature vectors, the corresponding matrix Tr 
can be used for checking new-presented patterns for their 
affiliation to the data set. Bad data or errors can be recognized 
on the principal axes much easier as in the original 
coordinates. 

This technique is fast, highly reliable and even small 
outliers can be detected. However, when the pattern is 

detected as an outlier pattern, there is still no information, 
which features are affected and if there is a single or multiple 
outlier. 

To show the ability of the similarity analysis and the 
principal component residuals in detecting bad data, both 
methods are applied for the same load flow condition. The 
comparison is shown in Table II for one particular load flow 
scenario at the Winter and the Summer operating condition. 
The data are presented once as correct data, once with bad 
voltage data (correct + 0.5%) at one bus and once with bad 
power data (correct + 10%) on one line. The criterion for the 
detection is the maximum of the residuals for the last 3 
components in case of the principal component residuals 
analysis and in case of the similarity analysis the maximum 
ratio of the outlier factors by the inlier factors. The table 
shows a noticeable increase in the applied criteria in case of 
bad data, compared to the correct data case. The increase 
allows to distinguish easily between correct and bad data. 
 

TABLE II  
COMPARISON OF CORRECT AND BAD DATA FOR 
WINTER AND SUMMER LOAD FLOW SITUATIONS 

 Data description Maximum of 
last 3 Residuals 

Maximum of 
Outlier/Inlier 

Correct Data 0.41 1.00 
Bad Voltage Data 
412.39 instead of 410.34 kV 

43.30 114.65 

W
in

te
r 

S
itu

at
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n 

Bad Power Data 
851.16 instead of 773.78 MW 

1.22 18.31 

Correct Data 0.76 0.82 
Bad Voltage Data 
415.99 instead of 413.92 kV 

43.47 26.00 

S
um

m
er

 
S

itu
at

io
n 

Bad Power Data 
564.37 instead of 513.06 MW 

13.99 27.93 

 

C.  NN Auto Encoder 

The auto encoder network is a well-known type of NN and 
discussed in detail in [9]. This NN, shown in Figure 6, 
replicates the input vector at the output. In other words, the 
NN is trained to obtain identical input and output. 

 
Fig. 6  NN Auto Encoder 

 
The error between input and output vector will be low for 

any trained load flow condition. When a new pattern contains 
bad data, the features of this pattern do not belong to a 
feasible load flow condition and the error will be high when 
presented to the NN auto encoder. Therefore, abnormal 
differences between inputs and outputs of the auto encoder 
indicate pattern greatly suspicious to contain bad data. The 
auto encoder is highly sensitive to outlier pattern. However, it 
is not possible to determine the feature from the new pattern, 
which contains the bad data. Since all features inside the NN 
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are cross connected, a high auto encoder error at feature i 
does not result necessarily from bad data at feature i. 
Therefore, the NN auto encoder can only be used, like 
principal component residuals too, to detect outlier patterns, 
but not outlier features. 

D.  Multidimensional Feature Forecasting by NN 

Another method, which is able to find outlier features uses 
feature forecasting to produce expected values, which have to 
meet by correct measurements. This method for nonlinear, 
multidimensional feature forecasting bases on NN. Hereby, a 
multilayer feed-forward NN is trained with the last history 
data of all selected features. To keep the size of the network 
in a dimension where it can be trained easily, the last 3-6 
history data are used. Figure 7 shows the basic idea for n input 
features and k history data. 

 
Fig. 7  Basic Scheme for Nonlinear, Multidimensional Feature Forecasting using 
NN with n Input Features and k History Values 

 
Fig. 8  Results of the Multidimensional Feature Forecasting by NN over 1 Day. 
Power on a Transmission Line 

 
The NN is trained with time series data from the database, 

which is assumed to be consistent. When NN is used on-line, 
the NN outputs are compared to the measured features and 
those, showing differences beyond a certain limit, are flagged 
as outlier. The advantage of this method results from its 
multidimensional characteristic. As well the history of all 
features (time series) as the load flow conditions are 
considered and thus the NN is able to predict the correct 
reference value for check the measurements. Figure 8 shows 
NN results of feature forecasting for one feature (real power 
on a transmission line) over one day. The NN training was 
carried out with a time series over 6 days. The NN inputs are 

4 history data (weighted average values) of all 50 selected 
features. 

V.  OUTLIER RESTORATION 

Once a new input pattern recognized as outlier pattern and 
the particular bad features are selected, the bad data have to 
be restored to make it proper for OSA. This is possible using 
the same NN auto encoder network as described in the 
previous section. Hereby, the NN auto encoder is involved 
into an optimization loop where it describes the power-flow-
conform relationship between the features. A sequential 
quadratic optimization, which is the most favorable algorithm 
for continuous problems, is utilized to adjust the elements of 
the feature vector. The algorithm restores the bad data 
elements by minimizing the error of the NN auto encoder. 
Usually it can be assumed that most of the original 
measurements are correct and thus these variables can kept 
constant. Hence, only some suspicious inputs need to be 
changed by the optimization. The restoration of bad features 
is succeeded when the difference between the input and 
output vectors of the auto encoder is small. The optimization 
diagram is shown in Figure 9. 

 
Fig. 9  Feature Restoration by Optimization using NN Auto Encoder  

 
Fig. 10  Progress of Feature Restoration for 6 Voltage Features 

 
To test the ability of the optimization algorithm when 

restoring the missing input data, 6 voltage features are 
determined as “missing” and set to 0. Starting from 0 as initial 
value, the optimization will restore the original values within a 
few milliseconds and with high precision. Figure 10 shows the 
progress of restoration of selected voltages depending on the 
number of auto encoder function calls during the optimization 
process. The total number of iterations is 19, which is much 
smaller than the total number of function calls since the 
optimization calls the cost function several times during each 
iteration step. The comparison between original and restored 
feature values is listed in Table III. As can be seen, the 
restoration is very accurate. 
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TABLE III 

COMPARISON OF 6 ORIGINAL AND RESTORED VOLTAGE FEATURES IN KV 
# Original Restored Difference 

1 414.99 415.07 + 0.02 % 
2 400.02 400.02 + 0.00 % 
3 239.99 240.30 + 0.13 % 
4 414.99 413.08  - 0.46 % 
5 236.03 236.44 + 0.17 % 
6 236.48 236.88 + 0.17 % 

 
The example shown before is representative for the 

optimization based restoration carried out by the authors. 
Because the NN auto encoder is trained with various load 
flow scenarios, it will always find a solution, which meets a 
feasible load flow condition, when the reminding fixed 
variables are enough to represent this load flow situation. 
However, it requires that the input feature vector contains 
redundancy not only for a few variables, but for the whole 
vector. This issue can be considered by the selection of 
features based on the clustering technique as the clusters 
contain independent groups, which have to be represented 
with redundancy in final choice. For a few missing features, 
the algorithm will always find the correct solution. In the 
investigated test network, even for 50% (!) missing inputs the 
algorithm was able to find a solution, which was still close 
enough to the real scenario to use for OSA. 

VI.  CONCLUSION 

A robust OSA can be carried out based on properly 
designed and trained NN. The proposed method for predicting 
critical inter-area modes allows to consider different load flow 
conditions resulting from seasonal and topological changes. 
Thereby, the activation of sampling points by possible 
eigenvalues located nearby is predicted. Thus the method 
becomes independent from the number of critical modes. 
Furthermore, different NN can be used each of them assigned 
to a particular section of the complex eigenvalue plain. Thus, 
the NN will be able to consider widely warring load flow 
scenarios. 

Robust assessment requires reliable input data. The paper 
discusses different methods for detection erroneous features. 
The most powerful methods are the principal component 
residuals based method and the NN auto encoder. These 
methods will recognize a pattern even in case of small errors. 
The disadvantage is that both methods cannot detect the 
element in the feature vector, which is the suspicious outlier. 
However, the multidimensional feature forecasting by NN is 
highly applicable because the feature prediction shows low 
errors and high accuracy. Comparing predicted and measured 
features, the elements including bad data can be identified 
easily. Once the outliers are detected, they can be restored by 
optimization, which utilizes the NN auto encoder. Essential 
for the success of the OSA is an amount of sufficient 
redundancy in the selected features to allow bad data 
detection and restoration. This is guaranteed when the feature 
selection method is applied based on clustering method. 
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