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Abstract We consider the Cosserat shell approach under finite rotations. The

Cosserat shell features an additional, in principle independent orthogonal frame. In

this setting we establish a novel curvature tensor which we call the shell dislocation

density tensor. For this variant, we derive the equations and in a hyperelastic con-

text we show existence of minimizers under generic convexity assumptions on the

elastic energies in terms of nonlinear strain measures. The correspondence between

our formulation and proposals in the literature is established.

1 Introduction

Thin shell-structures still represent one of the most challenging facets of problems

in nonlinear elasticity. Due to their flexibility, large rotations are a commonplace ob-

servation. The modelling definitely calls for a sound finite rotation treatment. While

models based on the Kirchhoff–Love normality assumption allow for a reasonable

mathematical treatment in the linear, infinitesimal strain setting, this is not the case

in the finite strain setting. Here, also from an engineering point of view, models with

independent director fields in the spirit of the Reissner–Mindlin kinematics are more

widely used for the ease with which these shell models can be coupled to beams in

structural approaches.
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The mathematics of these models with one independent director is, however, not

yet settled. One of the reasons of this shortcoming is the lacking control of rota-

tions. In the last decade, this fundamental problem has been understood [11] and as

an answer, finite rotation Cosserat-shell models have been proposed and analysed.

The Cosserat kinematics endows the shell with an additional orthogonal frame, in

principle independent of the deformation of the shell. For this frame, new balance

equations are established. For such models, under suitable convexity assumptions

on strain measures which do not preclude buckling, existence results can be shown

when formulating the model in a hyperelastic setting. Uniqueness cannot be shown

and is not to be expected. With such approaches, a quite successful modelling is pos-

sible [19]. As it turns out, the basic modelling ingredients have already been known

to the Cosserat brothers [6]. However, they have never discussed any constitutive

assumptions. We mention that the kinematics of Cosserat shells is equivalent to the

kinematics of the so-called 6-parameter shell model, see e.g. [4, 8, 16, 2].

In this contribution we provide such a discussion with a view towards a new ten-

sor – the shell dislocation density tensor, which seems quite appropriate to express

the curvature term for the orthogonal frame-field living in SO(3). More precisely, we

present first the strain and curvature measures which are commonly used in Cosserat

shell models and introduce the new dislocation density tensor, as an alternative strain

measure for orientation (curvature) change. We establish the extended Nye’s for-

mula, which expresses the relationship between the shell bending-curvature tensor

and the shell dislocation density tensor. Then, we write the principle of virtual work

and the constitutive relations using the dislocation density tensor. We formulate the

minimization problem for the deformation of Cosserat-type shells and prove an ex-

istence theorem using the direct methods of the calculus of variations. As an appli-

cation of these results, we investigate the special case of isotropic elastic shells. We

finish with establishing the correspondence between our new formulation and more

well-known representations.

2 Strain and curvature measures in the Cosserat (6-parameter)

shell model

We present shortly the kinematical model of Cosserat-type shells, which coincides

with the kinematical model of 6-parameter shells, see e.g. [2, 4, 8].

2.1 Kinematics

In this model, every material point has 6 kinematical degrees of freedom: 3 for

translations and 3 for rotations. To describe the rotational motion of material points

we attach a triad of orthonormal vectors (called directors) to every point.
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Let Sξ be the reference configuration of a shell and consider the midsur-

face ωξ ⊂ R3. We denote by (ξ1,ξ2,ξ3) a generic point of the deformable sur-

face ωξ . The Cosserat-type shell is characterized by two fields: the vectorial map

yξ : ωξ → ωc for the deformation and the microrotation tensor Rξ : ωξ → SO(3).
Here, ωc represents the deformed (current) configuration of the midsurface and

SO(3) is the group of proper orthogonal 3×3 tensors.

The reference midsurface ωξ admits a parametric representation

y0 : ω → ωξ , y0(x1,x2) = (ξ1,ξ2,ξ3),

where ω ⊂ R2 is a flat domain with Lipschitz boundary ∂ω . We refer the domain

ω to an orthogonal Cartesian frame Ox1x2x3 such that ω ⊂ Ox1x2 and let ei be the

unit vectors along the coordinate axes Oxi .

The deformation function y and the elastic microrotation Qe are defined by the

compositions

y = yξ ◦y0 : ω → ωc , y(x1,x2) := yξ

(
y0(x1,x2)

)
,

Qe = Rξ ◦y0 : ω → SO(3), Qe(x1,x2) := Rξ

(
y0(x1,x2)

)
.

Then, the total microrotation R is defined by

R : ω → SO(3), R(x1,x2) = Qe(x1,x2)Q0(x1,x2),

where Q0 : ω → SO(3) is the initial microrotation, which describes the orientation

of points in the reference configuration. With the help of the directors, one can

express the microrotation tensors in the following way

Qe = di ⊗d0
i , R = Qe Q0 = di ⊗ ei , Q0 = d0

i ⊗ ei , (1)

where d0
i stand for the initial directors (attached to points in ωξ ) and di are the direc-

tors in the deformed configuration ωc (i = 1,2,3). In relation (1) and throughout the

paper we employ the usual conventions for indices: the Latin indices i, j,k, ... range

over the set {1,2,3}, while the Greek indices α,β ,γ, ... are confined to the range

{1,2} ; the comma preceding an index i denotes partial derivatives with respect to

xi ; the Einstein summation convention over repeated indices is also used.

2.2 Differential geometry

For the differential geometry of the reference surface ωξ we introduce some nota-

tions. Let aα be the covariant base vectors and aβ be the contravariant base vectors

in the tangent plane: aα := y0,α and aα ·aβ = δ
β
α (the Kronecker delta). We denote

aαβ := aα ·aβ , aαβ := aα ·aβ , a =
√

det
(
aαβ

)
2×2 = |a1 ×a2| > 0.
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The unit normal n0 to the surface is given by

n0 =
a1 ×a2

a

and we also use a3 := a3 := n0 . The surface gradient Grads and surface divergence

Divs operators are defined for a vector field v by

Grads v =
∂v

∂xα
⊗aα = v,α ⊗aα , Divs v = tr

[
Grads v

]
= v,α ·aα . (2)

In [3] we have introduced the surface Curl operator curls for vector fields v and,

respectively, Curls for tensor fields T by

(
curls v

)
·k := Divs

(
v×k

)
for all constant vectors k,

(
Curls T

)T
k := curls

(
TT k

)
for all constant vectors k. (3)

In view of these definitions, we have the relations

curls v =−v,α ×aα , Curls T =−T,α ×aα . (4)

Using these notations we can express the first fundamental tensor a and the second

fundamental tensor b of the surface ωξ in the forms

a = aαβ aα ⊗aβ = aαβ aα ⊗aβ = aα ⊗aα ,

b =−Grads n0 =−n0,α ⊗aα = bαβ aα ⊗aβ = bα
β aα ⊗aβ ,

with bαβ =−n0,β ·aα = bβα , bα
β =−n0,β ·aα .

Remark 1. The initial directors d0
i are usually chosen such that

d0
3 = n0 , d0

α ·n0 = 0 , (5)

i.e. d0
3 is orthogonal to ωξ and d0

α belong to the tangent plane. This assumption

is not necessary in general, but it will be adopted here since it simplifies many of

the subsequent expressions. In the deformed configuration, the director d3 is no

longer orthogonal to the surface ωc (the Kirchhof-Love condition is not imposed).

One convenient choice of the initial microrotation tensor Q0 = di ⊗ ei such that the

conditions (5) be satisfied is (see Remark 10 of [1])

Q0 = polar
(
ai ⊗ ei

)
,

where polar(T) denotes the orthogonal tensor given by the polar decomposition of

any tensor T.
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2.3 The dislocation density tensor

In view of (2), the surface gradient of the deformation is

F := Grads y = y,α ⊗aα .

The elastic shell strain tensor Ee is defined by [4, 8]

Ee = QT
e Gradsy−a =

(
QT

e y,α −y0,α

)
⊗aα (6)

and the elastic shell bending-curvature tensor Ke is [2, 4, 8]

Ke = axl
(
QT

e Qe,α

)
⊗aα = Q0

[
axl

(
R

T
R,α

)
− axl

(
QT

0 Q0,α

)]
, (7)

which is a measure of orientation (curvature) change for Cosserat shells.

In [3] we have defined the dislocation density tensor De by

De = QT
e Curls Qe . (8)

Using the formula (4)2 , we can write this definition in the form

De = QT
e

(
−Qe,α ×aα

)
=−

(
QT

e Qe,α

)
×aα . (9)

We have shown that the tensor De represents an alternative strain measure for orien-

tation (curvature) change. Indeed, in [3] we have established the following relation

De =−KT
e +

(
trKe

)
13 or equivalently, Ke =−DT

e +
1

2

(
trDe

)
13 , (10)

where 13 is the identity tensor in the Euclidean 3-space. We call (10) the extended

Nye’s formula, since it is a generalization of a well-known formula for infinitesimal

strains in three-dimensional elasticity [14]. The formula (10) expresses the rela-

tionship between the shell bending-curvature tensor Ke and the dislocation density

tensor De .

We present next a new proof of the extended Nye’s formula (10). This proof is

simpler as the one shown in [3] and is based on the relation

A×v = v⊗ axlA−
(
v · axlA

)
13 , (11)

which holds true for every vector v and any skew-symmetric second order tensor A.

Proof of relation (11) : It is well-known that A = 13 × axlA, where axlA is the

axial vector of the skew-symmetric tensor A. Then, we can write

A×v =
(
13 × axlA

)
×v =

[
(ei ⊗ ei)× axlA

]
×v

= ei ⊗
[
(ei × axlA)×v

]
= ei ⊗

[
(ei ·v)axlA− (v · axlA)ei

]

=
[
(v · ei)ei

]
⊗ axlA− (v · axlA)(ei ⊗ ei) = v⊗ axlA−

(
v · axlA

)
13 .
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Proof of the extended Nye’s formula (10) : We apply the relation (11) for the

skew-symmetric tensor A =−QT
e Qe,α and the vector v = aα .

Upon summation over α = 1,2 we obtain from (7), (9) and (11) that

De =
(
−QT

e Qe,α

)
×aα =−aα ⊗ axl

(
QT

e Qe,α

)
+
(
aα · axl(QT

e Qe,α)
)
13

= −KT
e +

(
trKe

)
13 ,

which concludes the proof.

Remark 2. We can write the extended Nye’s formula (10) in an equivalent form, if

we make use of the following orthogonal decomposition:

Any second order tensor X ∈ R
3×3 can be decomposed as direct sum in the form

(the Cartan–Lie–algebra decomposition)

X = dev3symX + skewX +
1

3

(
trX

)
13 , (12)

where symS is the symmetric part, skewS the skew-symmetric part and dev3 S :=
S− 1

3
(trS)13 is the deviatoric part of any second order tensor S.

If we apply the operators tr , skew and dev3sym to the relation (10) we obtain,

respectively

trDe = 2trKe , skewDe = skewKe , dev3symDe =−dev3symKe , (13)

which express anew the relationship between Ke and De and are equivalent to the

extended Nye’s formula (10). As a direct consequence of (13) we deduce

‖De‖
2 = ‖Ke‖

2 +
(
trKe

)2
and ‖Ke‖ ≤ ‖De‖ ≤ 2‖Ke‖. ⊓⊔ (14)

If we analyze the structure of the dislocation density tensor De we find that

De = aDe + tr
(
aDe

)
n0 ⊗n0 . (15)

Thus, we see that the essential part of the tensor De is the tensor aDe = Dαβ aα ⊗

aβ +Dα3 aα ⊗ n0 (which has only 6 non-vanishing components Dαi). Indeed, in

view of (15) the two components of De in the directions n0 ⊗ aα are zero, while

the component in the direction n0 ⊗n0 is equal to tr
(
aDe

)
. In other words, all the

information carried by the dislocation density tensor De is already contained in its

part aDe . For this reason, we define the new shell dislocation density tensor Ds by

Ds := aDe = aQT
e Curls Qe =−a

(
QT

e Qe,α

)
×aα , (16)

which is more appropriate for the shell theory, since it is a tensor in the space Tx⊗E

(where Tx is the tangent plane and E is the Euclidean 3-space). The definition (16)

can be formulated as follows: by multiplication from the left with a we take the
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projection of the left leg of De on the tangent plane and obtain the shell dislocation

density tensor Ds .

Next, we would like to present the relationship between the shell dislocation

density tensor Ds and the shell bending-curvature tensor Ke : if we multiply (10)

with a and use the relations aDe = Ds and Ke a = Ke we obtain

Ds =−KT
e +

(
trKe

)
a or equivalently, Ke =−DT

s +
(
trDs

)
a. (17)

The relations (17) express the extended Nye’s formula for the tensors Ds and Ke . We

observe that, in contrast to (10), the two relations (17) have a reciprocal structure:

the two tensors Ds and Ke play symmetrical roles in (17).

Furthermore, we can establish an equivalent representation of the extended Nye’s

formula (17) using a corresponding orthogonal decomposition for these tensors (as

a counterpart of equations (12) and (13)):

Lemma 1. Any second order tensor X which satisfies the condition 〈X,n0⊗n0〉= 0

(i.e. the component of X in the direction n0 ⊗n0 is zero) can be decomposed as a

direct sum in the form

X = devssymX + skewX +
1

2

(
trX

)
a , (18)

where we denote by devs S := S − 1
2

(
trS

)
a the surface deviatoric part of any sec-

ond order tensor S.

Proof. In view of the definition of the oprator devs , we have

devssymX+ skewX + 1
2

(
trX

)
a = symX− 1

2
tr
(
symX

)
a

+ skewX+ 1
2

(
trX

)
a = symX+ skewX = X .

We see immediately that

〈devssymX , skewX〉= 0 and 〈skewX ,
1

2

(
trX

)
a〉= 0,

since devssymX and 1
2

(
trX

)
a are symmetric and skewX is skew-symmetric.

Finally, we employ the relations a = 13 −n0 ⊗n0 and 〈X,n0 ⊗n0〉= 0 to get

〈devssymX , 1
2

(
trX

)
a〉= 〈symX− 1

2
tr
(
symX

)
a , 1

2

(
trX

)
a〉

= 1
2

(
trX

)
〈X− 1

2

(
trX

)
a , a〉= 1

2

(
trX

)
〈X , a〉− 1

4

(
trX

)2
〈a , a〉

= 1
2

(
trX

)
〈X , 13 −n0 ⊗n0 〉−

1
2

(
trX

)2

= 1
2

(
trX

)2
− 1

2

(
trX

)
〈X , n0 ⊗n0 〉−

1
2

(
trX

)2
= 0. ⊓⊔

Remark 3. In view of the definitions (7) and (16) we see that the tensors Ke and

Ds satisfy the conditions 〈Ke,n0 ⊗ n0〉 = 0 and, respectively, 〈Ds,n0 ⊗ n0〉 = 0.

Applying the above Lemma we obtain the orthogonal decompositions
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Ke = devssymKe + skewKe +
1
2

(
trKe

)
a ,

Ds = devssymDs + skewDs +
1
2

(
trDs

)
a .

(19)

If we insert the relations (19) into (17) and compare the corresponding terms,

then we obtain (in view of the uniqueness of the representation given by Lemma 1)

the following equivalent form of the extended Nye’s formula (17):

trDs = trKe , skewDs = skewKe , devssymDs =−devssymKe . (20)

As a direct consequence of these equations we find

‖Ds‖= ‖Ke‖ . (21)

Indeed, by virtue of the orthogonal decompositions (19) and the relations (20) we

get

‖Ds‖
2 = ‖devssymDs‖

2 +‖skewDs‖
2 + 1

2

(
trDs

)2

= ‖devssymKe‖
2 +‖skewKe‖

2 + 1
2

(
trKe

)2
= ‖Ke‖

2.

3 Governing equations for the equilibrium of Cosserat shells

In what follows, we present the field equations which govern the deformation of

Cosserat shells. We express the principle of virtual work using the shell dislocation

density tensor Ds . Then, we introduce the stress measure which is work-conjugate

to Ds and deduce the corresponding constitutive equations.

Let N be the internal surface stress tensor and M be the internal surface couple

tensor (of the first Piola-Kirchhoff type) for the shell. Then, the local equilibrium

equations can be expressed in the form (see e.g., [8, 1])

Divs N+ f = 0, Divs M+ axl(NFT −FNT )+ c = 0, (22)

where f and c are the external surface force and couple vectors.

Let ν be the external unit normal vector to the boundary curve ∂ωξ lying in the

tangent plane. We assume boundary conditions of the type [7, 16]

Nν = n∗, Mν = m∗ along ∂ω f ,

y = y∗, R = R∗ along ∂ωd ,
(23)

where ∂ω f and ∂ωd build a disjoint partition of ∂ωξ with length(∂ωd) > 0. Here,

n∗ and m∗ are the external boundary resultant force and couple vectors respectively,

applied along the deformed boundary ∂ωc, but measured per unit length of ∂ωξ .

To obtain the principle of virtual work, we consider two arbitrary smooth vector

fields v and w given on ωξ . By multiplying the equations (22), (23) with v and w,

we can set the integral identity
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∫

ωξ

{(
Divs N+ f

)
·v+

[
Divs M+ axl(NFT −FNT )+ c

]
·w

}
da

=
∫

∂ω f

[(
Nν −n∗

)
·v+

(
Mν −m∗

)
·w

]
dℓ,

where da is the area element on the surface ωξ and dℓ is the length element along

∂ω f . After some transformations we can rewrite this identity in the following form

(see e.g., [8])

∫

ωξ

(〈
N , Grads v−WF

〉
+
〈

M , Grads w
〉)

da =
∫

ωξ

(
f ·v+ c ·w

)
da

+
∫

∂ω f

(
n∗ ·v+m∗ ·w

)
dℓ+

∫

∂ωd

[(
Nν

)
·v+

(
Mν

)
·w

]
dℓ, (24)

where W = w×13 is the skew-symmetric tensor corresponding to the axial vector

w. Now, if we interpret v as the kinematically admissible virtual translation and w

as the kinematically admissible virtual rotation of the shell, i.e.

v = δ y and w = axl
(
(δQe)Q

T
e

)
, (25)

then from the boundary conditions (23)3,4 we obtain

v = 0, w = 0 along ∂ωd ,

which shows that the last integral in (24) vanishes. The remaining two integrals in

the right-hand side of (24) describe the external virtual work and the integral in the

left-hand side represents the internal virtual work. Thus, the internal virtual work

power (density) P is given by

P =
〈

N , Grads v−WF
〉
+
〈

M , Grads w
〉
. (26)

This expression can be written in terms of the shell strain measures Ee and Ke .

Using transformations similar to those presented in [17, Sect.4], we can put (26) in

the form

P =
〈

QT
e N , δ Ee

〉
+
〈

QT
e M , δ Ke

〉
. (27)

Here, QT
e N and QT

e M are the shell stress measures in the material representation.

They are work-conjugate to the shell strain measures Ee and Ke , respectively. By

virtue of (27), the principle of virtual work (24) becomes

∫

ωξ

(〈
QT

e N , δ Ee

〉
+
〈

QT
e M , δ Ke

〉)
da

=
∫

ωξ

(
f ·v+ c ·w

)
da+

∫

∂ω f

(
n∗ ·v+m∗ ·w

)
dℓ, (28)

where v and w are given by (25).

The corresponding constitutive equations (under hyperelasticity assumptions) are



10 Mircea Bı̂rsan and Patrizio Neff

QT
e N =

∂ W

∂ Ee

and QT
e M =

∂ W

∂ Ke

, (29)

where W =W (Ee,Ke) is the elastically stored energy density for Cosserat shells.

We show next that the internal virtual work power (26) can also be expressed

using the shell dislocation density tensor Ds . On the basis of the extended Nye’s

formula (17)2 and the relation
〈

QT
e M , a

〉
= tr

(
QT

e M
)
, we get

〈
QT

e M , δ Ke

〉
=

〈
QT

e M ,−δ DT
s +

(
trδ Ds

)
a
〉

= −
〈

QT
e M , δ DT

s

〉
+ tr

(
QT

e M
)

tr
(
δ Ds

)

=
〈
−
(
QT

e M
)T

+ tr
(
QT

e M
)

a , δ Ds

〉
.

Inserting this expression into (27) we find

P =
〈

QT
e N , δ Ee

〉
+
〈
−
(
QT

e M
)T

+ tr
(
QT

e M
)

a , δ Ds

〉

and hence, the work-conjugate shell stress measures to Ds is −
(
QT

e M
)T

+tr
(
QT

e M
)

a .

If we write the elastically stored energy density (strain energy density) W as a

function W = Ŵ (Ee,Ds) , then the corresponding constitutive equations are

QT
e N =

∂ Ŵ

∂ Ee

and −
(
QT

e M
)T

+ tr
(
QT

e M
)

a =
∂ Ŵ

∂ Ds

. (30)

The last relation can be inverted (in the same way as the extended Nye’s formula

(17)) and (30) is equivalent to

N = Qe

∂ Ŵ

∂ Ee

and M = Qe

[
−
( ∂ Ŵ

∂ Ds

)T

+
(

tr
∂ Ŵ

∂ Ds

)
a
]
. (31)

4 Variational formulation and existence of minimizers

We consider the usual Lebesgue spaces Lp(ω,R3) , Lp(ω,R3×3) with p ≥ 1 and the

Sobolev spaces H1(ω,R3) , H1(ω,R3×3). With abuse of notation, we introduce the

subset

Lp
(
ω,SO(3)

)
:=

{
Q ∈ Lp(ω,R3×3) | Q(x1,x2) ∈ SO(3) for a.e. (x1,x2) ∈ ω

}

with the induced strong topology of Lp(ω,R3×3) and the subset

H1
(
ω,SO(3)

)
:=

{
Q ∈ H1(ω,R3×3) | Q(x1,x2) ∈ SO(3) for a.e. (x1,x2) ∈ ω

}

with the induced strong and weak topologies of H1(ω,R3×3).
Let us define the admissible set A by
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A =
{
(y,R) ∈ H1(ω,R3)×H1

(
ω,SO(3)

) ∣∣ y∣∣∂ωd
= y∗ , R∣∣∂ωd

= R∗
}
, (32)

where the boundary data satisfy y∗ ∈ H1(ω,R3) and R∗ ∈ H1
(
ω,SO(3)

)
.

We consider the total energy functional

E (y,R) =
∫

ωξ

Ŵ (Ee,Ds) da−Λ(y,R)

=
∫

ω
Ŵ (Ee,Ds) a(x1,x2) dx1dx2 −Λ(y,R) ,

(33)

for every (y,R) ∈ A . Here, Λ(y,R) denotes the external loading potential

Λ(y,R) =
∫

ωξ

f ·uda + Πωξ
(R)+

∫

∂ω f

n∗ ·udℓ + Π∂ω f
(R), (34)

where u := y−y0 is the displacement vector and we assume that f ∈ L2(ω,R3) and

n∗ ∈ L2(∂ω f ,R
3). The potential Πωξ

: L2
(
ω,SO(3)

)
→ R of the external surface

couples c and the potential Π∂ω f
: L2

(
∂ω f ,SO(3)

)
→ R of the external boundary

couples m∗ are assumed to be continuous and bounded operators.

We formulate the following two-field minimization problem: find the pair (ŷ, R̂)∈
A which realizes the minimum of the total energy functional E (y,R) given by (33).

We can prove the following existence result

Theorem 1. Assume that the reference configuration of the Cosserat shell satisfies

the regularity conditions

y0 ∈ H1(ω,R3), Q0 ∈ H1(ω,SO(3)),

aα = y0,α ∈ L∞(ω,R3), a(x1,x2)≥ a0 > 0,
(35)

where a0 is a constant. Moreover, the strain energy density Ŵ (Ee,Ds) is assumed to

be a quadratic convex function of (Ee,Ds), which is also coercive, i.e. there exists a

constant C0 > 0 such that

Ŵ (Ee,Ds) ≥ C0

(
‖Ee‖

2 +‖Ds‖
2
)
. (36)

Then, the minimization problem (32)–(34) admits at least one minimizing solution

pair (ŷ, R̂) ∈ A .

Proof. One can prove this statement using the direct methods of the calculus of

variations. The procedure is very similar to the proof of Theorem 6 in [1], where

we have formulated the same existence result, but expressed in terms of the shell

bending-curvature tensor Ke . By virtue of the extended Nye’s formula (17) and

the relation (21), we can adapt this proof to our case, i.e. when W is a function of

(Ee,Ds). For the sake of brevity, we shall present only the main steps of the proof

and omit further detailed explanations.

We show first that the external loading potential satisfies the estimate
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|Λ(y,R) | ≤ C
(
‖y‖H1(ω)+1

)
, ∀(y,R) ∈ A .

where C > 0 is a constant. Using this relation and the coercivity relation (36) we

obtain

E (y,R)≥C0 ‖∇y‖2
L2(ω)−C1‖y‖H1(ω)−C2 ,

where C1 ,C2 are some constants. To estimate the first term on the right-hand side of

this inequality we apply the Poincaré–inequality and find (with Cp > 0 constant)

E (y,R)≥ Cp ‖y−y∗‖2
H1(ω)−C3‖y−y∗‖H1(ω)+C4 , ∀(y,R) ∈ A

so that the functional E (y,R) is bounded from below over A .

Then, there exists an infimizing sequence (yn,Rn)n∈N such that

lim
n→∞

E (yn,Rn) = inf
{
E (y,R)

∣∣(y,R) ∈ A
}
. (37)

We show that the sequences
(
yn

)
and

(
Rn

)
are bounded in H1(ω,R3) and H1(ω,R3×3),

respectively. Then, we can extract subsequences (not relabeled) such that

yn ⇀ ŷ in H1(ω,R3) and yn → ŷ in L2(ω,R3),

Rn ⇀ R̂ in H1(ω,R3×3) and Rn → R̂ in L2(ω,R3×3).

The limit elements satisfy (ŷ, R̂) ∈ A and we can construct the corresponding shell

strain measures Êe , D̂s , as well as (Ee)n ,(Ds)n , using the definitions (6) and (16).

Then, we show the weak convergence (on subsequences)

(Ee)n ⇀ Êe in L2(ω,R3×3) and (Ds)n ⇀ D̂s in L2(ω,R3×3).

Finally, we use the convexity of the strain energy function Ŵ (Ee,Ds) and deduce

∫

ω
Ŵ (Êe, D̂s)a(x1,x2)dx1dx2 ≤ liminf

n→∞

∫

ω
Ŵ
(
(Ee)n,(Ds)n

)
a(x1,x2)dx1dx2 .

Fron this inequality and (33) it follows that :

E (ŷ, R̂) ≤ liminf
n→∞

E (yn,Rn). (38)

In view of (37) and (38) we see that (ŷ, R̂) is a minimizing solution pair of our

minimization problem (32)–(34). ⊓⊔

5 Application: isotropic Cosserat shells

We employ the above results to investigate the case of isotropic elastic shells. To

write the specific form of the strain energy density for isotropic shells, we use the
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decomposition into the planar part and out-of-plane part of the shell strain tensors

Ee and Ke :

Ee = (a+n0 ⊗n0)Ee = aEe +n0 ⊗ (n0Ee), ‖Ee‖
2 = ‖aEe‖

2 +‖n0Ee‖
2,

Ke = aKe +n0 ⊗ (n0Ke), ‖Ke‖
2 = ‖aKe‖

2 +‖n0Ke‖
2.

(39)

In [8] the following general form of the strain energy density W (Ee,Ke) for 6-

parameter isotropic elastic shells was proposed

2W (Ee,Ke) = α1

[
tr(aEe)

]2
+α2 tr(aEe)

2 +α3 ‖aEe‖
2 +α4 ‖n0Ee‖

2

+β1

[
tr(aKe)

]2
+β2 tr(aKe)

2 +β3 ‖aKe‖
2 +β4 ‖n0Ke‖

2, (40)

where αk and βk are constant constitutive coefficients (k = 1,2,3,4).

We want to express the strain energy density as a function Ŵ (Ee,Ds). To this

aim, we decompose the shell dislocation density tensor Ds as

Ds = Ds(a+n0 ⊗n0) = Ds a+(Ds n0)⊗n0, ‖Ds‖
2 = ‖Ds a‖2 +‖Ds n0‖

2

and employ the extended Nye’s formula (17)2 to write

aKe =−(Ds a)T + tr
(
Ds a

)
a, n0Ke =−n0DT

s =−Ds n0 . (41)

From (41) it follows

tr
(
aKe

)
=−tr

(
Ds a

)T
+2tr

(
Ds a

)
= tr

(
Ds a

)
, ‖n0Ke‖= ‖Ds n0‖ . (42)

In view of (21), (39)4 and (42)2 we get

‖aKe‖
2 = ‖Ke‖

2 −‖n0Ke‖
2 = ‖Ds‖

2 −‖Ds n0‖
2 = ‖Ds a‖2. (43)

Furthermore, from (41)1 we deduce

(aKe)
2 = (Ds a)T (Ds a)T −2

[
tr
(
Ds a

)]
(Ds a)T +

[
tr
(
Ds a

)]2
a

and applying the trace operator we find

tr(aKe)
2 = tr(Ds a)2 −2

[
tr
(
Ds a

)]2
+2

[
tr
(
Ds a

)]2
= tr(Ds a)2. (44)

If we insert the relations (42)–(44) into (40) we obtain the following expression of

the strain energy density in terms of the shell strain tensor Ee and the shell disloca-

tion density tensor Ds

2Ŵ (Ee,Ds) = α1

[
tr(aEe)

]2
+α2 tr(aEe)

2 +α3 ‖aEe‖
2 +α4 ‖n0Ee‖

2

+β1

[
tr(Ds a)

]2
+β2 tr(Ds a)2 +β3 ‖Ds a‖2 +β4 ‖Ds n0‖

2.
(45)



14 Mircea Bı̂rsan and Patrizio Neff

We can put this expression in a more convenient form. Using the orthogonal decom-

position of the type (18) we derive

‖Ds a‖2 = ‖devssym(Ds a)‖2 +‖skew(Ds a)‖2 +
1

2

[
tr(Ds a)

]2
(46)

and

tr(Ds a)2 = ‖devssym(Ds a)‖2 −‖skew(Ds a)‖2 +
1

2

[
tr(Ds a)

]2
. (47)

Similar expressions can be obtained for ‖aEe‖
2 and tr(aEe)

2. In view of relations

(46) and (47) we can finally write the strain energy density (45) in the form

2Ŵ (Ee,Ds) = (α2 +α3)‖devssym(aEe)‖
2 +(α3 −α2)‖skew(aEe)‖

2

+
(
α1 +

α2 +α3

2

)[
tr(aEe)

]2
+α4‖n0Ee‖

2

+(β2 +β3)‖devssym(Ds a)‖2 +(β3 −β2)‖skew(Ds a)‖2

+
(
β1 +

β2 +β3

2

)[
tr(Ds a)

]2
+β4‖Ds n0‖

2.

(48)

By virtue of Lemma 1 we see that the quadratic function (48) is coercive if and only

if the constitutive coefficients satisfy the inequalities

α1 +
α2 +α3

2
> 0, α2 +α3 > 0, α3 −α2 > 0, α4 > 0,

β1 +
β2 +β3

2
> 0, β2 +β3 > 0, β3 −β2 > 0, β4 > 0.

(49)

Under these conditions, all the hypotheses on the strain energy density W required

by Theorem 1 are fulfilled. Thus, we can apply the Theorem 1 to prove the existence

of minimizers for isotropic Cosserat shells.

Remark 4. To apply the model in practical situations it is useful to express the con-

stitutive coefficients αk and βk in terms of the material parameters of the elastic

continuum and the thickness of the shell. In the case of an isotropic Cauchy elastic

material (characterized by the Young modulus E and the Poisson ratio ν), a particu-

lar (simplified) expression of the strain energy density W (Ee,Ke) has been proposed

in [4, 5]

2W (Ee,Ke) = Cν
[
tr(aEe)

]2
+C(1−ν)‖aEe‖

2 +κs C(1−ν)‖n0Ee‖
2

+Dν
[
tr(aKe)

]2
+D(1−ν)‖aKe‖

2 +κt D(1−ν)‖n0Ke‖
2,

(50)

where C = E h
1−ν2 is the stretching (membrane) stiffness of the shell, D = E h3

12(1−ν2)

is the bending stiffness, h is the thickness of the shell, and κs , κt are two shear

correction factors. In [5], the values of the shear correction factors have been set to

αs =
5
6

, αt =
7
10

using the numerical treatment of some non-linear shell problems.
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The same values have been also proposed previously in the literature, see e.g. [18,

9, 15].

In view of (42), (43), we can write the function (50) in terms of the shell disloca-

tion density tensor Ds

2Ŵ (Ee,Ds) = Cν
[
tr(aEe)

]2
+C(1−ν)‖aEe‖

2 +κs C(1−ν)‖n0Ee‖
2

+Dν
[
tr(Ds a)

]2
+D(1−ν)‖Ds a‖2 +κt D(1−ν)‖Ds n0‖

2.
(51)

This corresponds to the following choice of the constitutive coefficients αk and βk

α1 =C ν , α2 = 0, α3 =C (1−ν), α4 = κsC (1−ν),

β1 = Dν , β2 = 0, β3 = D(1−ν), β4 = κt D(1−ν).
(52)

To verify the conditions (49) we compute using (52)

α1 +
α2 +α3

2
= C ·

1+ν

2
= h ·

E

2(1−ν)
= h ·

µ(3λ +2µ)

λ +2µ
,

α2 +α3 = α3 −α2 = h ·
E

1+ν
= 2h µ, α4 = 2hκs µ,

β1 +
β2 +β3

2
= D ·

1+ν

2
=

h3

24
·

E

1−ν
=

h3

12
·

µ(3λ +2µ)

λ +2µ
,

β2 +β3 = β3 −β2 =
h3

12
·

E

1+ν
=

h3

6
·µ, β4 =

h3

6
·κt µ,

(53)

where λ and µ are the Lamé constants of the isotropic and homogeneous elastic

material. If we insert the relations (53) into the general expression (48), then we

obtain the appropriate form of the strain energy density in this model

Ŵ (Ee,Ds) = µ h
[
‖devssym(aEe)‖

2 +‖skew(aEe)‖
2 +

3λ +2µ

2(λ +2µ)

[
tr(aEe)

]2

+κs‖n0Ee‖
2
]
+µ

h3

12

[
‖devssym(Ds a)‖2 +‖skew(Ds a)‖2

+
3λ +2µ

2(λ +2µ)

[
tr(Ds a)

]2
+κt ‖Ds n0‖

2
]
. (54)

We see that the inequalities (49) are satisfied in this case, provided

E > 0, −1 < ν <
1

2
,

or equivalently, in terms of the Lamé constants,

µ > 0, 3λ +2µ > 0.
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These inequalities are satisfied, in view of the positive definiteness of the three-

dimensional quadratic elastic strain energy for isotropic materials.

Since the conditions (49) hold, we are able to apply the Theorem 1 and we obtain

the existence of minimizers also for this special constitutive model.

6 Open problems

The presented existence result based on strict convexity in the employed strain and

curvature measures does not exhaust all possibilities. Indeed, from a modelling point

of view it is pertinent to consider a generalized stress-strain relation for which only

an estimate of the elastic energy in terms of symmetrized elastic strains is available,

i.e. only an estimate of the type

Ŵ (Ee,Ds) ≥ C
(
‖symEe‖

2 +‖Ds‖
2
)

(55)

is available (instead of (36)). Whether this situation remains well-posed is presently

not known.

In our example for isotropic Cosserat shells, this case corresponds to α2 = α3 ,

since the contribution of ‖skewEe‖
2 in (48) would then vanish. If we consider

isotropic elastic shells made of an Cosserat material [10], this situation corresponds

to the case µc = 0, where µc denotes the Cosserat couple modulus of the three-

dimensional continuum [12]. Similar problems have been dealt with in [13], where

the case of vanishing Cosserat couple modulus has been investigated.
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