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Abstract
In this talk we propose a framework for the three-dimensional modelling of biological soft tissues. For
an overview of proposed models in the literature see e.g. HOLZAPFEL ET AL. [12] and the references
therein. We discuss the construction of polyconvex, anisotropic free energy functions in an invariant
setting. In order to guarantee the existence of solutions in large strain elasticity, the free energy function
has to be quasiconvex. This condition is rather complicated to handle. Therefore, polyconvex functions
which are always quasiconvex are usually considered, see BALL [1], DACOROGNA [5] and NEFF [10].
For isotropic materials, there exists a wide range of constitutive functions that satisfies the polyconvexity
requirement, e.g. the Ogden type materials see CIARLET [4]. However, to the authors’ knowledge, there
does not exist a systematic treatment of anisotropic, polyconvex free energies in the literature. A variety
of polyconvex transversely isotropic functions has been derived in SCHRÖDER & NEFF [14], [15]. The
goal of the talk is the construction of constitutive functions for biological soft tissues in terms of the
elements of a functional basis which automatically satisfy the polyconvexity condition. The functional
basis consists of basic– and simultaneous invariants of the right Cauchy–Green tensor and a minimum set
of structural tensors. For a general introduction to the invariant formulation of anisotropic constitutive
equations with isotropic tensor functions see e.g. BOEHLER [3] and for specific model problems see
e.g. SCHRÖDER [13]. After giving a general introduction we will focus on transverse isotropy, consider
several model problems for biological soft tissues and present some numerical examples.



J. Schröder, P. Neff

1 Introduction

In order to explain a variety of effects in physiology we require an accurate knowledge of the biological
material behaviour on different scales: the nano-, ultra-, micro-, tissue-, and macro-scale, see e.g. MOW
ET AL. [9]. The structural features on each level have an influence on the constitutive behaviour at the
coarser scales. The body of interest consists of different phases like elastin, collagen, etc. In this context
we can consider collagen as the basic structural element for soft tissues. The material behaviour of the
collagen network in tension is characterized by a strongly nonlinear behaviour in fiber direction and by a
much weaker stress-strain relation in the plane perpendicular to the fibers. Based on this observations soft
tissues can be seen as transversely isotropic materials. The nonlinear tensile behaviour is often modelled
by exponential type laws, see e.g. MOW ET AL. [9], FUNG [6], WEISS ET AL. [17], HOLZAPFEL &
WEIZSÄCKER [11] and HOLZAPFEL ET AL. [12] and the references therein. For an overview in this
field see also FUNG [6], and the references therein. In the following we concentrate on the nonlinear
elasticity of soft tissues, thus we neglect any kind of history effects which is an intrinsic feature of
biological materials. The main goal is the construction of a transversely isotropic, polyconvex free energy
functions, see SCHRÖDER & NEFF [14], [15], which reflects the main characteristics of the soft tissues
in tension.

2 Continuum Mechanics Preliminaries

The body of interest in the reference configuration is denoted with , parametrized in and the
current configuration with , parametrized in . The nonlinear deformation map at
time maps points onto points . The deformation gradient is defined by

(1)

with the Jacobian . The index notation of is . An impor-
tant strain measure, the right Cauchy–Green tensor, is defined by

with (2)

where denotes the covariant metric tensor in the current configuration. The standard covariant metric
tensor within the Lagrange setting appears in the index representation and the contravariant
metric tensor is denoted with with the index representation .
The principle of material frame indifference requires the invariance of the constitutive equation under
superimposed rigid body motions onto the current configuration, Reduced constitutive equations which
fulfill a priori this principle yield e.g. the functional dependence . If we
assume the free energy function to be a function of the right Cauchy–Green tensor we obtain the
expression for the second Piola–Kirchhoff stresses

(3)

see e.g. MARSDEN & HUGHES [7]. Several restrictions on the form of the constitutive functions are
required for anisotropic materials. Let be the material symmetry group for transversely
isotropic material with respect to a local reference configuration. denotes the special orthogonal
group. The group is characterized by the unimodular tensors . The concept of material
symmetry postulates the invariance condition

(4)
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In order to arrive at an isotropic tensor function representation for we need an extension of the -
invariant function (4) to a function which is invariant under transformations of the special orthogonal
group. This can be realized with the concept of structural tensors, in this context see e.g. the works of
J.P. Boehler in 1978/1979. The material symmetry group can be represented by the structural tensor

(5)

where is the preferred direction with . With (5) we arrive at the isotropic tensor function

(6)

Thus we can express the functional dependence of with respect to the argument tensors in
terms of the invariants

tr tr Cof det tr tr (7)

i.e. . The cofactor is defined for all invertible tensors as Cof
det . In the following we focus on free energy functions which automatically satisfy the so-called
polyconvexity condition.

3 Polyconvex Energies, Stresses and Moduli

We are interested in free energy functions for transverse isotropy which a priori guarantee the existence
of minimizers of some variational principles for finite deformations. In this framework the existence of
minimizers is based on the concept of quasiconvexity, introduced by MORREY [8]. Quasiconvexity of
a function ensures that the associated functional to be minimized is weakly lower semi-continuous and
the rank one convexity of a function ensures that the Euler equations of the associated functional are
elliptic, in this context see e.g. DACOROGNA [5] and SILHAVÝ [16]. The integral inequality condition of
the quasiconvexity condition is rather complicated to handle. An important concept for pratical use is the
so-called polyconvexity condition in the sense of BALL [2], [1], in this context see also CIARLET [4]. For
isotropic material response functions there exist some models, e.g. the Ogden-type models, which satisfy
this concept. For finite-valued, continuous functions we can recapitulate the important implications: i) a
function is convex if and only if is polyconvex, ii) a function is polyconvex if and only if is
quasiconvex, iii) a function is quasiconvex if and only if is rank one convex. Of course, the converse
implications are not true.

Now we introduce , a given scalar valued energy density. Here denotes the set
of real matrices and the adjugate of a matrix is defined by Adj det Cof .
Definition of Polyconvexity: is polyconvex if and only if there exists a function

(in general non-unique) such that

Adj

and the function is convex for all points .

In the above definition and in the following we drop the -dependence of the individual functions if
there is no danger of confusion, i.e. we write instead of
and instead of in order to arrive at a
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more compact notation. In order to obtain various strain energy terms we assume an additively decoupled
structure of , i.e.

(8)

where each term for has to fulfill the polyconvexity condition a priori. The stresses appear
with applying the chain rule in the form

(9)

With the derivatives of the invariants with respect to and the identity

tr Cof Cof tr (10)

we arrive at the simplified expression

Cof
(11)

The tangent moduli are denoted in index-representation by , for details see
SCHRÖDER & NEFF [14].

4 Transversely Isotropic Polyconvex Free Energy Functions

A three-dimensional constitutive model for transversely isotropic soft tissues for fully incompressible
material behaviour has been proposed by WEISS ET AL. [17]. For their analysis they chose the function

exp (12)

which is characterized by an exponential behaviour in fiber direction. In order to enforce fully incom-
pressible behaviour they used the augmented Lagrangian method. The free energy (12) reflects the main
characteristics of soft tissues in the physiological range very well. However, this function is not a pri-
ori polyconvex. For the following investigation we split the free energy in an isotropic and an
anisotropic part , i.e.

(13)

For the modelling of the isotropic part within a nearly incompressible formulation we choose the poly-
convex function

(14)

The third and fouth term in (14) are introduced to penalize the volumetric deformation. For the trans-
versely isotropic part we propose polynomial polyconcex invariants of the form

Cof
det

Cof Cof (15)
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Let us now consider the unimodular deformation of a cylinder with height and diameter equal one. The
isochoric deformation is described by diag . A simple evaluation of the individual
terms in (15) shows that Cof is associated to the deformation of the cross section of the cylinder,
Cof Cof is associated to the deformation of the generated surface and to the
stretch in -direction.

1

1

isotropy planeisotropy planea. b.

Figure 1: Physical motivation of the polyconvex invariant functions (15) .

The individual functions (15) are now expressed in the elements of the functional basis, which leads to
the explicit expression for the anisotropic part of the free energy

(16)

In contrast to the stresses appearing from (12) the stresses are generally not a priori zero if we use the
proposed polyconvex functions. To enforce the condition of a stress free reference configuration, we have
to evaluate (11) at the natural state. The natural state is characterized by and the invariants have
the values

tr (17)

Consequently the stress condition for the natural state, i.e. , leads to the equation

(18)

That states that two of the material parameters appering in (14) and (16) have to depend on the others,
because the multipliers of the independent tensor generators and have to be zero. This leads to

and , respectively. These constrains are
solved with respect to and :

(19)

The dependent parameters and must be elements of , of course. The proof of the polyconvexity
of the individual terms in (14) and (16) is given in SCHRÖDER & NEFF [14].
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5 Numerical Examples

To verify that the proposed polyconvex free energy function is able to fit the characteristic behaviour of
soft tissues we compare the stress response of our formulation with the one of WEISS ET AL. [17], based
on (12), for two simple test problems.
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Figure 2: Unconstrained tension test: Cauchy stress versus stretch .

For the computations we set the prefered direction to . The material parameters for the
isotropic part are set to

(20)

and for exponent of in the fourth term of (14) we choose the neutral element The four
independent parameters for the anisotropic part are

(21)

Thus the dependent parameters are and and fulfill the condition and
.

As a first example we perform a simple tension test, where we stretch the element to of its initial
length, see Figure 2. It can be seen that the function models the nonlinear stress-strain behaviour in fiber
direction, which is typical for a variety of soft tissues. The maximum variation from the incompressibility
constraint is approximately .

In the second example we consider a tension test, where the displacements in -direction are hold fixed,
see Figure 3. Here we have a similar characteristic for the stresses in fiber direction as in the previous ex-
ample. The stress component is more or less linear and governed by a slight slope and the maximum
variation from the incompressibility constraint is approximately .

The above computation are compared with the formulation (12) with the parameters
and , see WEISS ET AL. [17]. In contrast to their formulation we use a quasi-incompressible
model by introducing a penalty term for the volumetric part similar to 14 instead of an augmented
Lagrangian formulation. The Cauchy-stress component for the simple tension test is plotted in Figure
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Figure 3: Constrained tension test: Cauchy stresses and versus stretch .
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Figure 4: a) Unconstrained tension test: Cauchy stresses and b) constrained tension test: Cauchy
stresses and versus stretch , respectively.

4a and the stress components and for the constrained tension test are depicted in Figure 4b. The
variations from the incompressibility constraint are approximately for both cases. A comparison
of the results obtained with 13 and 12 shows that the characteristic behaviour of soft tissues in the
physiological range can be modeled very well by polyconvex anisotropic free energy functions.

6 Conclusion

In this paper we have proposed a polyconvex transversely isotropic free energy for soft tissues based
on [14], [15]. The obtained results have been compared with an exponential type transversely isotropic
constitutive law given in [17]. For the considered examples we can conclude that the main characteristics
of soft tissues in tension can be reproduced very well with the proposed model.
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