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The choice of non-standard material parameters in the presented micropolar continuum model leads to a highly nonlinear
problem which calls also for a nonlinear numerical treatment. The model benefits in describing length scale effects as really
non-linear effects. The numerical torsion test is one example for the possibilities of our model.

1 Introduction

The Cosserat model includes in a natural way size effects, i.e. small samples behave stiffer in comparison to large sam-
ples. These effects have recently received new attention in conjunction with nano-devices. In this context we investigate a
geometrically nonlinear Cosserat continuum. We adjust the material parameters of our model in such a way, that microro-
tations R ∈ SO(3) are really independent of the deformation gradient F = ∇ϕ. Besides the nonsymmetric strain measure
U = R

T
F − 11, which leads to an internal energy Wmp, we include a second strain measure, based on gradients of the

microrotation field R. This strain measure represents in fact the curvature of the substructure and corresponds to a nonlinear
internal curvature energy Wcurv. In this setting the continuum model can benefit from the microrotation field R by a better
description of lower energy modes. Thus, non-classical deformation modes are possible and appear in our analytical and
numerical investigations. We define now a strain energy based on (U− 11)

Wmp := µ ‖sym[U− 11]‖2 + µc ‖skew[U− 11]‖2 +
λ

2
(tr[U− 11])2 . (1)

From the classical tension test and its deformation mode (uniaxial strain) the Lamé constants µ and λ for the symmetric
and volumetric part are uniquely determined. However, it is not clear how to choose the so called Cosserat couple modu-
lus µc. It is necessary to activate rotational modes in deformation to investigate the influence of µc. Therefore, a torsion
test is more appropriate than a shear test. Thus, we consider the fully three-dimensional framework in our numerical for-
mulation. At this stage, we can discuss the influence of µc. It penalizes skewsymmetric parts of U and for µc → ∞ we
expect U ∈ Sym. As an obvious consequence R → polar[F], where polar[F] is the orthogonal part in the polar de-
composition of F. Our investigations have shown that already for µc ≈ µ the microrotation field R represents not really
an independent quantity but the microrotations equal nearly the polar decomposition of the deformation gradient F. Thor-
ough analytical investigations in [3] have shown, that small or vanishing values for µc can lead to complex but energetically
favourable solutions which may reflect deeper aspects of material behaviour. The Cosserat response is determined by simul-
tanuously minimizing the total energy (strain and curvature) Wmp + Wcurv w.r.t. deformations and microrotations. Here we

use Wcurv := µ
q

(
1 + L2

c ‖K‖2
) q

2 , K = R
T
DxR , q > 3. Curvature energy acts like torsional springs within the material

and influences angular momentum. The additional phenomenological material parameter Lc represents the stiffness of these
intended torsional springs. Note that for Lc → ∞, µc = 0 and appropriate boundary conditions, the model behaves like a
classical linear St.Venant-Kirchhoff material. On the other hand (see Fig.1) we can identify a set of material parameter µc and
Lc, which describes rather a material of Neo-Hooke type.

2 Numerical torsion test

We use a standard finite element formulation with 8 or 27 node brick elements. The same shape functions are chosen for
displacement and rotational fields. A multiplicative update of the micro-rotational field is done by using quaternions as
suggested in [4]. One of our numerical tests is a torsion test of a clamped beam with torque load on the tip. The beam has a
length l = 2, a cross section a = b = 0.4 and an elastic modulus E = 1·106 together with the Poisson ratio ν = 0.3. There are
no boundary conditions on microrotations but on displacements at lower and upper border. The associated load-displacement
behaviour is plotted as torque over twist of the tip in Fig.1. The ’Neo-Hooke’ curve represents a classical solution. For
µc = µ the Cosserat solution shows from the beginning of deformation nearly unbounded stiffness for Lc → ∞. Only for
Lc → 0 it is possible to simulate a classical solution, but in this case the model does not really include curvature effects such
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Fig. 1 Torque-twist diagrams with µc = µ (left) and µc = 0 (rigth) for various internal length scale factors Lc.

as size-dependence. A completely different behaviour appears for µc = 0 in which case it is possible to simulate classical
infinitesimal elasticity for any values of the internal length scale factor Lc under small loads while length scale effects arise
under higher loads. For various Lc the presented mechanical model offers stronger and weaker response than the elastic model
based e.g on the Neo-Hooke energy with similar elastic moduli when subjected to larger loads. Note, that the variation of the
internal length scale Lc is equivalent to the modification of sample sizes. It can also be seen in Fig.1 left, that the stiffness
response possesses an upper and lower limit for any internal length scale factor Lc. The bounded upper limit of the initial
tangential stiffness seems of physical importance because this means bounded stiffness for arbitrary small samples which is a
fundamental physical requirement [5].

Due to the separation of symmetric and skewsymmetric parts in the strain energy Eq. 1 the need for identification of µc

appears. Torsion tests are best suited for investigations concerning the effects of µc and Lc because of marked rotations and
gradients of rotations in deformation. The problem for µc = 0 is mathematically well posed (existence of minimizers) as it has
been shown in [6]. In the proposed framework with µc = 0 the linearized Cauchy-stress tensor remains symmetric in contrast
to traditional Cosserat-type models. Such an approach is possible only in a geometrically nonlinear treatment. However, since
we deal with an overall nonlinear, non-convex two-field problem, computed equilibrium solutions may loose their stability
since a highly complicated energy landscape occurs. The pseudo-homogenization achieved through the micropolar continuum
theory does not represent immediately a real physical material. By considering an imperfection field critical states of stability
can be excluded.
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