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Curl bounds Grad on SO(3)
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Let F? € GL(3) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the
geometric dislocation density tensor of Gurtin in the form Curl[FP] - (FP)” applied to rotations controls the gradient in the
sense that pointwise

VReC R, S0(3)):  ||Curl[R] - R |Zaxs > % DRz .

This result complements rigidity results (John, Reshetnyak, Friesecke/James/Miiller) as well as an associated linearized the-
orem saying that

f 1
VAeCH R 50(3)):  ||Curl[A]|fsxs > 3 IDAg2r = [[Vaxl[A] ]z -
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1 Introduction

We show an extension to the Lie-group SO(3) of proper rotations of the following result for linearized kinematics: the
operator Curly (curl arranged row wise) applied to elements of the Lie-algebra of skew-symmetric matrices so(3) already
controls all partial derivatives of these matrices. While in general, the operator Curly cannot control the full gradient since
Curly has 9 independent entries but Grad = D has 27 independent entries, it does so on so(3), since they have only 3 inde-
pendent components such that taking Grad gives 9 independent entries making the relation between Curly and Grad invertible.

Such a result can at least be traced back implicitly to Nye [1], who investigated infinitesimal rotations of the crystal lattice due
to dislocation motion. He showed for small plastic deformations and zero elastic strains that

—Curly[skew[eP]] = (Vaxl[skew[eP]])T — tr[(Vaxl[skew[eP]])?] 1L, (1)

where eP € C1(Q2, M?*3) is the non-symmetrical infinitesimal plastic distortion with Q C R? the reference configuration.
Here, for second order tensors skew[X] := 1(X — XT), 1 is the identity tensor, || X[ = >, X?, tr[X] the trace, the axial
vector axl[A] is defined such that A - v = axl[A] x v for all A € so(3) and v € R? and V¢ is the Jacobian-matrix. With A - B
we denote simple contraction, with A : B double contraction. Abbreviating A = skew[eP] € C'(Q,s0(3)) one deduces

—Curly[A] = (Vax1[A])T — tr[(Vaxl[A])T]1 < Vaxl[A] = —(Curly[A])T + %tr[(Curlﬁ (AT, )
which implies
VAE O R 50(3) : [Curl[A]lno > L [DAZr = [ VaxilA] 2. @

in turn implying infinitesimal rigidity (7). Recall also the definition of the curl of displacements v € C'(2,R®) and the
relation to the infinitesimal rotations skew[Vu],

curl[u] := V x u = 2 axl[skew[Vu]] . “

The modern theory of finite plasticity is based on the multiplicative decomposition ' = F'® - F'P of the deformation gradient
F = Vy into structural elastic and plastic components. In single crystal plasticity F'P represents the deformation solely
resulting from the formation of defects such as dislocations while F'° is due to elastic stretch and elastic rotation of the lattice.
In general, F° and F® have not the form of a Jacobian matrix, they are incompatible, i.e.Curly[F°], Curly[FP] # 0, a property
related to the formation of dislocations. The most general stored defect energy, measuring the incompatibility in FP, which is
invariant under a compatible change in the reference configuration is expressible in the geometrical dislocation density tensor
G = m(]urlu [FP] - (FP)T which, for R € SO(3), reduces to G = Curly[R] - RT. For the necessary background and
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more references on dislocations, plasticity and microstructures we refer to [5].

Another motivation comes from rigidity results [2, 3] in the spirit of Liouville-type theorems, saying that if the gradient of a
deformation is locally a rotation it must be a constant rotation together with a constant translation or more precisely

© € Wh(Q,R™), Vp(z) € SO(n) a.e =
Vo =R=const. & p(r)=R-x+b. )

A quantized version of this fact has been given recently in [4]. They show that for bounded 2 C R? with Lipschitz boundary
and o € WH2(Q, R3) there exists a positive constant C'(€2) and a constant rotation R such that

/ Ve — R||?dx < C(Q)/ dist?*(V, SO(3)) dx . (6)
Q Q
The respective infinitesimal rigidity result is standard in the treatment of linear elasticity and Korn’s inequality. It amounts to

u e WhH2(Q,R3), Vu(z)+ Vu(z)’ =0 & Vu(z) €s0(3) <
Vu(z) = A=const. ©u(r)=A-z+b, @)

where A € so(3) and b € R? are constant. Since from sym[Vu(z)] = 0 it follows Vu(z) = A(z) € so(3) the result (7)
would follow by applying Curly on both sides and using that Curl; bounds DA on so(3) due to (3).

As a consequence of (5) it is known that for smooth, simply connected domains 2 C R3 and R € C*(2,S0(3))
0= Curk[R(z)] & R =V € S0(3) =const. &< DR =0, (8)

thus showing that Curly[R] = 0 < DR = 0. Obviously, ||Curly[R]||Z;sxs < 2||DR||22- by Young’s inequality for all
R € M3*3. The precise relation between Curly and Grad = D on SO(2) is easily understood in terms of the representation
with one rotation angle ¥ : 2 C R? — R

[ cosd(z,y) sind(z,y)
R(l’, y) - <_ sin ﬁ(x’ y) COS 19(1', y)> < SO(Q) . (9)

One checks that
|Curly[R(z, )3z = ((cosd)s — (sind),)? + ((—sin ), — (cos9),)?

1
= IVi(z,9)llze = 5IDR]zs . (10)

which led us to surmise that for three-space dimensions

Jet >0 VReCHR?SO3)): ||[Curly[R]|Zsxs > ¢ |DR|2r - 11
This is true for ¢ = % In terms of the geometrical dislocation density tensor G = Curly[R] - RT we observe that
|[Curl[R]||Zsxs = ||Curly[R] - RT||?s.5 by the invariance of the euclidean norm under SO(3). The non-trivial implica-

tion in (5) is a simple consequence of (11). For the proof we refer to [6].
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