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Abstract In the present contribution we show that the relaxed micromorphic model is the only non-local
continuum model which is able to account for the description of band-gaps in metamaterials for which the
kinetic energy accounts separately for micro and macro-motions without considering a micro-macro cou-
pling. Moreover, we show that when adding a gradient inertia term which indeed allows for the description
of the coupling of the vibrations of the microstructure to the macroscopic motion of the unit cell, other
enriched continuum models of the micromorphic type may allow the description of the onset of band-gaps.
Nevertheless, the relaxed micromorphic model proves to be yet the most effective enriched continuum model
which is able to describe multiple band-gaps in non-local metamaterials.

1 Introduction

In the last years, a lot of interest has been raised from a class of microscopically heterogeneous materials
which show exotic behaviors such as that of “stopping” the propagation of elastic waves. In some cases,
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the waves lose some of the energy due to micro-diffusion phenomena (Bragg scattering) or even local reso-
nance of the microstructure (Mie resonance). These effects can be exploited to design innovative materials
whose dynamical behavior differs completely from the classical materials usually employed in engineering
sciences.

As a matter of fact, classical Cauchy continuum theories, are not always well adapted to cover the wealth
of experimental evidences on the dynamical behavior of real materials. As a first point, in fact, real materials
commonly show dispersive behaviors, which means that the speed of propagation of the traveling wave
changes when considering smaller wavelengths. Such phenomenon is not astonishing if one thinks that
the structure of matter changes when observing it at smaller scales. It suffices to go down to the scale
of the crystals or molecules to be aware of the heterogeneity of matter. It is for this reason that waves
with wavelengths which are small enough to “sense” the presence of the microstruture will propagate at a
different speed than other waves with higher wavelengths. Cauchy continuum theories are not able in any
case to account for dispersive phenomena and are a good approximation of reality only for those materials
which do not exhibit their heterogeneity at the scale of interest. As far as one wants to model dispersive
behaviors, Cauchy continuum theories are no longer adapted and more refined models need to be introduced.
One possibility is to introduce second or higher order theories so allowing the description of dispersion for
the acoustic modes (see e.g. [4, 21]). Nevertheless, if second gradient theories may, on the one hand, be of
use for the description of some dispersive behaviors, on the other hand they are often insufficient to describe
more complex behaviors of metamaterials in which the microstructure can have its own vibrational modes
independently of the motion of the unit cell. In order to describe the complex dynamical behavior of such
metamaterials in a continuum framework, the introduction of continuum models with enriched kinematics
(micromorphic models) is a mandatory requirement [5, 9–11, 13]. Continuum models of the micromorphic
type, in fact, allow for the description of microstructure-related vibrational modes thanks to the introduction
of extra degrees of freedom with respect to the displacement field alone.

The insufficiency of Cauchy continuum theories becomes even more evident when considering more
complex metamaterials which are able to inhibit wave propagation, i.e. so called band-gap metamateri-
als. To catch the complex dynamical behavior of such materials, even some of the available micromorphic
models are not sufficiently adapted. Indeed, it has been shown in previous contributions that the relaxed
micromorphic model is the only continuum model of the micromorphic type which is able to account for
the description of band-gaps when considering a kinetic energy in which the macroscopic and microscopic
motions are completely uncoupled [9–12]. In this contribution we will show, following what done in [8], that
the addition of kinetic energy terms which couple the motions of the microstructure to the macro-motions of
the unit cells may have a deep impact on the ability of describing band-gaps behaviors.

1.1 Notations

In this contribution, we denote by R3×3 the set of real 3×3 second order tensors, written with capital letters.
We denote respectively by · , : and 〈·, · 〉 a simple and double contraction and the scalar product between two
tensors of any suitable order1. Everywhere we adopt the Einstein convention of sum over repeated indices if
not differently specified. The standard Euclidean scalar product on R3×3 is given by 〈X ,Y 〉R3×3 = tr(X ·Y T ),
and thus the Frobenius tensor norm is ‖X‖2 = 〈X ,X〉R3×3 . In the following we omit the index R3,R3×3. The
identity tensor on R3×3 will be denoted by 1, so that tr(X) = 〈X , 1〉.

1 For example, (A · v)i = Ai jv j , (A ·B)ik = Ai jB jk, A : B = Ai jB ji, (C ·B)i jk =Ci jpBpk, (C : B)i =Ci jpBp j , 〈v,w 〉= v ·w = viwi,
〈A,B 〉= Ai jBi j etc.
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We consider a body which occupies a bounded open set BL of the three-dimensional Euclidian space
R3 and assume that its boundary ∂BL is a smooth surface of class C2. An elastic material fills the domain
BL ⊂ R3 and we refer the motion of the body to rectangular axes Oxi.

For vector fields v with components in H1(BL), i.e. v = (v1,v2,v3)
T ,vi ∈ H1(BL), we define

∇v =
(
(∇v1)

T ,(∇v2)
T ,(∇v3)

T
)T , while for tensor fields P with rows in H(curl ;BL), resp. H(div ;BL), i.e.

P=
(
PT

1 ,PT
2 ,PT

3
)
, Pi ∈H(curl ;BL) resp. Pi ∈H(div ;BL) we define CurlP=

(
(curlP1)

T ,(curlP2)
T ,(curlP3)

T
)T

,

DivP = (divP1,divP2,divP3)
T .

A subscript ,t will indicate derivation with respect to time and, analogously a subscript ,tt stands for the
second derivative of the considered quantity with respect to time.

As for the kinematics of the considered micromorphic continua, we introduce the functions

χ(X , t) : BL→ R3, P(X , t) : BL→ R3×3,

which are known as placement vector field and micro-distortion tensor, respectively. The physical meaning
of the placement field is that of locating, at any instant t, the current position of the material particle X ∈
BL, while the micro-distortion field describes deformations of the microstructure embedded in the material
particle X . As it is usual in continuum mechanics, the displacement field can also be introduced as the
function u(X , t) : BL→ R3 defined as

u(X , t) = χ(X , t)−X .

In the remainder of the paper, the following acronyms will be used to refer to the branches of the disper-
sion curves:

• TRO: transverse rotational optic,
• TSO: transverse shear optic,
• TCVO: transverse constant-volume optic,
• LA: longitudinal acoustic,
• LO1-LO2: 1st and 2nd longitudinal optic,
• TA: transverse acoustic,
• TO1-TO2: 1st and 2nd transverse optic.

If not differently specified, the results presented in this paper are obtained for values of the elastic coeffi-
cients chosen as in Table 1 (see Equations (1), (2), (5), (8), (11) and (14) for their definition).

Parameter Value Unit
µe 200 MPa

λe = 2µe 400 MPa
µc = 5µe 1000 MPa

µmicro 100 MPa
λmicro 100 MPa

Parameter Value Unit
Lc 1 mm
ρ 2000 kg/m3

η 10−2 kg/m
η i 10−1 kg/m

Parameter Value Unit
λmacro 82.5 MPa
µmacro 66.7 MPa
Emacro 170 MPa
νmacro 0.28 −

Table 1 Values of the elastic parameters used in the numerical simulations (left), characteristic lengths and inertiae (center)
and corresponding values of the Lamé parameters and of the Young modulus and Poisson ratio (right), for the formulas needed
to calculate the homogenized macroscopic parameters starting from the microscopic ones, see [1].
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1.2 The fundamental role of micro-inertia in enriched continuum mechanics

As far as enriched continuum models are concerned, a central issue which is also an open scientific question
is that of identifying the role of so-called micro-inertia terms on the dispersive behavior of such media. As a
matter of fact, enriched continuum models usually provide a richer kinematics, with respect to the classical
macroscopic displacement field alone, which is related to the possibility of describing the motions of the
microstructure inside the unit cell. The adoption of such enriched kinematics (given by the displacement
field u and the micro-distortion tensor P, see e.g. [5–7, 9–12, 14, 17]) as we will see, allows for the intro-
duction of constitutive laws for the strain energy density that are able to describe the mechanical behavior
of some metamaterials in the static regime. When the dynamical regime is considered, things become even
more delicate since the choice of micro-inertia terms to be introduced in the kinetic energy density must be
carefully based on

• a compatibility with the chosen kinematics and constitutive laws used for the description of the static
regime,

• the specific inertial characteristics of the metamaterial that one wants to describe (e.g. eventual coupling
of the motion of the microstructure with the macro motions of the unit cell, specific resistance of the
microstructure to independent motion, etc.).

In the present paper, we will suppose that the kinetic energy takes the following general form (see [8]):

J =
1
2

ρ ‖u,t‖2︸ ︷︷ ︸
Cauchy inertia

+
1
2

η ‖P,t‖2︸ ︷︷ ︸
free micro-inertia

+
1
2

η1 ‖devsym ∇u ,t‖2 +
1
2

η2 ‖skew∇u ,t‖2 +
1
6

η3 tr(∇u ,t)
2︸ ︷︷ ︸

new gradient micro-inertia

, (1)

where ρ is the value of the average macroscopic mass density of the considered metamaterial, η is the
free micro-inertia density and the η i, i = {1,2,3} are the gradient micro-inertia densities associated to the
different terms of the Cartan-Lie decomposition of ∇u . We will be hence able to explicitly show which
is the explicit role of the gradient micro-inertia on the onset of band-gaps in continuum models of the
micromorphic type. More precisely, we will highlight which is the specific effect of the introduction of
gradient micro-inertia terms on different enriched continuum models, namely:

• the classical relaxed micromorphic model,
• the relaxed micromorphic model with curvature ‖DivP‖2+‖CurlP‖2,
• the relaxed micromorphic model with curvature ‖DivP‖2,
• the standard Mindlin-Eringen model,
• the internal variable model.

2 The classical relaxed micromorphic model

Our relaxed micromorphic model endows Mindlin-Eringen’s representation with the second order disloca-
tion density tensor α = −CurlP instead of the third order tensor ∇P.2 In the isotropic case the energy of
the relaxed micromorphic model reads

2 The dislocation tensor is defined as αi j =−(CurlP)i j =−Pih,kε jkh, where ε is the Levi-Civita tensor and Einstein notation of
sum over repeated indices is used.
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W =µe ‖sym (∇u −P)‖2 +
λe

2
(tr(∇u −P))2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖skew(∇u −P)‖2︸ ︷︷ ︸
rotational elastic coupling

(2)

+µmicro ‖symP‖2 +
λmicro

2
(trP)2︸ ︷︷ ︸

micro− self− energy

+
µeL2

c

2
‖CurlP‖2︸ ︷︷ ︸

isotropic curvature

,

where the parameters and the elastic stress are analogous to the standard Mindlin-Eringen micromorphic
model. The model is well-posed in the static and dynamical case including when µc = 0, see [6, 16].

The complexity of the classical Mindlin-Eringen micromorphic model has been decisively reduced featur-
ing basically only symmetric gradient micro-like variables and the Curl of the micro-distortion P. However,
the relaxed model is still general enough to include the full micro-stretch as well as the full Cosserat micro-
polar model, see [17]. Furthermore, well-posedness results for the static and dynamical cases have been
provided in [17] making decisive use of recently established new coercive inequalities, generalizing Korn’s
inequality to incompatible tensor fields [2, 3, 15, 18–20].

The relaxed micromorphic model counts 6 constitutive parameters in the isotropic case (µe, λe, µmicro,
λmicro, µc, Lc). The characteristic length Lc is intrinsically related to non-local effects due to the fact that it
weights a suitable combination of first order space derivatives in the strain energy density (2). For a general
presentation of the features of the relaxed micromorphic model in the anisotropic setting, we refer to [1].

The associated equations of motion in strong form, obtained by a classical least action principle take the
form (see [10–12, 16])

ρ u,tt +Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s− Curlm, (3)

where

I = η1 devsym ∇u ,tt +η2 skew∇u ,tt +
1
3

η3 tr(∇u ,tt) ,

σ̃ = 2 µe sym (∇u −P)+λe tr(∇u −P) 1+2 µc skew(∇u −P) , (4)
s = 2 µmicro symP+λmicro tr(P) 1,

m = µeL2
c CurlP.

The fact of adding a gradient micro-inertia in the kinetic energy (1) modifies the strong-form PDEs of the
relaxed micromorphic model with the addition of the new term I . Of course, boundary conditions would
also be modified with respect to the ones presented in [7, 12]. The study of the new boundary conditions
induced by gradient micro-inertia will be the object of a subsequent paper where the effect of such extra
terms on the conservation of energy will also be analyzed.

As it has been shown in previous contributions [9–11], the relaxed micromorphic model is able to capture
band-gap behaviors thanks to the fact that the acoustic branches have a horizontal asymptote. We show in
Figure 2 the dispersion relations obtained in previous work which are recovered here setting the gradient
micro inertia to be vanishing (η = 0).
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Fig. 1 Dispersion relations ω = ω(k) of the relaxed micromorphic model for the uncoupled (left), longitudinal (center) and
transverse (right) waves with vanishing gradient micro-inertia η̄ 6= 0. One complete band-gap is possible.

Things are different when adding a gradient micro-inertia η 6= 0. Surprisingly, the combined effect of
the free micro-inertia η with the gradient micro-inertia can lead to the onset of a second longitudinal and
transverse band gap, due to the fact that the first longitudinal and transverse acoustic branches (LO1 and
TO1) are flattened. Moreover, it is possible to notice that the addition of gradient micro-inertiae η1, η2 and
η3 has no effect on the cut-off frequencies, which only depend on the free micro-inertia η (and of course on
the constitutive parameters).

Fig. 2 Dispersion relations ω = ω(k) of the relaxed micromorphic model for the uncoupled (left), longitudinal (center) and
transverse (right) waves with non-vanishing gradient micro-inertia. Two band-gaps are possible.

In Figure 3 we show more explicitly the flattening effect of the gradient inertia parameters on longitudinal
and transverse waves. In the same Figure we indicate the main mode of vibration associated to each branch
of the dispersion curves. In contrast to Cauchy models, the modes of vibration change when changing the
wavenumbers.

In particular, it is possible to notice that the main mode of the acoustic branches is the longitudinal or
transverse displacement (as it is the case for Cauchy media) only for very small wavenumbers k (large wave-
lengths). Increasing the wavenumber (decreasing the wavelength), the longitudinal and transverse vibrations
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are characterized by a coupling of the modes PS and PD, and P(1ξ ) and P[1ξ ] , respectively. Moreover, it can
be seen that the optic branches are characterized by one main microstructure-related vibrational mode until
relatively high values of the wavenumber k. The coupling occurs for higher values of k and it is strongly
influenced by the effects of the gradient micro-inertia.

Fig. 3 Dispersion relations ω = ω(k) of the relaxed micromorphic model for longitudinal (left) and transverse (right) waves
with increasing gradient micro-inertia. The markers indicate the main mode of vibration considering: black triangle u1, black
circle PS, black square PD, empty triangle uξ , empty circle P(1ξ ) and empty square P[1ξ ] with ξ = 2,3. When two markers are
present it means that there is no clear main mode.

3 The micromorphic model with curvature ‖DivP‖2+‖CurlP‖2

We consider now an extension of the relaxed micromorphic model obtained considering the energy (see [9]):

W =µe ‖sym (∇u −P)‖2 +
λe

2
(tr(∇u −P))2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖skew(∇u −P)‖2︸ ︷︷ ︸
rotational elastic coupling

(5)

+µmicro ‖symP‖2 +
λmicro

2
(trP)2︸ ︷︷ ︸

micro− self− energy

+
µeL2

c

2
(
‖DivP‖2 +‖CurlP‖2)︸ ︷︷ ︸

augmented isotropic curvature

.

The dynamical equilibrium equations are:

ρ u,tt +Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s−M, (6)

where
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I = η1 devsym ∇u ,tt +η2 skew∇u ,tt +
1
3

η3 tr(∇u ,tt) ,

σ̃ = 2 µe sym (∇u −P)+λe tr(∇u −P) 1+2 µc skew(∇u −P) , (7)
s = 2 µmicro symP+λmicro tr(P) 1,

M =−µeL2
c (∇(DivP)− CurlCurlP)︸ ︷︷ ︸

=Div∇P=∆P

.

Note that the structure of the equation is equivalent to the one obtained in the standard micromorphic model
with curvature 1

2‖∇P‖2, see equation (12) in section 5.
We present the dispersion relations obtained with a vanishing gradient inertia (Figure 4) and for a non-

vanishing gradient micro-inertia (Figure 5). We conclude that when considering the model with micromor-
phic medium with ‖DivP‖2 + ‖CurlP‖2 with vanishing gradient micro-inertia, there always exist waves
which propagate inside the considered medium independently of the value of frequency even if considering
separately longitudinal, transverse and uncoupled waves. On the other hand, switching on the gradient inertia
it is possible to obtain a total band-gap.

Fig. 4 Dispersion relations ω = ω(k) of the relaxed micromorphic model with curvature ‖DivP‖2+‖CurlP‖2 for the un-
coupled (left), longitudinal (center) and transverse (right) waves with vanishing gradient micro-inertia. No band-gap is possible.
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Fig. 5 Dispersion relations ω = ω(k) of the relaxed micromorphic model with curvature ‖DivP‖2+‖CurlP‖2 for the un-
coupled (left), longitudinal (center) and transverse (right) waves with non-vanishing gradient micro-inertia. One band-gap is
possible.

4 The micromorphic model with curvature ‖DivP‖2

The isotropic micromorphic model with ‖DivP‖2 is yet another variant of the classical relaxed micromorphic
model (see [9]) with energy:

W =µe ‖sym (∇u −P)‖2 +
λe

2
(tr(∇u −P))2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖skew(∇u −P)‖2︸ ︷︷ ︸
rotational elastic coupling

(8)

+µmicro ‖symP‖2 +
λmicro

2
(trP)2︸ ︷︷ ︸

micro− self− energy

+
µeL2

d
2
‖DivP‖2︸ ︷︷ ︸

isotropic curvature

.

The dynamical equilibrium equations are:

ρ u,tt +Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s−M, (9)

where

I = η1 devsym ∇u ,tt +η2 skew∇u ,tt +
1
3

η3 tr(∇u ,tt) ,

σ̃ = 2 µe sym (∇u −P)+λe tr(∇u −P) 1+2 µc skew(∇u −P) , (10)
s = 2 µmicro symP+λmicro tr(P) 1,

M =−µeL2
c ∇(DivP) .

We present the dispersion relations obtained with a non-vanishing gradient inertia (Figure 7) and for a
vanishing gradient inertia (Figure 6). In the Figures we consider uncoupled waves (a), longitudinal waves (b)
and transverse waves (c). Even in this case, when considering the micromorphic model with only ‖DivP‖2
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with vanishing gradient inertia, there always exist waves which propagate inside the considered medium
independently of the value of the frequency and the uncoupled waves assume a peculiar behavior in which
the frequency is independent of the wavenumber k. On the other hand, when switching on the gradient
inertia, a behavior analogous to the relaxed micromorphic model appears: it is possible to model the onset
of two complete band-gaps. The uncoupled waves remain unaffected by the introduction of the gradient
micro-inertia and they keep their characteristic of being independent of the wavenumber in strong contrast
to what happen for the relaxed micromorphic model in which the uncoupled waves are dispersive.

Fig. 6 Dispersion relations ω = ω(k) of the relaxed micromorphic model with curvature ‖DivP‖2 for the uncoupled (left),
longitudinal (center) and transverse (right) waves with vanishing gradient micro-inertia. No band-gap is possible.

Fig. 7 Dispersion relations ω = ω(k) of the relaxed micromorphic model with curvature ‖DivP‖2 for the uncoupled (left),
longitudinal (center) and transverse (right) waves with non-vanishing gradient micro-inertia. Two band-gaps are possible.
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5 The standard Mindlin-Eringen model

In this section. we discuss the effect on the Mindlin-Eringen of the addition of the gradient micro-inertia
η‖∇u ,t‖2 to the classical terms ρ‖u,t‖2 +η‖P,t‖2. We recall that the strain energy density for this model in
the isotropic case takes the form:

W =µe ‖sym (∇u −P)‖2 +
λe

2
(tr(∇u −P))2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖skew(∇u −P)‖2︸ ︷︷ ︸
rotational elastic coupling

(11)

+µmicro ‖symP‖2 +
λmicro

2
(trP)2︸ ︷︷ ︸

micro− self− energy

+
µeL2

c

2
‖∇P‖2︸ ︷︷ ︸

isotropic curvature

,

The dynamical equilibrium equations are:

ρ u,tt +Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s−M, (12)

where

I = η1 devsym ∇u ,tt +η2 skew∇u ,tt +
1
3

η3 tr(∇u ,tt) ,

σ̃ = 2 µe sym (∇u −P)+λe tr(∇u −P) 1+2 µc skew(∇u −P) , (13)
s = 2 µmicro symP+λmicro tr(P) 1,

M =−µeL2
c Div∇P︸ ︷︷ ︸

=∆P

.

Recalling the results of [10], we remark that when the gradient micro-inertia is vanishing (η1 = η2 =
η3 = 0) the Mindlin-Eringen model does not allow the description of band-gaps (see Fig.8), due to the
presence of straight acoustic waves. On the other hand, when switching on the parameters η2 and η3 , some
optic branches are flattened, so that the first band-gap can be created (see Fig.9). The analogous case for the
relaxed micromorphic model (Fig.1) allowed instead for the description of 2 band gaps.
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Fig. 8 Dispersion relations ω = ω(k) of the standard Mindlin-Eringen micromorphic model for the uncoupled (left), lon-
gitudinal (center) and transverse (right) waves with vanishing gradient micro-inertia. No band-gap is possible.

Fig. 9 Dispersion relations ω = ω(k) of the standard Mindlin-Eringen micromorphic model for the uncoupled (left), lon-
gitudinal (center) and transverse (right) waves with non-vanishing gradient micro-inertia. One band-gap is possible.

As already pointed out and as shown in [9], the classical Mindlin-Eringen model can be considered to be
equivalent to the relaxed micromorphic model with curvature ‖DivP‖2+‖CurlP‖2.

6 The internal variable model

Figure 10 shows the behavior of the addition of the gradient micro-inertia η‖∇u ,t‖2 in the internal variable
model. We recall (see [17]) that the energy for the internal variable model does not include higher space
derivatives of the micro-distortion tensor P and, in the isotropic case, takes the form:
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W =µe ‖sym (∇u −P)‖2 +
λe

2
(tr(∇u −P))2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖skew(∇u −P)‖2︸ ︷︷ ︸
rotational elastic coupling

(14)

+µmicro ‖symP‖2 +
λmicro

2
(trP)2︸ ︷︷ ︸

micro− self− energy

,

The dynamical equilibrium equations are:

ρ u,tt +Div[I ] = Div [ σ̃ ] , η P,tt = σ̃ − s, (15)

where

I = η1 devsym ∇u ,tt +η2 skew∇u ,tt +
1
3

η3 tr(∇u ,tt) ,

σ̃ = 2 µe sym (∇u −P)+λe tr(∇u −P) 1+2 µc skew(∇u −P) , (16)
s = 2 µmicro symP+λmicro tr(P) 1.

We present the dispersion relations obtained for the internal variable model with a non-vanishing gradient
inertia (Fig.11) and for a vanishing gradient inertia (Fig.10). We start noticing in Fig.10 that the internal
variable model with vanishing gradient micro-inertia allows for the description of two complete band-gap
even if it is not able to account for the presence of non-localities in metamaterials. Moreover, by direct
observation of Fig.11, we can notice that, when switching on the gradient micro-inertia, suitably choosing
the relative position of ωr and ωp, the internal variable model allows to account for 3 band gaps. We thus
have an extra band-gap with respect to the case with vanishing gradient inertia (Fig.10) and to the analogous
case for the relaxed micromorphic model (see Fig.2), but we are not able to consider non-local effects.
The fact of excluding the possibility of describing non-local effects in metamaterials can be sometimes too
restrictive. For example, flattening the curve which originates from ωr and which is associated to rotational
modes of the microstructure is nonphysical for the great majority of metamaterials.

Fig. 10 Dispersion relations ω = ω(k) of the internal variable model for the uncoupled (left), longitudinal (center) and
transverse (right) waves with vanishing gradient micro-inertia. Two band-gaps are possible but non-local effects cannot be
described.
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Fig. 11 Dispersion relations ω = ω(k) of the internal variable model for the uncoupled (left), longitudinal (center) and
transverse (right) waves with non-vanishing gradient micro-inertia. Three band-gap are possible but non-local effects cannot be
described. The overall trend of the dispersion curves is unrealistic for the great majority of metamaterials.

7 Conclusions

In this paper we make a review of some of the available isotropic, linear-elastic, enriched continuum mod-
els for the description of the dynamical behavior of metamaterials. We show that the relaxed micromorphic
model previously introduced by the authors is the only non-local enriched model which is able to describe
band-gaps when considering a kinetic energy independently accounting for micro and micro motions. As far
as an inertia term which couples the micro-motions to the macroscopic motions of the unit cell is introduced,
also other non-local models exhibit the possibility of describing band-gap behaviors. Nevertheless, the re-
laxed micromorphic model is still the more effective one to describe (multiple) band-gaps and non-local
effects in a realistic way. In fact, even with the addition of the new micro-inertia term, the relaxed model is
able to account for the description of two band-gaps, in contrast with to the single band-gap allowed by the
Mindlin-Eringen model. The micromorphic model with curvature ‖DivP‖2 also allows for the description
of two band-gaps when considering an augmented kinetic energy, but the uncoupled waves are forced to be
non-dispersive: this fact can be considered to be a limitation for the realistic description of a wide class of
band-gap metamaterials. Finally, the internal variable model with the new kinetic energy terms allow for the
description of up to three band gaps. Nevertheless, the overall trends shown by the dispersion curves turn
to be quite unrealistic due to the fact that all the branches of the dispersion curves show very low or no
dispersion at all.

8 Acknowledgments

The work of Ionel-Dumitrel Ghiba was supported by a grant of the Romanian National Authority for Sci-
entific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-0320. Angela
Madeo thanks INSA-Lyon for the funding of the BQR 2016 "Caractérisation mécanique inverse des méta-
matériaux: modélisation, identification expérimentale des paramètres et évolutions possibles", as well as the
CNRS-INSIS for the funding of the PEPS project.



A review on wave propagation modeling in band-gap metamaterials via enriched continuum models 15

References

1. Gabriele Barbagallo, Marco Valerio d’Agostino, Rafael Abreu, Ionel-Dumitrel Ghiba, Angela Madeo, and Patrizio Neff.
Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length
asymptotics. Preprint ArXiv, 1601.03667, 2016.

2. Sebastian Bauer, Patrizio Neff, Dirk Pauly, and Gerhard Starke. New Poincaré-type inequalities. Comptes Rendus Mathe-
matique, 352(2):163–166, 2014.

3. Sebastian Bauer, Patrizio Neff, Dirk Pauly, and Gerhard Starke. Dev-Div- and DevSym-DevCurl-inequalities for incom-
patible square tensor fields with mixed boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations,
22(1):112–133, 2016.

4. Francesco dell’Isola, Angela Madeo, and Luca Placidi. Linear plane wave propagation and normal transmission and
reflection at discontinuity surfaces in second gradient 3D continua. Zeitschrift für Angewandte Mathematik und Mechanik,
92(1):52–71, 2012.

5. Ahmed Cemal Eringen. Microcontinuum field theories. Springer-Verlag, New York, 1999.
6. Ionel-Dumitrel Ghiba, Patrizio Neff, Angela Madeo, Luca Placidi, and Giuseppe Rosi. The relaxed linear micromor-

phic continuum: existence, uniqueness and continuous dependence in dynamics. Mathematics and Mechanics of Solids,
20(10):1171–1197, 2014.

7. Angela Madeo, Gabriele Barbagallo, Marco Valerio d’Agostino, Luca Placidi, and Patrizio Neff. First evidence of non-
locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2190):20160169, 2016.

8. Angela Madeo, Patrizio Neff, Elias C. Aifantis, Gabriele Barbagallo, and Marco Valerio d’Agostino. On the role of micro-
inertia in enriched continuum mechanics. Preprint ArXiv, 1607.07385, 2016.

9. Angela Madeo, Patrizio Neff, Marco Valerio d’Agostino, and Gabriele Barbagallo. Complete band gaps including non-
local effects occur only in the relaxed micromorphic model. Preprint ArXiv, 1602.04315, 2016.

10. Angela Madeo, Patrizio Neff, Ionel-Dumitrel Ghiba, Luca Placidi, and Giuseppe Rosi. Band gaps in the relaxed linear
micromorphic continuum. Zeitschrift für Angewandte Mathematik und Mechanik, 95(9):880–887, 2014.

11. Angela Madeo, Patrizio Neff, Ionel-Dumitrel Ghiba, Luca Placidi, and Giuseppe Rosi. Wave propagation in relaxed
micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum Mechanics and Thermodynamics,
27(4-5):551–570, 2015.

12. Angela Madeo, Patrizio Neff, Ionel-Dumitrel Ghiba, and Giussepe Rosi. Reflection and transmission of elastic waves in
non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model. Journal of the Mechanics
and Physics of Solids, 2016.

13. Raymond David Mindlin. Microstructure in linear elasticity. Technical report, Office of Naval Research, 1963.
14. Raymond David Mindlin. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1):51–78,

1964.
15. Patrizio Neff. On Korn’s first inequality with non-constant coefficients. Proceedings of the Royal Society of Edinburgh:

Section A Mathematics, 132(01):221, 2002.
16. Patrizio Neff, Ionel-Dumitrel Ghiba, Markus Lazar, and Angela Madeo. The relaxed linear micromorphic continuum:

well-posedness of the static problem and relations to the gauge theory of dislocations. The Quarterly Journal of Mechanics
and Applied Mathematics, 68(1):53–84, 2014.

17. Patrizio Neff, Ionel-Dumitrel Ghiba, Angela Madeo, Luca Placidi, and Giuseppe Rosi. A unifying perspective: the relaxed
linear micromorphic continuum. Continuum Mechanics and Thermodynamics, 26(5):639–681, 2014.

18. Patrizio Neff, Dirk Pauly, and Karl-Josef Witsch. A canonical extension of Korn’s first inequality to H(Curl) motivated by
gradient plasticity with plastic spin. Comptes Rendus Mathematique, 349(23):1251–1254, 2011.

19. Patrizio Neff, Dirk Pauly, and Karl-Josef Witsch. Maxwell meets Korn: A new coercive inequality for tensor fields in Rn×n

with square-integrable exterior derivative. Mathematical Methods in the Applied Sciences, 35(1):65–71, 2012.
20. Patrizio Neff, Dirk Pauly, and Karl-Josef Witsch. Poincaré meets Korn via Maxwell: Extending Korn’s first inequality to

incompatible tensor fields. Journal of Differential Equations, 258(4):1267–1302, 2015.
21. Luca Placidi, Giuseppe Rosi, Ivan Giorgio, and Angela Madeo. Reflection and transmission of plane waves at surfaces

carrying material properties and embedded in second-gradient materials. Mathematics and Mechanics of Solids, 19(5):555–
578, 2014.


	A review on wave propagation modeling in band-gap metamaterials via enriched continuum models
	Angela Madeo and Patrizio Neff and Gabriele Barbagallo and Marco Valerio d'Agostino and Ionel-Dumitrel Ghiba
	1 Introduction
	1.1 Notations
	1.2 The fundamental role of micro-inertia in enriched continuum mechanics

	2 The classical relaxed micromorphic model
	3 The micromorphic model with curvature 86422285 DivP69645069 2+86422285 CurlP69645069 2
	4 The micromorphic model with curvature 86422285 DivP69645069 2
	5 The standard Mindlin-Eringen model 
	6 The internal variable model
	7 Conclusions
	8 Acknowledgments
	References



