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Construction of polyconvex, anisotropic free-energy functions

The existence of minimizers of some variational principles in finite elasticity is based on the concept of quasiconvexity,
introduced by Morrey [6]. This integral inequality is rather complicated to handle. Thus, the sufficient condition
for quasiconvezity, the polyconvexity condition in the sense of Ball [1], is a more important concept for practical
applications, see also Cliarlet [{] and Dacorogna [5]. In the case of isotropy there exist some models which satisfy
this condition. Furthermore, there does not exist a systematic treatment of anisotropic, polyconvex free-energies in
the literature. In the present work we discuss some aspects of the formulation of polyconvex, anisotropic free-energy
functions in the framework of the invariant formulation of anisotropic constitutive equations and focus on transverse
1sotropy.

1. Continuum Mechanical and Mathematical Foundations

Let B € R? be the body in the reference configuration parametrized in X. The deformation gradient F' is defined
by F := Grade,(X) with det F' > 0, where ¢, denotes the nonlinear deformation map at time ¢. The fundamental
deformation tensor is the right Cauchy—Green tensor C := FTF. As mentioned before we are interested in poly-
convex free-energy functions. Let W € C?(M>*3 IR) be a scalar-valued energy density, where M>*3 denotes the
set of real 3 x 3 matrices, then

Definition: F — W (F) is polyconvex if and only if there exists a function P : M3*3 x M3*3 x IR ~ IR such that
W (F) = P(F,AdjF, det F)
and R — R, (X,Y,Z) — P(X,Y, Z) is convex for all points X € IR3.

It should be noted that the individual arguments (F, AdjF,det F) in the above definition can be physically inter-
preted. F controls the deformation of an infinitesimal line element, (AdjF)” the deformation of an infinitesimal
vectorial area element and det F' the deformation of an infinitesimal volume element. In order to fulfill the principle
of objectivity a priori we focus on the so-called reduced constitutive equations for the second Piola-Kirchhoff stresses
S = 26(;1@(0 ). In the case of transverse isotropy we introduce a material symmetry group Gy; C SO(3) with respect
to a local reference configuration, here SO(3) characterizes the special orthogonal group. Furthermore the concept
of material symmetry states that

$(C)=4(QTCQ) ¥Q € G, C. )
We say that the function 1 in Equation (1) is a Gy-invariant function. The material symmetry group is defined by
Gii ={1; Q(a,a) |0 <a <27}, @)

where Q(«, a) represents all rotations about the prefered direction a. In order to extend the Gi;-invariant function
into a function which is invariant under the special orthogonal group we introduce a so-called structural tensor M.
The invariance group of M has to preserve the material symmetry group G;;. For the considered anisotropy class
we arrive at M := a ® a , with ||a|| = 1. This leads to a scalar—valued isotropic tensor function of the form

v =19(C,M)=4$(Q"CQ.Q"MQ) VQ € S0(3). (3)
Thus it is possible to formulate the free-energy in terms of the so-called principal invariants and the mixed invariants:
I =trC, I, = tr[CofC|, I3 = detC, I, = tr[CM], I5 = tr[C*M] , (4)

in this context see e.g. [2], [3] and [9]. For the free-energy function we assume the general form ¢ = (I;|i =
1,...5) 4+ ¢, where we have introduced the constant ¢ € R in order to fulfill the non-essential normalization condition
(1, M) = 0. Furthermore, the condition ¢ = ¢(C, M) = zb(QTCQ7 M) holds for all Q € Gy, which reflects (1).
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2. Polyconvex Anisotropic Free-Energies

In the following we assume an additive decomposition of the free-energy function in isotropic terms % and
anisotropic terms 9%, i.e.

b= (I I I3) + + Y (I 2, I3, 1a, Ts) (5)
i J

For the isotropic ones we can choose some well-known formulations from the literature, see e.g. [4]. Some anisotropic
terms are discussed in the following, for details see [7] and [8]. It should be noted that direct extensions of the small
strain theory to large strain formulations by replacing the linear strain tensor with the Green-Lagrange strain tensor

E = %(C — 1) are a priori not polyconvex. Furthermore, the often used polynomial invariants

Ftr(FTFM)tr (FT'F) =tr [CMtrC =11, and F — tr[F'FFTFM]=1tr[C*?M] =15 (6)

are not polyconex, see [7], [8]. That means that the functions ¢*I5 and ¢* ;14 can not be used in this form. In
order to derive further ansatz functions it seems reasonable to construct a convex polynomial mixed invariant with
respect to AdjF, which reflects the deformation of a preferred area element in some sense. For this we take into
account the Cayley-Hamilton theorem and multiply the characteristic polynomial in C with C~'M. This leads
with CofC' = AdjC to the expression

Cof[C|M = C*M — I,CM + I,M . (7)
Note that Cof[C] is a quadratic function in the C. The trace of Equation (7) is the polyconvex polynomial invariant
Ky :=tr[Cof[CIM]| =1 — 1L Iy + I . (8)
The proof of the convexity of the powers of K is straightforward, see [7]. Expressing the invariant K; in the form
K, = tr [Cof[C]M] = Cof[FT F] : a ® a = ||Cof[Flal||? , (9)

we can give a rather simple geometric interpretation of this polynomial invariant. /K; = ||Cof[F]a|| controls the
deformation of an area element with unit normal a. With the same arguments we can construct the function

Ky = tr[Cof[C](1 — M) = I, I, — I , (10)

which is polyconvex. The proof is omitted here. K5 is associated to the deformation of an area element with a normal
lying in the isotropy plane. For the polyconvex functions (8) and (10) we can give a simple geometric interpretation;
further, more abstract polyconvex functions are e.g.

P=an KL wl = oo KL 5wl = o Ko/I 0 = aa K315 (11)

with a; € RT for 4 = 1,2,3,4. A spectrum of anisotropic polyconvex ansatz functions is presented in [7].
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