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PATRIZIO NEFF 

A model describing small elastic deformations and Korn's inequality with 
nonconstant coefficients 

This contribution i s  concerned with the formulation and mathematical investigation of a model f o r  small elastic 
deformations which arises f r o m  multiplicative theories of elasto-plasticity. I n  a natural way it leads to  a linear 
elliptic system with nonconstant coeficients f o r  the deformation u. In contrast t o  infinitesimal plasticity the model 
should be valid for both large plastic deformations Fp and large deformation gradients F. T h e  arising linear partial 
differential system is proved t o  have unique solutions by means of a generalized Korn's inequality. 

1. Motivation 

In the nonlinear theory of elasto-plasticity at large deformation gradients it is often assumed that the deformation 
gradient F = Vu splits multiplicatively into an elastic and plastic part Vu(z) = F(z) = Fe(z) . Fp(z), F,, Fp E 
GL(3,IR) where F,, Fp are explicitly understood to be incompatible configurations, i.e F,, Fp # V@ for any @ : 
R c IR3 t+ R3. In our context we assume that this decomposition is uniquely defined up to a rigid rotation. 
This ansatz is micromechanically motivated by the kinematics of single crystals where dislocations move along fixed 
slip systems through the crystal lattice. The source for the incompatibility are those dislocations which did not 
completely transverse the crystal and consequently give rise to an inhomogeneous plastic deformation. Therefore 
it seems reasonable to  introduce the deviation of the plastic intermediate configuration Fp from compatibility as a 
kind of plastic dislocation density. This deviation should be related somehow to the quantity RotF, and indeed 
later on we see the important role which is played by RotFp, see [4] for more on this subject and for applications of 
this theory in the engineering field look e.g at [2 ,3] .  

2. Metal Plast ic i ty  

It is known that any homogeneous, isotropic and material objective energy with stress free reference configuration 
ll admits the representation 

@(F) = X llFTF - + p t r ( F T F  - 1)' + o ( ( ( F T F  - Ill\') (1) 

near 11. Here A,p > 0 denote the Lam6 constants. When dealing with metal-plasticity it is observed that elastic 
deformations remain small in the sense that llF,'Fe - Ill1 remains pointwise small. Accordingly taking T?I and 
inserting F, instead of F and skipping the higher order term ~ ( l l F z F ,  - Illlz) the following St. Venant-Kirchhoff 
ansatz for a hyperelastic free energy should be a reasonable first choice: 

I&' = I@(F,) = X llF,'Fe - Il1I2 + p tr(FFF, - a)'. (2) 

However, I@ would still lead to  a problem which is neither linear in F nor elliptic. Therefore invoking the smallness 
of llFzFe - Ill1 again we see with the aid of the polar decomposition that F, is approximately a rotation Re. If we 
set Fe = (F, - Re) + Re, insert this formula into the free energy W and cancel terms which are of second order in 
(J'e - Re) we are left with the following elastic energy: 

W(F, Fp, Re)  = X IIRTF F;' + F i T F T R e  - 2 .  111)2 + p t r ( R T F  F;' + FgTFTRe - 2 .  (3) 

Note that W is quadratic with respect to  F if Fp, Re are assumed to  be known.. The new energy W is still material 
0bjectivesinceQ.F = Q.Fe.FpimpliesR,(Q.F,) =Q*Re(Fe) andW(Q.F,F, ,Q.R,)  = W(F,Fp,Re)VQ E O(3) .  
Let C R3 be a smooth bounded domain with boundary 80.  In the absence of body forces and in the quasistatic 
setting the problem to be solved is: find the deformation u : [O,T] x R ct R3 and the plastic deformation gradient 
Fp : [0, TI x R t+ GL(3,  R) such that 

d iv  DFW(F(Z ,~ ) ,  F'(2, t ) ,  R e ( 2 ,  t ) )  = 0 2 E R (4) 

( 5 )  
d -FF' = f (F ,F; ' )  
dt 
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where f : M3x3 x M3x3 I+ M3x3 is some function governing the plastic evolution, g is the given Dirichlet boundary 
data and F;’ is the initial condition on the plastic flow. Here polar : GL(3, IR) c) O(3) is the function which gives 
the unique rotation of its argument according to the polar decomposition. Observe that the complete system is still 
nonlinear in F altogether due to the appearance of polar : GL(3,R) I+ O(3). Some simple computations reveal 
that the above equilibrium system is a linear elliptic system with nonconstant coefficients at fixed values F,, Re in 
contrast to the elliptic system with constant coefficients in infinitesimal plasticity. Note that Re represents in a 
natural way deformation induced anisotropy. It is natural to ask whether at fixed time to the equilibrium equation 
div DFW(F,  Fp, Re) = 0 has a unique solution if the data g, F,, Re at to  are known. The answer is given in 

F,, Re E C2(n,GL(3,R)) .  Moreover assume that g E H’(R,IR3). Then 
T h e  o r e m 1. Let 0 C R3 be a bounded smooth domain with smooth boundary a n d  let 

admits a unique solution u E H1(R,IR3). 

Proof.  The proof uses the key idea to interprete the equilibrium equation as the Euler-Lagrange equation of 
thefunctionall: H1(R,IR3)xC2(~,GL(3,1R))xC2(~,GL(3,1R))  t) IRwithI(u, F,,Re) := Jn W(Vu,F;’,R,) dx. 
Evaluating the second derivative of I with respect to u we have the following estimate 

D;l(u, Fp, Re)*(4,$) 2 2X 1 IIFiTV4TRe + R,TV4F’’112 (12) 
n 

In [l] it is shown by proving a generalized Korn’s inequality that there exists some positive constant c+ > 0 such 
that forall 4 E H;(R,IR3) we have 

(13) 

which implies the strict convexity of I with respect to u. By the direct methods of the calculus of variations it is 
clear that there exists a unique minimizer of I over the space H’(R) together with the boundary condition. In the 
prove of this assertion a prominent role is played by the quantity RotF, which to our opinion shows clearly the 
importance of the dislocation density concept approach in elasto-plasticity. 

Observe that our model is at variance with models already proposed for small elastic deformations, which essentially 
are defined by making the physically linear ansatz Sz = D.(C - C,) where D is a fourth order positiv definite 
symmetric elasticity tensor, C = F T F  and C, is some plastic variable. It turns out however that the associated 
equilibrium equations are neither linear in F nor in general elliptic. There may even be no solution of the equilibrium 
system due to the possible formation of microstructure. This may indicate that our approach of defining a model 
for small elastic deformations is more likely to lead to well posed problems and to stable numerical algorithms. 
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