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Construction of polyconvex, anisotropic free-energy functions

The existence of minimizers of some variational principles in finite elasticity is based on the concept of quasiconvexity,
introduced by Morrey [6]. This integral inequality is rather complicated to handle. Thus, the sufficient condition
for quasiconvexity, the polyconvexity condition in the sense of Ball [1], is a more important concept for practical
applications, see also Ciarlet [4] and Dacorogna [5]. In the case of isotropy there exist some models which satisfy
this condition. Furthermore, there does not exist a systematic treatment of anisotropic, polyconvex free-energies in
the literature. In the present work we discuss some aspects of the formulation of polyconvex, anisotropic free-energy
functions in the framework of the invariant formulation of anisotropic constitutive equations and focus on transverse
isotropy.

1. Continuum Mechanical and Mathematical Foundations

Let B ⊂ IR3 be the body in the reference configuration parametrized in X. The deformation gradient F is defined
by F := Gradϕt(X) with detF > 0, where ϕt denotes the nonlinear deformation map at time t. The fundamental
deformation tensor is the right Cauchy–Green tensor C := F T F . As mentioned before we are interested in poly-
convex free-energy functions. Let W ∈ C2(M3×3, IR) be a scalar–valued energy density, where M3×3 denotes the
set of real 3 × 3 matrices, then

Definition: F �→W (F ) is polyconvex if and only if there exists a function P : M3×3 ×M3×3 × IR �→ IR such that

W (F ) = P (F ,AdjF , detF )

and IR19 �→ IR, (X,Y, Z) �→ P (X,Y, Z) is convex for all points X ∈ IR3.

It should be noted that the individual arguments (F ,AdjF , detF ) in the above definition can be physically inter-
preted. F controls the deformation of an infinitesimal line element, (AdjF )T the deformation of an infinitesimal
vectorial area element and det F the deformation of an infinitesimal volume element. In order to fulfill the principle
of objectivity a priori we focus on the so-called reduced constitutive equations for the second Piola-Kirchhoff stresses
S = 2∂C ψ̂(C). In the case of transverse isotropy we introduce a material symmetry group Gti ⊂ SO(3) with respect
to a local reference configuration, here SO(3) characterizes the special orthogonal group. Furthermore the concept
of material symmetry states that

ψ̂(C) = ψ̂(QT CQ) ∀ Q ∈ Gti,C . (1)

We say that the function ψ in Equation (1) is a Gti-invariant function. The material symmetry group is defined by

Gti := {1; Q(α,a) | 0 < α < 2 π} , (2)

where Q(α,a) represents all rotations about the prefered direction a. In order to extend the Gti-invariant function
into a function which is invariant under the special orthogonal group we introduce a so-called structural tensor M .
The invariance group of M has to preserve the material symmetry group Gti. For the considered anisotropy class
we arrive at M := a ⊗ a , with ||a|| = 1. This leads to a scalar–valued isotropic tensor function of the form

ψ = ψ̂(C,M) = ψ̂(QT CQ,QT MQ) ∀ Q ∈ SO(3) . (3)

Thus it is possible to formulate the free-energy in terms of the so-called principal invariants and the mixed invariants:

I1 = tr C, I2 = tr[CofC], I3 = detC, I4 = tr[CM ], I5 = tr[C2M ] , (4)

in this context see e.g. [2], [3] and [9]. For the free-energy function we assume the general form ψ = ψ̂(Ii|i =
1, ...5)+ c, where we have introduced the constant c ∈ IR in order to fulfill the non-essential normalization condition
ψ(1,M) = 0. Furthermore, the condition ψ = ψ̂(C,M) = ψ̂(QT CQ,M) holds for all Q ∈ Gti, which reflects (1).
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2. Polyconvex Anisotropic Free-Energies

In the following we assume an additive decomposition of the free-energy function in isotropic terms ψiso
i and

anisotropic terms ψti
j , i.e.

ψ =
∑

i

ψiso
i (I1, I2, I3) + +

∑

j

ψti
j (I1, I2, I3, I4, I5) . (5)

For the isotropic ones we can choose some well–known formulations from the literature, see e.g. [4]. Some anisotropic
terms are discussed in the following, for details see [7] and [8]. It should be noted that direct extensions of the small
strain theory to large strain formulations by replacing the linear strain tensor with the Green-Lagrange strain tensor
E := 1

2 (C − 1) are a priori not polyconvex. Furthermore, the often used polynomial invariants

F �→ tr (F T FM)tr (F T F ) = tr [CM ]tr C = I1 I4 and F �→ tr [F T FF T FM ] = tr [C2M ] = I5 (6)

are not polyconex, see [7], [8]. That means that the functions c+I5 and c+I1I4 can not be used in this form. In
order to derive further ansatz functions it seems reasonable to construct a convex polynomial mixed invariant with
respect to AdjF , which reflects the deformation of a preferred area element in some sense. For this we take into
account the Cayley-Hamilton theorem and multiply the characteristic polynomial in C with C−1M . This leads
with CofC = AdjC to the expression

Cof[C]M = C2M − I1CM + I2M . (7)

Note that Cof[C] is a quadratic function in the C. The trace of Equation (7) is the polyconvex polynomial invariant

K1 := tr [Cof[C]M ] = I5 − I1 I4 + I2 . (8)

The proof of the convexity of the powers of K1 is straightforward, see [7]. Expressing the invariant K1 in the form

K1 = tr [Cof[C]M ] = Cof[F T F ] : a ⊗ a = ||Cof[F ]a||2 , (9)

we can give a rather simple geometric interpretation of this polynomial invariant.
√
K1 = ||Cof[F ]a|| controls the

deformation of an area element with unit normal a. With the same arguments we can construct the function

K2 := tr [Cof[C](1 − M)] = I1 I4 − I5 , (10)

which is polyconvex. The proof is omitted here. K2 is associated to the deformation of an area element with a normal
lying in the isotropy plane. For the polyconvex functions (8) and (10) we can give a simple geometric interpretation;
further, more abstract polyconvex functions are e.g.

ψti
1 = α1 K1/I

1/3
3 ; ψti

2 = α2 K
2
1/I

1/3
3 ; ψti

3 = α3 K2/I
1/3
3 ; ψti

4 = α4 K
2
2/I

1/3
3 , (11)

with αi ∈ IR+ for i = 1, 2, 3, 4. A spectrum of anisotropic polyconvex ansatz functions is presented in [7].
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8 Schröder, J. & Neff, P.: “On the Construction of Polyconvex Anisotropic Free-Energy Functions“, in Proceedings of

the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, Ed. C. Miehe, 2001, in press.
9 Spencer, A.J.M., “Theory of Invariants“, in: Continuum Physics Vol. 1, Academic Press, New York, 239–353, 1971.
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