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Adapting a method introduced by Ball, Muite, Schryvers and Tirry, we construct a
polyconvex isotropic energy function W : GL+(n) → R which is equal to the classical
Hencky strain energy

WH(F ) = µ‖devn logU‖2 +
κ

2
[tr(logU)]2 = µ‖logU‖2 +

Λ

2
[tr(logU)]2

in a neighborhood of the identity matrix �; here, GL+(n) denotes the set of n×n-

matrices with positive determinant, F ∈ GL+(n) denotes the deformation gradient,
U =

√
FTF is the corresponding stretch tensor, logU is the principal matrix logarithm

of U , tr is the trace operator, ‖X‖ is the Frobenius matrix norm and devnX is the
deviatoric part of X ∈ R

n×n. The extension can also be chosen to be coercive, in which
case Ball’s classical theorems for the existence of energy minimizers under appropriate
boundary conditions are immediately applicable. We also generalize the approach to
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energy functions WVL in the so-called Valanis–Landel form

WVL(F ) =
nX

i=1

w(λi)

with w : (0,∞) → R, where λ1, . . . , λn denote the singular values of F .

Keywords: Nonlinear elasticity; Hencky strain; logarithmic strain; polyconvexity;
Legendre–Hadamard ellipticity.

Mathematics Subject Classification 2010: 74B20, 74G65, 26B25

1. Introduction

The isotropic Hencky energy WH : GL+(n) → R witha

WH(F ) = µ‖devn log
√
FTF‖2 +

κ

2
[tr(log

√
FTF )]2

= µ‖log
√
FTF‖2 +

Λ
2

[tr(log
√
FTF )]2,

(1.1)

which is based on the logarithmic strain measures

‖devn logU‖2, ‖logU‖2 and [tr(logU)]2 = ln2(detU), (1.2)

is often used by engineers in geometrically nonlinear elasticity formulations to
describe small to moderate elastic strains [1], notably in applications to metal elas-
ticity. Recently, the Hencky energy and the invariants given in (1.2) have been
given a surprising independent motivation as a geodesic distance measure of the
deformation gradient to the special orthogonal group SO(n) of rotations [18]: If
distgeod, distgeod,SL(n) and distgeod,R+·� denote the canonical left invariant geodesic
distances on the Lie-groups GL(n), SL(n) := {X ∈ GL(n) | det(X) = 1} and R+ ·�,
respectively, then [18, 14]

‖logU‖2 = dist2geod(F, SO(n)), (1.3)

‖devn logU‖2 = dist2geod,SL(n)

(
F

(detF )1/n
, SO(n)

)
, (1.4)

[tr(logU)]2 = [log detU ]2 = distgeod,R+·�((detF )1/n · �,�). (1.5)

It has been known for a while that the Hencky energy (1.1) is not over-
all rank-one convex [17, 4]. However, rank-one convexity (or Legendre–Hadamard
ellipticityb) is a necessary requirement for polyconvexity, which, in turn, is essen-
tial for the applicability of existence proofs based on the direct methods of the

aHere and throughout, GL+(n) denotes the set of n × n-matrices with positive determinant,
F ∈ GL+(n) denotes the deformation gradient, U =

√
FTF is the corresponding stretch tensor,

logU is the principal matrix logarithm of U , tr is the trace operator, ‖X‖ is the Frobenius matrix
norm and devnX is the deviatoric part of X ∈ R

n×n. The constants µ, κ and Λ represent the
shear modulus, the bulk modulus and the first Lamé parameter, respectively.
bIn the following, we will use the terms “rank-one convexity” and “(Legendre–Hadamard) ellip-
ticity” interchangeably, assuming that the energy is sufficiently regular.
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calculus of variations [2]. This shortcoming raises some concern regarding the suit-
ability of the Hencky model in finite element methods, although Bruhns et al. [4]
have explicitly determined a (rather large) ellipticity domain of the Hencky energy
(cf. [9]).

1.1. Energy functions in terms of logarithmic strain measures

In an attempt to overcome this evident shortcoming of the classical Hencky
model, the authors recently introduced the so-called exponentiated Hencky energy
[19, 15, 16]

WeH : GL+(n) → R, WeH(F ) =
µ

k
ek ‖devn log U‖2

+
κ

2 k̂
e

bk [(log det U)]2 , (1.6)

which is rank-one convex (and, in fact, polyconvex) in the planar casec and provides
a close approximation of the classical Hencky formulation for sufficiently small
strains. However, we have been unable to find another formulation based on the
invariants (1.2) which respects the isochoric-volumetric split and is rank-one convex
in dimension n ≥ 3. This motivated us to consider the question of the possibility
of such a formulation in detail, and indeed it turned out [12] that our approach
was doomed to fail from the beginning; in particular, for n ≥ 3, there exists no
strictly monotone function Ψ : [0,∞) → R such that either of the energy functions
W : GL+(n) → R with

W (F ) = Ψ(‖logU‖2) or W (F ) = Ψ(‖devn logU‖2)

is elliptic. Furthermore, if Ψ is additionally twice-differentiable, then there exists
no smooth function Wvol : (0,∞) → R such that the energy W : GL+(n) → R with

W (F ) = Ψ(‖devn logU‖2) +Wvol(detF )

is elliptic.

2. Polyconvex Extensions of Locally Elliptic Energies

Since the search for a nontrivial rank-one convex energy function in terms of the
scalar-valued logarithmic strain measures turned out to be in vain, it remains to
explore alternative methods of finding an elliptic energy function which approxi-
mates (or, better yet, is identical to) the Hencky strain energy in the small-strain
range. A common way of transforming a non-elliptic function into a rank-one con-
vex one is the computation of its rank-one convex hull; however, this approach
is not viable in our case (see Appendix A). Note also that, due to a result by
Ciarlet et al. [6], the Hencky energy (and, in fact, any energy function compatible

cThe planar case, however, is not representative of the general situation, since for isochoric energy
functions (including energies based on the isochoric logarithmic strain measure ‖devn logU‖2;

note that devn logU = log
`

U
(det U)1/3

´
), rank-one convexity already implies polyconvexity [13]

(cf. [8]).
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with linear elasticity) can be approximated by a polyconvex function up to quadratic
order, cf. [5, Theorem 4.10-2].

Instead, we take a different approach and directly modify the energy expression
outside a certain domain of ellipticity. Of course, all physically reasonable energy
expressions reduce to linear elasticity in an infinitesimal neighborhood of the iden-
tity � and thus are elliptic in a (finite) neighborhood of �. The question therefore
arises whether it is possible to find a rank-one convex or polyconvex extension of a
given energy outside such a domain of ellipticity.

Note that, whereas rank-one convexity (or Legendre–Hadamard ellipticity) can
be considered a local property of an energy function (i.e. an energy can be elliptic
at some F ∈ GL+(n)), the notion of polyconvexity is only well-defined in a global
sense. Kristensen [11] even gave an example of a function f :R2×2 → R which is not
polyconvex, but can be extended to a smooth polyconvex function fB : R2×2 → R

from any ball B ⊂ R
2×2.

In the following, we construct a polyconvex (and thus rank-one convex) exten-
sion of the quadratic-logarithmic Hencky energy (1.1) and, more generally, for suit-
able energy expressions of the Valanis–Landel type. In addition, the extension of
the Hencky energy considered here is (exponentially) coercive, which implies an
immediate applicability of the direct methods of the calculus of variations to prove
the existence of energy minimizers under appropriate boundary conditions.

Our methods are adapted from an approach by Ball, Muite, Schryvers and
Tirry [3], who considered another strain measure which can be motivated via a
distance function on the general linear group GL+(n).

2.1. The Euclidean distance to SO(n)

The Euclidean distance of the deformation gradient F to the group SO(n) is given
by [10, 20]

dist2Euclid(F, SO(n)) = ‖U − �‖2 =
n∑

i=1

(λi − 1)2,

where U =
√
FTF is the stretch tensor and λ1, . . . , λn are the singular values of F .

Similar to the case of the geodesic distance (i.e. the logarithmic strain measure),
the mapping F �→ ‖U − �‖2 is not globally rank-one convex [23] (cf. [7]).

However, Ball et al. showed that (a generalization of) this strain measure has a
polyconvex extension from a neighborhood of the identity � to all of GL+(n).

Lemma 2.1 ([3]). For 1
2 < α ≤ 1, let

Sα := {F ∈ GL+(n) |λ ≥ α for each singular value λ of F}.
Then the function Wα :Sα → R with

Wα(F ) =
n∑

i=1

(αλ2
i − 2λi + 1)
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for all F ∈ Sα with singular values λ1, . . . , λn has a polyconvex extension to GL+(n),
which is given by

W̃α : GL+(n) → R, W̃α(F ) =
n∑

i=1

ϕα(λi) − 1
2α

ln(detF ),

where

ϕα(λ) =


αλ2 − 2λ+ 1 +

1
2α

ln(λ) : λ ≥ 1
2α
,

1 − 3
4
α+

1
2α

ln
(

1
2α

)
: λ <

1
2α
.

Proof. If λi ≥ 1
2α for all singular values λ1, . . . , λn of F , then

W̃α(F ) =
n∑

i=1

(αλ2
i − 2λi + 1) +

1
2α

n∑
i=1

ln(λi)︸ ︷︷ ︸
=ln(det F )

− 1
2α

ln(detF ) = Wα(F ).

It remains to show that W̃α is polyconvex. If λ ≥ 1
2α , then

ϕ′
α(λ) = 2αλ− 2 +

1
2αλ

=
(2αλ− 1)2

2αλ
≥ 0,

ϕ′′
α(λ) =

2α
λ2

(
λ− 1

2α

) (
λ+

1
2α

)
≥ 0,

thus ϕα is convex and nondecreasing. According to a criterion by Ball [2, Theo-
rem 5.1], the mapping F �→ ∑n

i=1 ϕα(λi) is therefore convex. Since the mapping
F �→ − 1

2α ln(detF ) is convex in detF and thus polyconvex, the function W̃α is
polyconvex as well.

Applying Lemma 2.1 with α = 1, we obtain the following corollary.

Corollary 2.2. The function

W :S1/2 → R, dist2Euclid(F, SO(n)) = ‖
√
FTF − �‖2 =

n∑
i=1

(λi − 1)2

has a polyconvex extension from S1/2 = {F ∈ GL+(n) |λ ≥ 1
2 for each singular

value λ of F} to GL+(n).

3. Adaptation to Logarithmic Strain Measures

The ideas laid out in the previous section can be adapted to show that a similar
result holds for the logarithmic strain measure (i.e. the canonical geodesic distance
to SO(n), cf. (1.3)) as well.
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Fig. 1. (Color online) The function ϕγ for different values of γ.

Lemma 3.1. For γ ≤ 1, let

Sgeod
γ := {F ∈ GL+(n) | eγ−1 < λ < eγ for each singular value λ of F}.

Then the function

W :Sgeod
γ → R, W (F ) = dist2geod(F, SO(n)) = ‖log

√
FTF‖2 =

n∑
i=1

ln2(λi)

has a polyconvex extension to GL+(n), which is given by

W̃γ : GL+(n) → R, W̃γ(F ) =
n∑

i=1

ϕγ(λi) − (2 − 2γ) ln(detF ),

where (see Figs. 1 and 2)

ϕγ(λ) =


−(γ − 1)2 : λ ≤ eγ−1,

ln2(λ) + (2 − 2γ) ln(λ) : eγ−1 < λ < eγ ,

−γ2 + 2γ +
2
eγ

(eλ−eγ − 1) : eγ ≤ λ.

Corollary 3.2. In particular (for γ = 1
2 ), the function W has a polyconvex exten-

sion to GL+(n) from the set

Sgeod
1/2 :=

{
F ∈ GL+(n)

∣∣∣∣ 1√
e
< λ <

√
e for each singular value λ of F

}
.

Proof. If eγ−1 < λ < eγ for all singular values λ1, . . . , λn of F , then

W̃γ(F ) =
n∑

i=1

ln2(λi) + (2 − 2γ)
n∑

i=1

ln(λi)︸ ︷︷ ︸
=ln(detF )

−(2 − 2γ) ln(detF ) = W (F ).
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Fig. 2. (Color online) The function fγ :λ �→ fWγ(λ�) compared to the mapping f :λ �→WH(λ�)
with µ = 1 and Λ = 0; note the singularity at λ = 0.

It remains to show that W̃γ is polyconvex. If eγ−1 < λ < eγ , then

ϕ′
γ(λ) =

2 ln(λ)
λ

+
2 − 2γ
λ

=
2 ln(λ) + 2 − 2γ

λ
≥ 2 ln(eγ−1) + 2 − 2γ

λ
= 0,

ϕ′′
γ(λ) =

2
λ2

− 2 ln(λ)
λ2

− 2 − 2γ
λ2

=
2 γ − 2 ln(λ)

λ2
≥ 2 γ − 2 ln(eγ)

λ2
= 0.

It is easy to see that ϕγ is continuous on (0,∞) as well as differentiable on
(0,∞)\{eγ−1} and that ϕ′

γ is nonnegative and nondecreasing. Thus ϕγ is non-
decreasing and convex. Due to Ball’s criterion [2, Theorem 5.1], the mapping
F �→∑n

i=1 ϕγ(λi) is therefore convex. Since the mapping F �→ −(2− 2γ) ln(detF )
is polyconvex for γ ≤ 1, the function W̃γ is polyconvex as well.

Lemma 3.1 can be applied directly to the classical Hencky strain energy.

Proposition 3.3. Let WH denote the quadratic Hencky energy, given by

WH(F ) = µ ‖devn log
√
FTF‖2 +

κ

2
[tr(log

√
FTF )]2

= µ ‖log
√
FTF‖2 +

Λ
2

[tr(log
√
FTF )]2,

where µ is the shear modulus, κ is the bulk modulus and Λ is the first Lamé param-
eter. If Λ ≥ 0, then the restriction of WH to the set

Sgeod
1/3 = {F ∈ GL+(n) | e−2/3 < λ < e1/3 for each singular value λ of F}

has a polyconvex extension to GL+(n).
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Proof. As in Lemma 3.1, let W̃1/3 denote the polyconvex extension of the mapping

F �→W (F ) = ‖log
√
FTF‖2 from Sgeod

1/3 to GL+(n), and let

W̃H(F ) = W̃1/3(F ) + ψ(detF ),

where

ψ(t) =


Λ
2

ln2(t) : t ≤ e,

Λ
2

+
Λ
e

(et−e − 1) : t > e

for all F ∈ Sgeod
1/3 with singular values λ1, . . . , λn. Then for all F ∈ Sgeod

1/3 ,

W̃H(F ) = W̃1/3(F ) + ψ(detF ) = W (F ) + ψ(λ1 . . . λn︸ ︷︷ ︸
≤e

)

= ‖log
√
FTF‖2 +

Λ
2

ln2(t) = WH(F ).

Furthermore, it is easy to see that the mapping ψ is continuously differentiable with
nondecreasing derivative on (0,∞) and therefore convex. Thus W̃H is polyconvex
on GL+(n) as the sum of the polyconvex mapping W̃1/3 and a convex function of
detF .

Remark 3.4. Bruhns et al. [4] have shown that for Λ ≥ 0, the quadratic Hencky
strain energy is elliptic on the set of all F ∈ GL+(3) with all singular values in the
interval [α, 3

√
e], where α ≈ 0.21 < e−2/3, cf. [9].

Remark 3.5. Note that, even though ϕγ(λ) remains bounded for λ → 0, the
energy W̃H exhibits (physically reasonable) singular behavior for detF → 0, see
Fig. 3.

1 3 5 7 9 11 13

t �→ ln2(t)

ψ

Fig. 3. (Color online) The volumetric part ψ of the polyconvex extension and the original volu-
metric term ln2(t) of the classical Hencky energy.
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3.1. Existence of minimizers

In order to apply some well-known existence theorems from the direct methods of
the calculus of variations to the energy W̃H, it remains to show that W̃H is coercive
in the appropriate Sobolev spaces. However, due to the exponential nature of the
chosen extension, the following lemma immediately follows from the observation
that λmax > e1/3 for the largest singular value λmax of F if ‖F‖ is sufficiently large,
in which case

W̃H(F ) ≥ W̃1/3(F ) ≥ −8
9

+ ϕ1/3(λmax) − 4
3

ln(λ3
max)

= −1
3

+
2
e1/3

(eλmax−e1/3 − 1) − 4 ln(λmax) ≥ K1e
K3‖F‖ −K2

for appropriate constants K1,K2,K3 > 0.

Lemma 3.6. The polyconvex extension W̃H of the Hencky energy from Proposi-
tion 3.3 is exponentially coercive; in particular, for any p > 0, there exist constants
K1,K2 > 0 such that

W̃H(F ) ≥ K1‖F‖p −K2,

thus for each bounded, connected, open set Ω ⊂ R
n with Lipschitz boundary and any

p ≥ 1, the energy functional

I :W 1,p(Ω; Rn) → R, I(ϕ) =
∫

Ω

W̃H(∇ϕ(x))dx

is coercive in the Sobolev space W 1,p(Ω).

Since W̃H is polyconvex, coercive and bounded below, we can directly apply
Ball’s classical results on the existence of minimizers for polyconvex energy func-
tions [2] to the energy functional given by W̃H.

Proposition 3.7. Let Ω ⊂ R
n be a bounded smooth domain, ΓD be a non-empty

and relatively open part of the boundary ∂Ω and ϕ0 ∈ W 1,q(Ω) for some q > 1
such that

∫
Ω
W̃H(∇ϕ0(x))dx <∞. Then there exists at least one ϕ̂ ∈W 1,p(Ω) with

ϕ̂|ΓD = ϕ0 such that∫
Ω

W̃H(∇ϕ̂(x))dx = min
{∫

Ω

W̃H(∇ϕ(x))dx |ϕ ∈W 1,p(Ω), ϕ|ΓD = ϕ0

}
. (3.1)

4. Energy Functions in Valanis–Landel Form

We can apply the same extension method to the more general case of Valanis–Landel
type energy functions, i.e. to functions of the form

WVL : GL+(n) → R, WVL(F ) =
n∑

i=1

w(λi)
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with a scalar function w : (0,∞) → R. Functions of this type were suggested by
Valanis and Landel [22] as a general hyperelastic model for incompressible materials,
but are often coupled additively with volumetric energy terms in order to obtain
elastic models for compressible materials (including the quadratic Hencky energy
WH as well as Ogden’s classical material model [21]). Note that the energy WVL

can only be compatible with linear elasticity at the identity � if w(1) = 0, w′(1) = 0
and w′′(1) > 0; the latter two conditions represent the requirements of a stress-free
reference configuration and ellipticity at �, respectively.

Proposition 4.1. Let w ∈ C2((0,∞)) such that w′(1) = 0 and w′′(1) > 0. Then
the function

WVL : GL+(n) → R, WVL(F ) =
n∑

i=1

w(λi)

has a polyconvex extension from a neighborhood of the identity F = � to GL+(n).

Proof. Choose 0 < ε < 1
2 such that w′′(λ) > w′′(1)

2 and w′(λ) > −w′′(1)
12 for all

λ ∈ [1 − ε, 1 + ε]. Let

W̃VL(F ) =
n∑

i=1

ϕ(λi) − w′′(1)
8

ln(detF )

for all F ∈ GL+(n) with singular values λ1, . . . , λn, where

ϕ(λ) =



w(1 − ε) +
w′′(1)

8
ln(1 − ε) : λ ≤ 1 − ε,

w(λ) +
w′′(1)

8
ln(λ) : 1 − ε < λ < 1 + ε,

w(1 + ε) +
(
w′(1 + ε) +

w′′(1)
8(1 + ε)

)
· (λ− (1 + ε)) : 1 ≤ λ.

.

Then ϕ is continuous and differentiable on (0,∞)\{1 − ε}. Furthermore, ϕ′ is
nondecreasing and nonnegative, since

ϕ′(λ) = w′(λ) +
w′′(1)

8λ

λ<1+ε< 3
2≥ w′(λ) +

w′′(1)
12

> 0,

ϕ′′(λ) = w′′(λ) − w′′(1)
8λ2

λ>1−ε> 1
2≥ w′′(λ) − w′′(1)

2
> 0

for all λ ∈ (1 − ε, 1 + ε). Thus ϕ is convex and nondecreasing, which implies the
convexity of the mapping F �→ ∑n

i=1 ϕ(λ) and thus the polyconvexity of W̃VL.
Finally, W̃VL(F ) = WVL(F ) for all F ∈ GL+(n) with singular values λ1, . . . , λn

such that 1− ε < λi < 1 + ε for all i = 1, . . . , n.
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Remark 4.2. Of course, Proposition 4.1 is also applicable to energy functions of
the generalized Valanis–Landel form

W (F ) =
n∑

i=1

w(λi) +Wvol(detF )

if Wvol : (0,∞) → R is convex in a neighborhood of 1 (in which case it can easily
be extended to a convex function on (0,∞)).
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Appendix A. The Rank-One Convex Hull

Another approach to finding a rank-one convex “approximation” of a non-elliptic
energy function W : GL+(n) → R is the computation of its rank-one convex hull W ,
i.e. the largest rank-one convex function belowW . However, only in few casesW can
be determined analytically. One of these cases is the mapping F �→ dist2(F, SO(2)),
the rank-one convex hull of which is given by [7]

F �→

dist2(F, SO(2)) : ‖F+‖ ≥
√

2
2
,

1 − 2 detF : otherwise,

where

F+ =
1
2

(
F11 + F22 F12 − F21

F21 − F12 F11 + F22

)
denotes the conformal part of F .

A fundamental problem of this approach, however, is that the energy function
might be changed at points within its domain of ellipticity as well; in particular,
the rank-one convex hull W of W is not necessarily equal to W in a neighborhood
of � and does therefore not induce the same material behavior even for very small
strains. For example, the (rank-one) convex hull of the one-dimensional standard
double-well potential x �→ (x2 − 1)2 is given by (see Fig. 4)

x �→
{

0 :x ∈ (−1, 1),

(x2 − 1)2 :x /∈ (−1, 1),

thus the energy is changed on every interval 1 − ε, 1 + ε.
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Fig. 4. (Color online) The (rank-one) convex hullW of the function W : R → R,W (x) = (x2−1)2.
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