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Let F p ∈ GL(3) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the
geometric dislocation density tensor of Gurtin in the form Curl[F p] · (F p)T applied to rotations controls the gradient in the
sense that pointwise

∀R ∈ C1(R3, SO(3)) : ‖Curl[R] ·RT ‖2M3×3 ≥ 1

2
‖DR‖2R27 .

This result complements rigidity results (John, Reshetnyak, Friesecke/James/Müller) as well as an associated linearized the-
orem saying that

∀A ∈ C1(R3, so(3)) : ‖Curl[A]‖2M3×3 ≥ 1

2
‖DA‖2R27 = ‖∇axl[A]‖2R9 .

1 Introduction

We show an extension to the Lie-group SO(3) of proper rotations of the following result for linearized kinematics: the
operator Curl] (curl arranged row wise) applied to elements of the Lie-algebra of skew-symmetric matrices so(3) already
controls all partial derivatives of these matrices. While in general, the operator Curl] cannot control the full gradient since
Curl] has 9 independent entries but Grad = D has 27 independent entries, it does so on so(3), since they have only 3 inde-
pendent components such that taking Grad gives 9 independent entries making the relation between Curl] and Grad invertible.

Such a result can at least be traced back implicitly to Nye [1], who investigated infinitesimal rotations of the crystal lattice due
to dislocation motion. He showed for small plastic deformations and zero elastic strains that

−Curl][skew[εp]] = (∇axl[skew[εp]])T − tr[(∇axl[skew[εp]])T ] 11 , (1)

where εp ∈ C1(Ω,M3×3) is the non-symmetrical infinitesimal plastic distortion with Ω ⊂ R3 the reference configuration.
Here, for second order tensors skew[X] := 1

2 (X −XT ), 11 is the identity tensor, ‖X‖2 =
∑

i X2
i , tr[X] the trace, the axial

vector axl[A] is defined such that A · v = axl[A]× v for all A ∈ so(3) and v ∈ R3 and∇ϕ is the Jacobian-matrix. With A ·B
we denote simple contraction, with A : B double contraction. Abbreviating A = skew[εp] ∈ C1(Ω, so(3)) one deduces

−Curl][A] = (∇axl[A])T − tr[(∇axl[A])T ]11 ⇔ ∇axl[A] = −(Curl][A])T +
1
2
tr[(Curl][A])T ]11 , (2)

which implies

∀A ∈ C1(R3, so(3)) : ‖Curl][A]‖2M3×3 ≥ 1
2
‖DA‖2R27 = ‖∇axl[A]‖2R9 , (3)

in turn implying infinitesimal rigidity (7). Recall also the definition of the curl of displacements u ∈ C1(Ω,R3) and the
relation to the infinitesimal rotations skew[∇u],

curl[u] := ∇× u = 2 axl[skew[∇u]] . (4)

The modern theory of finite plasticity is based on the multiplicative decomposition F = F e · F p of the deformation gradient
F = ∇ϕ into structural elastic and plastic components. In single crystal plasticity F p represents the deformation solely
resulting from the formation of defects such as dislocations while F e is due to elastic stretch and elastic rotation of the lattice.
In general, F e and F p have not the form of a Jacobian matrix, they are incompatible, i.e.Curl][F e], Curl][F p] 6= 0, a property
related to the formation of dislocations. The most general stored defect energy, measuring the incompatibility in F p, which is
invariant under a compatible change in the reference configuration is expressible in the geometrical dislocation density tensor
G = 1

det[Fp]Curl][F p] · (F p)T which, for R ∈ SO(3), reduces to G = Curl][R] · RT . For the necessary background and
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more references on dislocations, plasticity and microstructures we refer to [5].

Another motivation comes from rigidity results [2, 3] in the spirit of Liouville-type theorems, saying that if the gradient of a
deformation is locally a rotation it must be a constant rotation together with a constant translation or more precisely

ϕ ∈ W 1,∞(Ω,Rn), ∇ϕ(x) ∈ SO(n) a.e ⇒
∇ϕ = R = const. ⇔ ϕ(x) = R · x + b . (5)

A quantized version of this fact has been given recently in [4]. They show that for bounded Ω ⊂ R3 with Lipschitz boundary
and ϕ ∈ W 1,2(Ω,R3) there exists a positive constant C(Ω) and a constant rotation R such that

∫

Ω

‖∇ϕ−R‖2 dx ≤ C(Ω)
∫

Ω

dist2(∇ϕ, SO(3)) dx . (6)

The respective infinitesimal rigidity result is standard in the treatment of linear elasticity and Korn’s inequality. It amounts to

u ∈ W 1,2(Ω,R3) , ∇u(x) +∇u(x)T = 0 ⇔ ∇u(x) ∈ so(3) ⇔
∇u(x) = A = const. ⇔ u(x) = A · x + b , (7)

where A ∈ so(3) and b ∈ R3 are constant. Since from sym[∇u(x)] = 0 it follows ∇u(x) = A(x) ∈ so(3) the result (7)
would follow by applying Curl] on both sides and using that Curl] bounds DA on so(3) due to (3).

As a consequence of (5) it is known that for smooth, simply connected domains Ω ⊂ R3 and R ∈ C1(Ω, SO(3))

0 = Curl][R(x)] ⇔ R = ∇ϕ ∈ SO(3) = const. ⇔ DR = 0 , (8)

thus showing that Curl][R] = 0 ⇔ DR = 0. Obviously, ‖Curl][R]‖2M3×3 ≤ 2 ‖DR‖2R27 by Young’s inequality for all
R ∈ M3×3. The precise relation between Curl] and Grad = D on SO(2) is easily understood in terms of the representation
with one rotation angle ϑ : Ω ⊂ R2 7→ R

R(x, y) =
(

cosϑ(x, y) sin ϑ(x, y)
− sinϑ(x, y) cos ϑ(x, y)

)
∈ SO(2) . (9)

One checks that

‖Curl][R(x, y)]‖2R2 = (( cos ϑ)x − ( sin ϑ)y)2 + ((− sin ϑ)y − ( cos ϑ)x)2

= ‖∇ϑ(x, y)‖2R2 =
1
2
‖DR‖2R8 , (10)

which led us to surmise that for three-space dimensions

∃ c+ > 0 ∀R ∈ C1(R3,SO(3)) : ‖Curl][R]‖2M3×3 ≥ c+ ‖DR‖2R27 . (11)

This is true for c = 1
2 . In terms of the geometrical dislocation density tensor G = Curl][R] · RT we observe that

‖Curl][R]‖2M3×3 = ‖Curl][R] · RT ‖2M3×3 by the invariance of the euclidean norm under SO(3). The non-trivial implica-
tion in (5) is a simple consequence of (11). For the proof we refer to [6].

References
[1] J. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1, 153–162 (1953).
[2] F. John, Rotation and strain, Comm. Pure Appl. Math. 14, 391–413 (1961).
[3] Y. Reshetnyak, Liouville’s theorem on conformal mappings for minimal regularity assumptions, Siberian Math. 8, 631–653 (1967).
[4] G. Friesecke, R. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional

elasticity, Comm. Pure Appl. Math. 55, 1461–1506 (2002).
[5] P. Cermelli, M. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids 49,

1539–1568 (2001).
[6] P. Neff, I. Münch, Curl bounds Grad on SO(3), submitted (2006),

Preprint http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp06.html

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Section 8 502


