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Introduction

Shortly after the second world war, in a series of papers [23, 24, 25, 26] from 1948 − 1952, Hans Richter
(1912 − 1978) laid down his general format of isotropic nonlinear elasticity based on a rather modern
approach with direct tensor notation. By translating his work “Das isotrope Elastizitätsgesetz” [23], we
aim at making his development, which precedes later work in the field by several decades, accessible to
the international audience.

Let us briefly summarize Richter’s achievement in this paper. He uses, for the time, rather advanced
methods of matrix analysis (including the theory of primary matrix functions [12]) and employs the left
polar decomposition [11, 22, 20] of the deformation gradient F = V R into a stretch V ∈ Sym+(3) and
a rotation R ∈ SO(3). For Richter, the “physical stress tensor” is the Cauchy stress tensor σ ∈ Sym(3).
From the coaxiality between σ and V for an isotropic response, he deduces the representation formula for
isotropic tensor functions (the Richter representation, see (2.6))

σ = g1(I1, I2, I3) · 1 + g2(I1, I2, I3) · V + g3(I1, I2, I3) · V 2 (0.1)

(predating the Rivlin-Ericksen representation theorem [27] by 7 years) where gi, i = 1, 2, 3 are scalar
valued functions of the invariants Iν , ν = 1, 2, 3, with

I1 = tr(V ), I2 =
1

2
tr(V 2), I3 = detV.

Alongside, Richter introduces the logarithmic stretch tensor L = log V without citing the previous work
of Hencky [7, 9, 8, 10, 16, 18, 19, 17, 21]. He then turns to the question of what happens if the relation
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(0.1) is derived from a stored energy W (I1, I2, I3), i.e. when (0.1) is consistent with hyperelasticity. He
obtains the correct representation (see (3.11) in his text)

σ =
∂W

∂I3
· 1 +

1

I3
· ∂W
∂I1
· V +

1

I3
· ∂W
∂I2
· V 2 , W = W (I1, I2, I3). (0.2)

In the next section, Richter introduces the multiplicative split of the elastic stretch V into volume preserving
(isochoric) parts and volume change (see (4.1))

V =
V

(detV )
1
3

· (detV )
1
3 · 1 (0.3)

and he observes that the logarithmic stretch tensor additively separates both contributions by using the
classical deviator operation (see (4.2)) such that

log V = dev log V +
1

3
tr(log V ) · 1 = log

(
V

(detV )
1
3

)
+

1

3
log detV · 1, devX = X − 1

3
tr(X) · 1. (0.4)

He also observes that the invariants based on the logarithmic stretch tensor satisfy certain algebraic
relations, cf. [3]. In Richter’s fifth section, he introduces the volumetric-isochoric split

W (F ) = Wiso (dev log V ) +Wvol (tr(log V ))

= Wiso

(
log

(
V

(detV )
1
3

))
+Wvol (log detV ) = W̃iso

(
V

(detV )
1
3

)
+ W̃vol(detV )

of the stored energy (often erroneously attributed to [6]) and he immediately obtains the important result:
An isotropic energy is additively split into volumetric and isochoric parts if and only if the mean

Cauchy stress 1
3 trσ is only a function of the relative volume change detV . In that case,

1

3
trσ =

1

detV
·W ′vol(log detV ) = W̃ ′vol(detV ). (0.5)

This result has been rediscovered and re-derived multiple times, e.g. in [2, 13, 28, 4, 5, 14]. In
addition, Richter shows that this property of the volumetric-isochoric split is invariant under a change of
the reference temperature. Finally, he poses the question whether a linear relation between σ and V in
the form (the Hooke’s law as he perceives it)

σ = 2µ (V − 1) + λ tr(V − 1) · 1, (0.6)

where µ > 0 is the shear modulus and λ is the second Lamé parameter, can be consistent with hyperelas-
ticity. A short calculus reveals that (0.6) is hyperelastic if and only if 2µ = λ, i.e. for Poisson ratio ν = 1

3
(which is approximately satisfied for many metals, e.g. aluminium). For all other values of ν, Hooke’s law
is incompatible with the hyperelastic approach and Richter proposes to use instead (the quadratic Hencky
energy [7, 15])

W (F ) = µ ‖dev log V ‖2 +
2µ+ 3λ

6
tr2(log V )

with the induced stress-strain law

σ · detF = τ = 2µ log V + λ tr(log V ) · 1 , (0.7)

where τ is the Kirchhoff stress tensor.
We will briefly discuss the constitutive relation (0.6). In order to check hyperlasticity of the Cauchy

stress-stretch relation in this case, we use the representation, consistent with (0.2),

σ(V ) =
2µ

J
DVW (V ) · V, J = detV, (0.8)
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and consider the energy W (F ) = 2µ detV [tr(V )− 4]. Then σ(V ) = 2µ (V − 1) + 2µ tr(V − 1) · 1.

Since tr[σ(V )] = 8µ tr(V − 1) and tr[σ(α 1)] = 24µ (α − 1), the Cauchy stress tensor given by (0.6) with
2µ = λ is injective (but not bijective, since for tr(σ) = −K+ < −24µ there does not exist a stretch
V ∈ Sym+(3) such that tr(σ(V )) = −K+). Furthermore, note that

[tr(V )]2 = (λ1 + λ2 + λ3)2 = λ2
1 + λ2

2 + λ2
3 + 2(λ1λ2 + λ1λ3 + λ2λ3) = tr(B) + 2 tr(Cof B), (0.9)

where λi are the singular values of the deformation gradient F . Then

2µ detV [tr(V )− 4] = 2µ
√

det(B) {
√

tr(B) + 2 tr(Cof B)− 4} = 2µ
√
I3 {
√
I1 + 2 I2 − 4}

= W (I1, I2, I3) , I1 = tr(B), I2 = tr(Cof B), I3 = detB. (0.10)

For this energy, the weak empirical inequalities [30] ∂W
∂I1

> 0 and ∂W
∂I2

> 0 are satisfied. The principal
Cauchy stresses are given by σi = 2µ·(λi − 1 + (λ1 + λ2 + λ3 − 3)), which shows that the tension-extension
(TE) inequalities and the Baker-Ericksen (BE) inequalities [1], given by

0 <
∂σi
∂λi

= 2µ · (1 + 1) = 4µ and 0 < (σi − σj)(λi − λj) = 2µ (λi − λj)2

respectively, are satisfied as well. We also note that W (V ) = 2µ · detV · [tr(V ) − 4] is the Shield-
transformation [29] of W ∗(F ) = 2µ · [tr(V −1)− 4], where

W ∗(F ) = 2µ

(
1

λ1
+

1

λ2
+

1

λ3
− 4

)
= g(λ1, λ2, λ3) (0.11)

has the Valanis-Landel form1 [31] and g is convex in (λ1, λ2, λ3); the TE-inequalities are satisfied as well.

Richter’s paper is not only written in German, but his notation strongly relies on German fraktur
letters, which makes reading his original work rather challenging. In our faithful translation of his paper,
we have therefore updated the notation to more current conventions; a complete list of notational changes
is provided in Appendix A. Richter’s original equation numbering has been maintained throughout.
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The isotropic law of elasticity
By Hans Richter in Haltingen (Lörrach)

Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 28, 1948, page 205− 209

Abstract

From the demand of the isotropy and of the existence of the thermodynamic potentials a general
form of the three-dimensional law of elasticity is stated. In doing so, the logarithmic matrix of relative
elongations is used, which permits the separation of the variation of the volume and that of the shape
by simply forming the deviator. The resilience energy is exactly the sum of the energy of the variation
of the volume and that of the shape, if the average tension depends only on the variation of the volume.
For finite deformations, the law of Hooke is permissible only in the case ν = 1

3
.

Aus der Forderung der Isotropie und der Existenz der thermodynamischen Potentiale wird für das
räumliche Elastizitätsgesetz eine allgemeine Form angegeben, wobei die logarithmische Dehnungs-
matrix verwendet wird, bei der die Trennung in Volum- und Gestaltänderung durch gewöhnliche
Deviatorbildung möglich ist. Die elastische Energie ist genau dann die Summe aus Volum- und
Gestaltänderungsenergie, wenn die mittlere Spannung nur von der Volumänderung abhängt. Das
Hookesche Gesetz ist für endliche Verzerrungen nur bei ν = 1

3
zulässig.

En supposant l’isotropie et l’existence des potentiels thermodynamiques, on donne une forme générale
de la loi de l’élasticité en se servant d’une matrix logarithmique d’allongement. Ce procédé permet
une séparation des changements de volume et de forme par une simple formation de déviateur. Si
la tension moyenne ne dépend que du changement de volume, l’énergie d’élasticité est la somme des
énergies de changement du volume et de la forme. La loi de Hooke n’est admissible que pour ν = 1

3
.

1 Definitions

In generalization of Hooke’s law, a material is called purely elastic if the Cauchy stresses depend in a
uniquely reversible way on the stretches. Strictly speaking, however, it is necessary to discuss the heat
transfer which occurs in the tensile test; in particular, it is necessary to distinguish between an adiabatic
and isothermal law of elasticity. This choice also clarifies what is meant by strains, since strains on the
adiabat resp. isotherm can be referred e.g. to the initial state, for which the stresses disappear completely.
The strains can also be referred to a stress-free initial state at an arbitrarily chosen initial temperature
Θ0 instead. Then the stress-free state at another temperature Θ corresponds, in the case of an isotropic
material, to uniform stretches in all directions, i.e. the thermal expansion. In this manner the law of
thermal expansion is included in the elastic law. Of course, the affected material must be assumed not to
change permanently by changes in temperature within the considered temperature range.

Thus, we assume a stress-free state at a temperature Θ0. Let the deformation of the material into another
state be characterized by the matrix F and the related stresses by the stress tensor σ.2 We call the material
ideally elastic if σ depends uniquely on F and Θ. The material is said to be isotropic if this dependence
is invariant under Euclidean rotations.

When solving the problem of finding the most general form of this dependence, one appropriately operates
with matrices, where the following abbreviations are used:

XT is the matrix obtained by reflecting X over its main diagonal. (X)ik is the entry in the i-th row and
the k-th column of X. detX is the determinant of X. trX is the sum of the elements on the main diagonal
of X: called the trace of X. 1 is the identity tensor. If f(x) =

∑
an · xn, then, assuming convergence,

f(X) =
∑
anX

n.

2F is the Jacobian matrix: dx̂ = F dx. σ is the physical stress tensor at the point x̂.
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Recall the following simple statements:

tr(X · Y ) = tr(Y ·X) . (1.1)

tr(X · d log Y ) = tr(X · Y −1 · dY ) (1.2)

if X commutes with Y , but not necessarily with dY .

log(detX) = tr(logX) , (1.3)

if logX is well defined.

For a pure rotation R: RRT = 1 . (1.4)

For a pure stretch V : V = V T .

Every X can be represented in the form:

X = V ·R , (1.5)

where the multiplication is to be read in its functional notation from right to left.

2 Consequence of isotropy

According to (1.5), F can be interpreted as a rotation R followed by a stretch V , where the principal
stretch directions of the latter are rotated against those of the coordinate axes. For the case of isotropic
materials, the application of R must not have any influence on σ. Therefore, σ is a function of V and Θ.
For given F , we can find V by using (1.4) and (1.5) by

F FT = V RRTV T = V 2 . (2.1)

The most general coaxial relation between σ and V which fulfills the invariance under rotations is now,
obviously,

σ = f(V ; I1, I2, I3,Θ) , (2.2)

where the Iν are the invariants3 of V .

Instead of V , one can also use a uniquely invertible function of V . As we will see later on, it is appropriate
to use the “logarithmic stretch”

L = log V , (2.3)

which is always defined because of the positive eigenvalues of V . We denote the invariants of L by

j = tr(L) , k = tr(L2) and l = tr(L3) . (2.4)

Further, from (1.3) and (2.1) we obtain: j =
1

2
tr(log(F FT )) =

1

2
log(det(F FT )) = log(detF ) .

Instead of (2.2), we can now write

σ = f(L; j, k, l,Θ) . (2.5)

Here, tr(σ), tr(σL) and tr(σL2) are functions of j, k, l and Θ due to (2.5). If we now define the invariants
f1, f2 and f3 as the solutions to the system of equations

tr(σ) = f1 tr(1) + f2 tr(L) + f3 tr(L2)

tr(σL) = f1 tr(L) + f2 tr(L2) + f3 tr(L3)

tr(σL2) = f1 tr(L2) + f2 tr(L3) + f3 tr(L4)

3It is easy to see that here, one of the invariants Iν can be omitted, in contrast to the subsequent formula (2.7).
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with, in general, non-vanishing determinant, then we have for

X = f1 · 1 + f2 · L+ f3 · L2 : tr(σLν) = tr(XLν) with ν = 0, 1, 2 .

Since σ is coaxial to L, it is completely determined by tr(σ), tr(σL) and tr(σL2). Therefore, σ ≡ X holds;
i.e.

σ = f1(j, k, l,Θ) · 1 + f2(j, k, l,Θ) · L+ f3(j, k, l,Θ) · L2 . (2.6)

Hence, we have found the most general isotropic relation. Using V instead of L, we would correspondingly
obtain:

σ = g1(Iν ,Θ) · 1 + g2(Iν ,Θ) · V + g3(Iν ,Θ) · V 2 . (2.7)

3 Consequence of the potential

The internal energy of the material per unit volume in the initial state is denoted by

E = E(j, k, l,Θ) ; (3.1)

the entropy is denoted by

S = S(j, k, l,Θ) . (3.2)

Then the free energy W takes the form

W = E −Θ · S = W (j, k, l,Θ) . (3.3)

If dA is now the differential of the work done by the element of volume, then

dA = −dE + Θ · dS = −dW − S · dΘ . (3.4)

Thus for isothermal elastic changes, we have

dA = −(dW )Θ=const. ; (3.5)

whereas for adiabatic changes

dA = −(dE)S=const. , (3.6)

where Θ has to be eliminated in (3.1) and (3.2), so that E appears as a function of j, k, l and S.

In order to calculate dA, we transition from a deformation F to the neighboring deformation F + dF .
Since a pure rotation has no influence on dA, we can assume that F is a pure stretch. Let e1, e2 and e3 be
the unit vectors in the principal stretch directions of V , which can be interpreted as coordinate vectors.
Let σ1, σ2 and σ3 be the components of σ in these directions. We can use the rectangular parallelepiped
spanned by V e1, V e2 and V e3 as the volume element, which is generated by the stretch V applied to
the unit cube. Let us now consider the side which starts from V e1 and which is spanned by V e2 and
V e3. Besides an infinitesimal tilting and change of the surface, this side undergoes a displacement in the
e1-direction with the magnitude e1 · ((V + dF )e1 − V e1) = e1dF e1 = (dF )11 in the transition from V to
V + dF . The work done on the considered side is therefore

−σ1 · (dF )11 · (V )22 · (V )33 = − det(V ) · (dF )11 · σ1

(V )11
.

Thus the entire work done by the volume element is

dA = −det(V ) ·
3∑
v=1

(dF )vv · σv
(V )vv

= −det(V ) · tr(σV −1dF ) . (3.7)
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The deformation V + dF now corresponds to a stretch V + dV , where due to (2.1),

(V + dV )2 = (V + dF )(V+dFT )

or

V · dV + dV · V = V · dFT+dF · V .

Multiplying the left side of the equation by σV −2, taking the trace and using (1.1), we find

2 tr(σV −1dV ) = tr(σV −1dFT ) + tr(σV −1dF ) = 2 tr(σV −1dF ) ,

since σ is symmetric and coaxial to V . From (3.7) we therefore obtain

dA = −det(V ) · tr(σV −1dV ). (3.8)

Hence, due to (1.2), (1.3) and (2.4):

dA = −ej · tr(σdL) . (3.8*)

If we substitute this expression into the isothermal relation (3.5) and use (2.6), then it follows:

ej · [f1 tr(dL) + f2 tr(LdL) + f3 tr(L2dL)] =
∂W

∂j
dj +

∂W

∂k
dk +

∂W

∂l
dl .

Since, by (2.4),

dj = tr(dL) , dk = 2 tr(LdL) and dl = 3 tr(L2dL) ,

we finally conclude that

ej f1 =
∂W

∂j
, ej f2 = 2

∂W

∂k
, ej f3 = 3

∂W

∂l

and therefore, with (2.6),

σej =
∂W

∂j
· 1 + 2

∂W

∂k
· L+ 3

∂W

∂l
· L2 , W = W (j, k, l,Θ) . (3.9)

Accordingly, from (3.6) we obtain for the adiabatic law:

σej =
∂E

∂j
· 1 + 2

∂E

∂k
· L+ 3

∂E

∂l
· L2 , E = E(j, k, l, S) . (3.10)

If we want to omit the introduction of L and use V directly when formulating the law of elasticity, then
we appropriately use the following as the invariants of V :

I1 = tr(V ) , I2 =
1

2
tr(V 2) , I3 = det(V ) .

Furthermore, according to (2.7), (3.5) and (3.8), an analogous computation leads to the law of elasticity
in the form

σ =
∂W

∂I3
· 1 +

1

I3
· ∂W
∂I1
· V +

1

I3
· ∂W
∂I2
· V 2 , W = W (Iν ,Θ) (3.11)

and a corresponding formulation with E(I1, I2, I3, S) instead of W .
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4 Transition to the deviators

The introduction of the logarithmic stretch L now proves to be not only appropriate to formulate the law
of elasticity as simple as possible, but using L also allows for the decomposition of a deformation into
a shape change and volume change by simply taking the deviatoric part, i.e. the same approach as for
infinitesimal strains, whereas a corresponding decomposition in terms of V is highly inconvenient. To see
this, we decompose the general stretch V into a shape-changing stretch Vg and a volume-changing stretch
Vv, i.e. we demand:

V = Vg · Vv = Vv · Vg with detVg = 1 and Vv = β · 1 with β > 0 . (4.1)

Obviously, (4.1) uniquely determines such a decomposition for each V with detV > 0; namely, for given
V ,

β =
3
√

detV and Vg = β−1 · V .

Since Vg commutes with Vv, we can take the logarithm of (4.1):

L = Lg + Lv with Lg = log Vg and Lv = log Vv . (4.2)

Then, by (1.3), we obtain:

tr(Lg) = log(detVg) = 0 , Lv = log β · 1 , tr(Lv) = 3 log β .

If, in general, we denote by devD the deviator corresponding to the symmetric matrix D, i.e.

devD = D − 1

3
trD · 1 , (4.3)

we can finally write:

Lg = devL and Lv =
1

3
j · 1 . (4.4)

Thus the change of shape is indeed characterized by the deviator of L. For infinitesimal strains we have
L ≈ V − 1, so that devL turns into the usual deformation deviator.

If we now introduce the invariants of devL:

y = tr((devL)2) and z = tr((devL)3) , (4.5)

then

y = k − 1

3
j2 and z = l − jk +

2

9
j3 .

We can use j, y and z instead of j, k and l as variables. Then j characterizes the change of volume,
whereas y and z characterize the change of shape. As one can easily calculate, (3.9) leads to the formula

1

3
ej trσ =

∂W

∂j

ej · dev σ = −y ∂W
∂z
· 1 + 2

∂W

∂y
· devL+ 3

∂W

∂z
(devL)2

 (4.6)

where, in contrast to (3.9), W = W (j, y, z,Θ) now holds.

A corresponding formula results from (3.10).

Without proof, let us remark that y and z cannot take on all possible values independently of each other,
but are restricted by the condition

0 ≤ z2

y3
≤ 1

6
.
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5 Decomposable elasticity laws

In the elasticity theory of infinitesimal strains the elastic energy can be interpreted as the sum of the
energy of the volume and shape change. Since the change of volume is represented by j and the change of
shape is represented by y and z, this decomposition is possible for the case of finite strains if and only if

W = Wvol(j,Θ) +Wiso(y, z,Θ) ,

resp. E = Evol(j, S) + Eiso(y, z, S)

}
(5.1)

holds. Then with (4.6):

1

3
ej · trσ =

∂Wvol

∂j
(j,Θ) .

Thus the average stress depends only on j, i.e. on the change of volume. If, vice versa, trσ depends only
on j, then by (4.6) we obtain

∂2W

∂j∂y
=
∂2W

∂j∂z
= 0 ,

which also leads to the form of W in (5.1). Consequently, we can state: The elastic energy can be
decomposed into the energy of change of volume and of change of shape if and only if the mean stress
depends only on the change of volume.

6 Transition to a new reference temperature

We referred the deformations to the stress-free state at a certain temperature Θ0. Now we assume another
temperature Θ1 to be used as initial temperature instead of Θ0. For σ = 0, the temperature Θ1 corresponds
to a certain deformation V1 with log V1 = L1. V1 is a scalar multiple of the identity tensor; thus devL1 = 0,
y1 = z1 = 0. Then with (4.6):

∂W

∂j
(j1, 0, 0,Θ1) = 0 ,

which leads to the law of thermal expansion:

j1 = ϕ(Θ1) . (6.1)

Since F̂ = F V −1
1 is the matrix corresponding to the deformation F with respect to the new initial state,

we thus have V̂ = V V −1
1 , L̂ = L− L1 and hence

ĵ = j − j1 , ŷ = y , ẑ = z . (6.2)

In formula (4.6), we can now replace j by ĵ if we simultaneously substitute W with

Ŵ
(
ĵ, y, z,Θ

)
= e−j1 ·W

(
ĵ + j1, y, z,Θ

)
= e−ϕ

(
Θ1

)
·W
(
ĵ + ϕ

(
Θ1

)
, y, z,Θ

)
. (6.3)

In particular, it follows that the decomposition of the elastic energy, which was discussed in Section 5, is
independent of the choice of the reference temperature.

7 Validity of Hooke’s law

Due to the formulae found previously, one can impose a wide variety of requirements on the law of
elasticity, in particular with respect to the dependence on temperature, and verify if these requirements
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can be satisfied. Let us now consider the question whether the common law by Hooke remains valid for
finite strains.

Using the Lamé constants, Hooke’s law takes the form

σ = λ · tr(V − 1) · 1 + 2µ · (V − 1) (7.1)

or

σ = (λ · I1 − 3λ− 2µ) · 1 + 2µ · V . (7.2)

It is obvious that (7.1) is actually derived from the general formula (3.9) for small L.

In order for the isothermal law of elasticity (7.2) to remain valid for finite strains, the following equations
must be fulfilled according to (3.11):

λI1 − 3λ− 2µ =
∂W

∂I3
, 2µI3 =

∂W

∂I1
and 0 =

∂W

∂I2
.

This is only possible if λ = 2µ, which corresponds to the Poisson ratio ν = 1
3 . For all other values of ν,

Hooke’s law cannot be used for finite strains. Instead, one can use the corresponding logarithmic law

σej = λj · 1 + 2µL , (7.3)

which, in the isothermal case, corresponds to the decomposable energy

W =
λ

2
j2 + µk =

(
λ

2
+
µ

3

)
· j2 + µ · y.

Received 2. February 1948
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A List of Symbols

Our notation Richter’s notation meaning

X, Y A, B arbitrary 3× 3-matrices
XT A transpose of X
(X)ik (A)ik entry in the i-th row and the k-th column of X
detX |A| determinant of X
trX A trace of X
1 E identity tensor
X−1 A

−1 inverse of X

F A Jacobian matrix (state of strain)
R R pure Euclidean rotation
V S pure stretch
σ P stress tensor (state of stress)
Θ Θ temperature
I1, I2, I3 I1, I2, I3 invariants of V
L L logarithmic stretch: L = log V
j, k, l j, k, l invariants of L: j = tr(L), k = tr(L2), l = tr(L3)
f1, f2, f3 f1, f2, f3 coefficient functions
g1, g2, g3 g1, g2, g3 coefficient functions
X X X = f1 · 1 + f2 · L+ f3 · L2

E u internal energy
S s entropy
W f free energy
dA dA differential of the work
e1, e2, e3 e1, e2, e3 unit vectors in the principal stretch directions of V
σ1, σ2, σ3 σ1, σ2, σ3 components of σ in the principal stretch directions of V

Vg, Vv Sg, Sv stretch in shape, stretch in volume
β β stretch factor of the stretch in volume Vv
Lg, Lv Lg, Lv Lg = log Vg, Lv = log Vv
D D arbitrary symmetric matrix

devD D̃ common deviator of D
y, z y, z invariants of devL: y = tr((devL)2), z = tr((devL)3)

Wvol, Evol F , U volumetric energies
Wiso, Eiso G, V isochoric energies

Θ0 resp. Θ1 Θ0 resp. Θ1 reference temperatures

1 [index] 1 indicates the correspondence to the temperature Θ1

ϕ ϕ logarithmic thermal expansion

F̂ A
′ deformation with respect to the initial state at Θ1̂ ′ indicates the correspondence to the deformation F̂

λ, µ λ, µ Lamé constants
ν m = 1

ν Poisson modulus
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