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Abstract--This paper deals with a new method for eigenvalue 

prediction of critical stability modes of power systems based on 
neural networks. Special interest is focused on inter-area 
oscillations of large-scale interconnected power systems. The 
existing methods for eigenvalue computations are time-
consuming and require the entire system model that comprises 
an extensive number of state variables. After reduction of the 
neural network input space and proper training of the neural 
network, it predicts the stability condition of the power system 
with high accuracy. A byproduct of this research is the 
development of a new 16-machine dynamic test system. 
 

Index Terms-- Small-Signal Stability, Inter-Area Oscillations, 
Eigenvalues, Neural Networks 

I.  INTRODUCTION 
Inter-area oscillations in large-scale power systems are 

becoming more common especially for the European 
Interconnected Power System UCTE/CENTREL. The system 
has grown very fast in a short period of time due to the recent 
eastward expansion. This extensive interconnection alters the 
stability region of the network, and the system experiences 
new inter-area oscillations associated with the swinging of 
many machines in one part of the system against machines in 
other parts. Moreover, for certain load flow conditions, the 
system damping changes widely [1], [2]. 

With the deregulation of the electricity markets in Europe, 
the utilities are allowed to sell their generated power outside 
their traditional borders and compete directly for customers. 

For economical reasons, the operators are often forced to 
steer the system closer to the stability limits. Thus, the 
operators need different computational tools for system 
stability prediction. These tools must be accurate and fast to 
allow on-line stability assessment. The computation of the 
small-signal stability is a time consuming process for large 
networks, which includes the load flow computation, the 
linearization at the operating point, and the eigenvalue 
computation [3]. 

An alternative method is to use a neural network (NN) 

trained with off-line data for different load flow and system 
conditions. By using NN, a fast computation of the 
eigenvalues is possible, provided that the network is properly 
designed and trained. 
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Recent NN approaches showed highly accurate results 
regarding the eigenvalue prediction of large-scale power 
systems [4]. But all of them are trained only for narrow 
operating conditions of the power system. In fact, when the 
operating point of a given power system changes, the 
corresponding eigenvalues may shift significantly. Therefore, 
the NN has to be designed as a robust assessment tool that is 
not influenced by the time of the day, the season, and the 
topology of the power system. 

A NN, which is able to manage all these additional 
influences, must be designed for variable number of 
eigenvalues. Hence the NN must have a variable structure, 
which is a difficult task. To address this issue, the assessment 
of the system stability is based on an observation area, which 
contains the dominant eigenvalues with insufficient damping. 

To generate the training data for the NN, the complex 
eigenvalue space is divided into regions of fixed number. In 
this case, the NN is trained with the activation level of these 
regions, which depends on whether there is an eigenvalue 
within a region or not. After proper training, the NN can be 
used in real time to decide on the presence of eigenvalues in 
the selected regions. 

II.  16-MACHINE DYNAMIC TEST SYSTEM 
The PST16 System used in this study is a newly developed 

dynamic 16-machine test network. The main focus is on 
representing characteristic power system dynamics like inter-
area oscillations in the time range of a few seconds to minutes. 

The PST16 System is modeled by using real data. Three 
different generator units, such as hydropower, thermal and 
nuclear types are considered. The rated power of these units is 
220 MW, 247 MW and 259 MW, respectively. The power 
plants consist of a particular number of similar units 
connected to the network as can be seen in Figure 1. 
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The generator models are of 5th order. Different IEEE 

standard type exciter system models [3] have been used, i.e. 
for hydro generators ST1A, for thermal driven generators 
DC1A and for the nuclear units AC1A exciter models. Except 
for the nuclear units, the turbines and the governing systems 
are also modeled in detail. 

The one-line diagram of the PST16 System is shown in 
Figure 1. The system consists of three strongly meshed areas. 
Each has 5-6 generators. Table I includes the fundamental 
topology information like the number of bus nodes, lines, 
transformers, and generators for each of the three areas 
separately. Partly weak transmission lines connect these areas. 
The connections are weak because the length of the lines is 
about 280 km. Thus, inter-area oscillations can occur. 

However, the system is designed for power exchange 
between these areas. The first area (Area A) contains mostly 
hydro power plants and is considered to be a power exporting 
area. Area B and area C are load demanding areas that import 
power from area A. The total generation of the system is about 
16 GW and the transmission and sub-transmission voltage 
levels are 380kV, 220kV, and 110kV. Table II shows the 
concentration of hydro, thermal, and nuclear generators in 
each area and Table III lists the total load and the total 
generation per area. 

TABLE I 
NUMBER OF ELECTRICAL DEVICES FOR EACH AREA SEPARATELY 

 
 Buses Lines Transf. Generators 

Area A 17 12 9 6 
Area B 21 15 10 5 
Area C 28 24 9 5 
Total 66 51 28 16 

 
TABLE II 

USED GENERATOR TYPES FOR EACH AREA 
 

 Number of Generators 
 Hydro Thermal Nuclear 

Area A 5 1 0 
Area B 0 1 4 
Area C 0 5 0 

 
TABLE III 

LOAD AND GENERATION FOR EACH AREA SEPARATELY 
 

 Load Generation 
Area A 2,000 MW 4,840 MW 
Area B 6,100 MW 5,641 MW 
Area C 7,465 MW 5,450 MW 
Total 15,565 MW 15,931 MW 

 

Fig. 1  One-Line Diagram of the PST 16-Machine Test System 
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To get an insight into the dynamic behavior of the system, 
time domain simulations as well as eigenvalue calculation can 
be carried out. Usually engineers prefer investigations in the 
time domain. However, eigenvalues provide some additional 
information making this technique more suitable for small 
signal stability assessment.  

First, two different load flow situations were generated by 
real power exchange between the areas of the test network. 
Then, for the new operating point, eigenvalues were computed 
followed by time domain simulation of a small load switching 
action (10 + j5 MVA at t=2s in the node #13). Figure 2 shows 
three inter-area eigenvalues for the considered load flow 
situation. Load situation 1 results from the original state 
according to the description above. Situation 2 is 
characterized by an additional real power exchange of about 
1300 MW from area A to area C. 

 

 
Figure 2:  Eigenvalue Shift from Load Flow Situation 1 to Situation 2 
 

Figure 3 shows both the voltage at bus #5 in area A and the 
real power on the transmission line from bus #5 in area A to 
bus #1 in area C. Since area A and area C are connected by a 
double circuit line, the total exchanged real power is about 
1720 MW, which is twice the real power shown in Figure 3. 

Figure 4 shows the same variables at the same bus for the 
operating point 2 resulting from additional power exchange in 
the system. In this scenario, the real power transmitted 
between areas A and C is much higher than in situation 1. 
Because of the double circuit between these areas, the total 
transmitted real power is about 2870 MW, which is close to 
the maximum transfer capacity of this line. Figures 2-4 show 
obviously that extreme load flow scenarios can lead to a 
weakly damped system. Yet the damping in situation 1 is 
sufficient. Situation 2 results in a weakly damped system 
behavior. However, it remains still stable. The results in the 
time domain correspond with the eigenvalues shown in Figure 
2. When the transmitted power is increased even more, the 
system will get unstable. 

855

857

859

861

0 5 10 15 20 25 30 35 40 45 50

Time in s
383.3

383.4

383.6

383.7

383.8

V

[ kV ]

P
[ MW  

P

V

 

Base load flow 

Figure 3:  Bus Voltage at Bus #5 in Area A and Real Power on Transmission 
Line from Bus #5 in Area A to Bus #1 in Area C for Load Flow Situation 1 
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Figure 4:  Bus Voltage at Bus #5 in Area A and Real Power on Transmission 
Line from Bus #5 in Area A to Bus #1 in Area C for Load Flow Situation 2 

 
One of the drawbacks of the time domain simulation is that 

often system inherent modes are not visible in the plots. For 
instance, from Figure 4 only one swing frequency can be 
recognized. It is due to the fact that simulated disturbances 
excite usually only a few modes. The modal analysis allows a 
more general conclusion since eigenvalues and eigenvectors 
are calculated. However, the modal analysis is restricted to 
linear systems, and thus the nonlinear equations of power 
system must be linearized. Nevertheless, today modal analysis 
allows treating real problems in large power systems. With the 
improving performance of modern computers, the extensive 
computational time has become less significant in the last 
years. Therefore, in our study small-signal stability assessment 
bases on the prediction of eigenvalues. However, for online 
small-signal stability studies, the direct calculation of 
eigenvalues is not applicable not only because of the 
computation time, but primarily because of the unavailability 
of a complete set of system parameters and up-to-date load 
flow information. 

III.  GENERATION OF PATTERN FOR NN 
To generate training data for the NN, different load flow 

conditions are considered. These conditions are generated by 
real power transmissions between two selected areas. To 
achieve this power exchange, the total generation in one area 
is increased while the total power in the other area is 
decreased. When the total generation in one area is changed, 

2% 3% 1% 0% 10% 

Situation 1 

Situation 2 
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the power difference is distributed equally among all the 
generators. Also, the number of generators in the power plants 
is adapted depending on the required power.  

The different load flow scenarios result in generating 3,296 
patterns for NN training. The dominant eigenvalues for all 
cases are shown in Figure 5. The slant lines in the figure mark 
constant damping at 0% to 20%. As seen in the figure, most of 
the cases are for well-damped conditions, but in some cases 
the eigenvalues shift to the low damping region and can cause 
system instability. 

 

According to Factor Analysis (FA), the matrix T  can be 
interpreted as Loadings Matrix of the selected PC as factors. 
The columns of T  contain the loadings of the original feature 
vectors to all selected PC. Note that in this relation the PC are 
not normalized with their standard deviations and thus the 
individual importance of each PC are considered. Now, the 
idea is to use the columns of T  instead of the high 
dimensional original feature vectors F  for clustering. In fact, 

the columns of T  are equivalent to those of F  but with a 
much lower dimension. Therefore, the used k-Means 
clustering algorithm shows with T  a better performance and 
accuracy as applied to the original features directly. This is 
why both techniques, principal component analysis and 
clustering, are used in combination. When the clustering is 
completed, one feature will be selected from each cluster [5]. 
However, it should be emphasized that for NN training the 
corresponding original features were used. 

T

T

T

T

O

O

T

Figure 5:  Computed Eigenvalues of the PST 16-Machine Test System for 
3,296 different load flow situations 

IV.  FEATURE SELECTION 
Features are as a rule physical quantities containing the 

necessary information for use as NN input. Large-scale power 
systems include many features such as transmission line 
flows, generated powers and demands, etc. The possible 
feature set is usually too large for any effective NN training 
[5]. Therefore, feature extraction or selection techniques must 
be used. Thereby, the objective is to reduce the number of 
features to a smaller number by remaining the most important 
information contents.  

The feature selection method used in this study is called 
Multi Step Selection technique (MSS). MSS is based on the 
Principal Component Analysis (PCA) and the k-Means 
clustering algorithm. 

Principal Components (PC) describe the features in an 
orthogonal space. Usually a few PC are sufficient for 
characterizing all features. This can be decided based on the 
variances, which are the eigenvalues of the feature correlation 
matrix. However, PC are features without physical meaning, 
which is the general drawback of feature extraction methods. 
On the other hand, feature selection techniques remain 
original feature vectors. It is evident that in this case more 
features are required because the original features contain only 
partial information and beside this in a mixed form. 

In this paper, PCA was used for selecting original features 
based on new feature vectors reduced dimensionality. The PC 
are calculated according the equation 

T
PCO TFF ≈                   (1) 

where   
 F   contains original feature vectors 

O

  contains selected most important PC feature vectors PCF
  transposed eigenvector matrix to select eigenvalues of 

the covariance matrix C  
TT

O
T

O FF=

The MSS technique is necessary because of the large 
number of possible feature in power systems. In this study, the 
original feature set was split into 3 homogeneous subsets 
including power features (real power, reactive power), voltage 
features, and the corresponding voltage angle features. Then, 
the feature selection method is applied to each subset. The 
selected features are then combined to form a new group, 
from which the final features are selected applying the same 
method again. Finally, 50 of the original features remain as 
NN input variables.  

V.  NN BASED APPROACH 
The proposed stability assessment method requires that the 
observation area in the complex eigenvalue plain is defined 
first. Since the task of this study is the small-signal security 
assessment, the observation region is defined as the area, 
where inter-area eigenvalues typically occur. This can be seen 
in Figure 5. Hence, the frequency range of the observation 
area is 0.2 Hz to 0.75 Hz. The damping range is 4% to –2%. 
The observation area is then divided into smaller regions, 
which are shown in Figure 6 surrounded by dotted lines. 
The basic idea is now to activate these regions depending on 
whether there is an eigenvalue within a region or not. The NN 
is used to train not the specific eigenvalue position but the 
activation of each of the regions is shown in Figure 6. 
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Figure 6:  Computed Eigenvalues of the PST 16-Machine Test System for 
3,296 different load flow situations and Regions of the observation Area 

 

A region is activated when an eigenvalue is located inside 
this region. Because the positions of the regions are defined 
first, one can derive the system stability after NN training by 
observing the activated regions. If no region is activated, the 
system is stable. In case of a weakly damped system or 
instability, one or more regions will be activated and the 
situation is indicated clearly. 

 

TABLE IV 
REGION DISTRIBUTION TABLE FOR THE ENTIRE OBSERVATION AREA 

 

NN NN 
Output # 

Frequency 
Range 

Damping 
Range 

Stable / 
Unstable 

1 4 ... 3 % S 
2 3 ... 2 % S 
3 2 ... 1 % S 
4 1 ... 0 % S 
5 0 … -1 % US 

A 

6 

 
 

0.60 – 0.75 Hz 

 -1 … -2 % US 
1 4 ... 3 % S 
2 3 ... 2 % S 
3 2 ... 1 % S 
4 1 ... 0 % S 
5 0 ... 1 % US 

B 

6 

 
 
0.45 – 0.60 Hz 

-1 ... -2 % US 
1 4 ... 2 % S 
2 2 ... 0 % S C 
3 

 
0.30 – 0.45 Hz 

0 ... -2 % US 
1 4 ... 2 % S 
2 2 ... 0 % S D 
3 

 
0.20 – 0.30 Hz 

0 ... -2 % US 
 
The regions are defined in Table IV. To increase the 

accuracy of the classification, one NN is used for all regions 
within the same frequency range. Hence, 4 independent NN 
are used. Notice that the regions are not distributed equally 
over the entire area. This is done because NN is not a high 
precision tool and cannot be accurate in narrow zones. 

After the regions are defined, they need to be activated 
according to the positions of the eigenvalues. Thus, a distance 
between the eigenvalue and the center of a given region is 

used to compute activation for this region. The eigenvalue is 
defined by its frequency and damping ratio evf evζ . The center 
of a region is its geometrical center. The distance between a 
given region and a given eigenvalue is computed as follows: 

4% 3% 2% 1% 0% -1% -2% 

NN A
 
 
NN B
 
 
NN C
 
NN D

minmax ff
ff

2dist cev
f −

−
⋅=   (2)  

minmax ζζ
ζζ

ζ −
−

⋅= cev2dist  (3) 

where dist  and dist  are the distances in the direction of the 

frequency and the damping axes, respectively. 
f ζ

The distance used for the region activation is given by 
),max( ζdistdistdist f=         (4) 

Based on this distance, the activation value a for the region is  





>
≤≤⋅−

=
2dist0

2dist0dist501
a

.        (5) 

This is done for all computed eigenvalues resulting from 
one pattern. The final activation value act of the region is the 
maximum activation of all eigenvalues regarding this region 

EVaact |)max(=           (6) 

If an eigenvalue is located exactly on the border of a 
region, the distance dist given by (4) equals 1. Thus, the 
activation act of this region obtains the value 0.5 according to 
(5). This is the minimum activation for an eigenvalue within a 
region and thus this becomes the classification margin. 

VI.  NEURAL NETWORK RESULTS 
The region activations are computed for all patterns. The 

data are then normalized and the NN is trained. The number of 
training patterns was 2,966 and the number of testing patterns 
was 330.  

For classification purpose the NN outputs representing the 
activation values of regions are transformed to binary values. 
If the activation exceeds the value of 0.5 the region is deemed 
to be activated, otherwise not activated. For activated regions 
the existence of one or more eigenvalues within this region is 
predicted. The determination of the correct eigenvalue 
locations is not possible in this approach. Therefore, the 
required accuracy has to be considered by partitioning the 
complex plain into regions. However, for practical use it is 
sufficient to know whether or not an eigevalue exists in a 
predefined region.  

The results of the NN testing were compared with the 
actual system simulation. To evaluate the results, two types of 
errors can be defined: false dismissal and false alarm. For each 
of the 4 NN, the false dismissal and the false alarm errors have 
been calculated according to equation (7) 

 

outputsNNofnumberpatternofnumber
alarms falseor  dismissalsfalseofnumber100E

×
⋅=[%]   (7) 

 

The results are tabulated in Table V. The errors are close to 
zero percent and show a high accuracy of the stability 
prediction. From Figure 6 follows that eigenvalues are never 
located inside the region, which corresponds to NN B. 
Therefore, the errors resulting from NN B are always zero. 
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TABLE V 
FALSE  DISMISSAL ERROR AND FALSE ALARM ERROR 

FOR CLASSIFICATION AFTER NN TRAINING AND TESTING 
 

NN False Dismissal False Alarm 
 Training Testing Training Testing 

A 0.06 % 0.10 % 0.08 % 0.05 % 
B 0.00 % 0.00 % 0.00 % 0.00 % 
C 0.11 % 0.10 % 0.00 % 0.00 % 
D 0.06 % 0.10 % 0.03 % 0.00 % 

 

As an error evaluation after NN training, the false dismissal 
and the false alarm errors for NN A are shown in Figures 7 
and 8, respectively. The six bars indicate the individual errors 
for each of the six predicted regions from NN A shown in 
Figure 6. 

 
Figure 7:  False Dismissal Error for NN A 

 
Figure 8:  False Alarm Error for NN A 

VII.  CONCLUSION 
This paper introduced a new method based on neural 

networks for eigenvalue prediction of critical stability modes. 
Instead of tracking the exact position of eigenvalues, the 
proposed method focuses on user defined regions. The regions 
can be defined at any location within the complex space and 
are typically located at the area of insufficient damping where 
inter-area eigenvalues occur. The method predicts the 
activation of regions by the eigenvalues, which depends on 
the nearness of eigenvalues to the region center. The 
advantage of this technique is a high flexibility. Thus, the 
power system stability can be predicted independently of the 

number of dominant eigenvalues. Moreover, the 
computational time is reduced and the accuracy of the NN 
enhanced. The results obtained by this approach show low 
errors and high accuracy for stability classification of power 
systems. 
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