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Explicit Global Minimization of the Symmetrized Euclidean Distance by a
Characterization of Real Matrices with Symmetric Square\ast 
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Abstract. We determine the optimal orthogonal matrices R \in O(n) which minimize the symmetrized Euclidean
distance W : O(n) \rightarrow R, W (R ;D) := | | sym(RD  - 1)| | 2 , where 1 denotes the identity matrix and
sym(X) = 1

2
(X + XT ) is the symmetric part of X, for a given positive definite diagonal matrix

D = diag(d1, . . . , dn) with distinct entries d1 > d2 > \cdot \cdot \cdot > dn > 0. The number of critical points
depends on D and can grow faster than exponential in n. In the process, we prove and use a novel
result of independent interest: every real matrix whose square is symmetric can be expressed as a
block-diagonal matrix composed of blocks of size at most two by a suitable orthonormal change of
basis.
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1. Introduction. It is a well-known classical problem to characterize the orthogonal ma-
trices R \in O(n) which minimize the Frobenius distance | | F  - R| | from a given matrix F ,
where | | X| | 2 :=

\sum 
1\leq i,j\leq nX

2
ij . The first solution was published in 1940 by the Italian math-

ematician Giuseppe Grioli, who solved the Euclidean distance problem in three dimensions;
see [14] or [21] for a modern account. Grioli's motivation originated from the interpretation of
the Euclidean distance as a quadratic deformation energy density in the context of nonlinear
elasticity theory. In the same spirit, but more recently, this connection between matrix dis-
tances and deformation energy densities in nonlinear elasticity motivated the study of certain
Riemannian matrix distance problems; see, e.g., [23, 19] and also [15].

Due to the orthogonal invariance of the Frobenius norm, the Euclidean distance problem
can be restated as

min
R\in \mathrm{O}(n)

| | F  - R| | = min
R\in \mathrm{O}(n)

| | RTF  - 1| | = min
R\in \mathrm{O}(n)

| | RF  - 1| | ,

where 1 denotes the identity matrix.
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Remark 1 (optimality of the polar factor for the Euclidean distance). If we also assume that
F \in GL+(n), i.e., that F is invertible and contained in the identity component of GL(n), then
the unique global minimizer is the polar factor R\mathrm{p} \in SO(n) obtained from the right polar

decomposition F = R\mathrm{p} U . Here, U =
\surd 
F TF denotes the unique symmetric positive definite

square root of F ; see, e.g., [21] and references therein.

The singular value decomposition of F as a product of orthogonal and positive definite di-
agonal matrices (carried out in detail in [10]) further reduces this problem to the minimization
of the quadratic expression

(1.1) | | RD  - 1| | 2

whose critical points are the 2n diagonal matrices with entries \pm 1; see, e.g., [21] or [2]. Re-
cently, problems of this type have attracted renewed interest originating from the modern
algebraic viewpoint of the so-called Euclidean distance degree of an algebraic variety; see,
e.g., [6, 2, 7, 3].

In this note, we characterize the solutions to a significantly more sophisticated optimiza-
tion problem that represented the major mathematical obstruction in [9, 10] to the explicit
characterization of energy-minimizing (optimal) Cosserat microrotations in solid mechanics;
cf. section 2.

Our main objective in this contribution is the solution to the following problem.

Problem 2. Let D := diag(d1, . . . , dn) be a real diagonal matrix, and let the squared sym-
metrized Euclidean distance be given by

(1.2) W : O(n)\times Diag(n) \rightarrow R, W (R ;D) := | | sym(RD  - 1)| | 2 ,

where we use the notation sym(X) := 1
2(X + XT ). Compute the set of critical points, the

attained critical values, and the global minimizers of the objective function W (R ;D) for a
fixed choice of D.

The problem can be reduced to the case of positive semidefinite D with d1 \geq d2 \geq \cdot \cdot \cdot \geq 
dn \geq 0 by multiplication of R and D with a suitable diagonal matrix with entries \pm 1.

This is a quadratic polynomial optimization problem over the field of real numbers with
parameters, posed on a linear algebraic group. Toward the computation of critical points,
solution methods for polynomial systems of equations are of interest and have recently received
much attention; see, e.g., [24].

For simplicity only, we make the following assumption.

Assumption 3. The real diagonal matrix D = diag(d1, . . . , dn) satisfies

d1 > d2 > \cdot \cdot \cdot > dn > 0 .

The techniques of our paper can be easily adapted to the slightly more general case when
d1 \geq d2 \geq \cdot \cdot \cdot \geq dn > 0. In this case, the critical points may no longer be isolated.

Our main result is the following.
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Theorem 4. Let D = diag(d1, . . . , dn) with strictly decreasing entries d1 > d2 > \cdot \cdot \cdot > dn >
0. Denote by k the maximum positive integer for which d2k - 1 + d2k > 2, or set k = 0 if
d1 + d2 \leq 2. Any global minimizer R \in O(n) of

W (R ;D) := | | sym(RD  - 1)| | 2

is given by a block-diagonal matrix, built of k consecutive size-two blocks of the form\biggl( 
cos\alpha i  - sin\alpha i

sin\alpha i cos\alpha i

\biggr) 
for i = 1, . . . , k, where \alpha i = \pm arccos( 2

d2i - 1+d2i
), followed by (n  - 2k) entries 1 on the main

diagonal. The global minimum of W (R ;D) is given by

(1.3) min
R\in \mathrm{O}(n)

W (R ;D) =
1

2

k\sum 
i=1

(d2i - 1  - d2i)
2 +

n\sum 
i=2k+1

(di  - 1)2 .

The solution in dimension n=2 has been previously presented in [9] and originally in [8].
Results for the case n = 3 have been contributed in [10] without proof and have already
been used in the context of mechanics [20]. For a qualitative study and visualization of the
geometric mechanism in the setting of an idealized nanoindentation, see [12].

Remark 5. We will see in Remark 20 that the number of critical points may grow faster
than exponential in n. This is particularly interesting in view of recent results on Euclidean
distance degrees presented in [2], showing again that additional complexity is introduced by
the symmetrization considered here.

Furthermore, the number of global minimizers of W (R ;D) as a function of D is interesting
due to a pitchfork bifurcation. This property is not shared by other related objective functions.
In particular, the expression W (R ;D) appears naturally if we consider the Taylor expansion
of the matrix logarithm at RD = 1 in the logarithmic energy

| | sym log(RD)| | 2 = 0 + | | sym(RD  - 1)| | 2 + h.o.t. in (RD) .

For this logarithmic energy, however, it has been shown that R = 1 is the unique global
minimizer (see [23, 16, 21]), by means of a new ``sum of squared logarithms""-inequality [4, 5].

This paper is structured as follows. After a brief description of the motivation and possible
applications of our result in section 2, we prove a fundamental lemma in section 3 that
characterizes real matrices whose square is symmetric. Specifically, we prove the existence of
an orthonormal basis with respect to which the matrix attains a block-diagonal form composed
of blocks of size at most two. This convenient block structure allows us to characterize the
critical points of W (R ;D) in section 4 for arbitrary dimension n. Further exploiting this block
structure, we obtain a sequence of decoupled one- and two-dimensional subproblems, which
we solve in section 5. In section 6, we single out the global minimizers among the critical
points by a comparison of the function values.
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2. Motivation and applications. The minimization problem discussed here plays an im-
portant role in Cosserat theory, where a generalized continuum model for idealized solid ma-
terials with a particular rigid, purely rotational microstructure is considered. The Cosserat
microstructure is represented by a microrotation R(x) \in SO(3) attached to each material
point x in a deformable specimen \Omega \subset R3, leading to the stored energy

I(\varphi ,R) :=

\int 
\Omega 
W (F (x), R(x)) dV

for a deformation mapping \varphi : \Omega \rightarrow \varphi (\Omega ) \subset R3, where F := D\varphi denotes the deformation
gradient. The choice of the energy density W : GL+(3)\times SO(3) \rightarrow R determines the material
response of the quasi-static hyperelastic two-field Cosserat model.

Using a symmetry reduction for the case of planar simple shear, it was recently shown
in [22] that the obtained energy-minimizing (optimal) Cosserat microstructure engenders mi-
crobands, a phenomenon that can be observed in the nanomechanics of crystalline materials.
To the best of our knowledge, this phenomenon cannot be described by any of the established
isotropic single-field continuum models.

Unfortunately, the numerical approximation of the solutions exhibiting nontrivial Cosserat
microstructure has not yet been successful. In order to improve the numerical approach, a
better understanding of the geometric effects produced by the rotation field R of the Cosserat
model is therefore required. In particular, the distinguished special case

W\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{r}(F,R) := \mu | | sym(RTF  - 1)| | 2 + \mu c| | skew(RTF  - 1)| | 2

of simple shear should be considered in more detail. Note that the choice (\mu , \mu c) = (1, 0) gives
rise to the main objective (Problem 2) of the current contribution. The importance of the
mathematical results obtained here are reinforced by the observation that the general case of
arbitrary material parameters \mu , \mu c can be reduced to this particular choice [9].

In [12], these optimal Cosserat micorotations in dimension three (cf. [10]) have already
been applied to the setting of an idealized nanoindentation. A comparison with rotation pat-
terns obtained from nanoindentation in a copper single crystal using the 3D-EBSD (electron
backscatter diffraction) is shown in Figure 1.

For a more extensive discussion of optimal Cosserat rotations, we refer the interested
reader to [9, 10, 18] and the survey article [11].

3. A block-diagonal representation of real matrices with a real symmetric square. In
this section, we prove a linear algebra result that to our surprise does not seem to appear in
the literature, or at least in any standard text.

Lemma 6. Let X be a real n\times n matrix such that S = X2 is symmetric. Then there exists
an orthogonal matrix Q such that Q - 1XQ is block-diagonal with blocks of size at most two.

Proof. The claim can be reformulated as saying that there exists an orthogonal decom-
position of Rn into a direct sum of X-invariant subspaces of dimension at most two. We also
remark that if we run induction on the dimension, it suffices to find an X-invariant subspace
of dimension at most two whose orthogonal complement is also X-invariant. This is equiva-
lent to finding a subspace V of dimension at most two which is both X- and XT -invariant.
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Figure 1. Left: Rotation angles measured by 3D-EBSD analysis of a nanoindentation into a copper single
crystal with a color map scaled to \pm 8\circ ; note the cross-over zones separating counterrotations (courtesy of
Zaafarani et al. [25]). Right: Nonlinear projection of the rotation angles for the optimal Cosserat microrotations
rpolar\pm 1,0(F\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{o}) \in SO(3) obtained in [12] for an idealized nanoindentation mapping. Two optimal branches of
rotations are patched together at x = 0.

Moreover, since X commutes with S = X2, the eigenspaces of S are X-invariant; thus for\widehat R \in O(n) with \widehat RTS \widehat R = diag(\lambda 1, . . . , \lambda 1, \lambda 2, . . . , \lambda 2, . . . , \lambda m, . . . , \lambda m), where \lambda i are the distinct
eigenvalues of S, the matrix \widehat X = \widehat RTS \widehat R is in block-form with symmetric blocks \widehat Xi satisfying\widehat X2

i = \lambda i1. Therefore, the problem of finding such V reduces to the case X2 = \lambda 1 for some
\lambda \in R.

Our main idea is that the self-adjoint operators given by the matrices XXT and XTX
commute in view of

(XXT )(XTX) = X(XT )2X = X(\lambda 1)X = \lambda 21 = (XTX)(XXT ).

Therefore, XXT and XTX are simultaneously diagonalizable and we can find a common
eigenvector w of both. We will use this w to build the desired invariant subspace V . We have
to distinguish several cases.

Case 1. Xw \in Rw,XTw \in Rw. In other words, w is an eigenvector of X and XT . We
select V = Rw.

Case 2. Xw \in Rw,XTw /\in Rw. In other words, w is an eigenvector of X but not of XT .
Consider the subspace V = span(w,XTw). Then the image of V under X satisfies

XV = span(Xw,XXTw) \subseteq span(w,w) \subseteq V,

XTV = span(XTw, (XT )2w) \subseteq span(XTw, \lambda w) \subseteq V.

Case 3. Xw /\in Rw. In other words w is not an eigenvector of X. We consider the
subspace V = span(w,Xw). The inclusion XV \subseteq V follows from X2 = \lambda 1. In addition,
XTXw \in V by the choice of w. It remains to prove XTw \in V . We consider the following two
subcases:

Case 3a. \lambda \not = 0. We use XXTw = \beta w to conclude XTw = 1
\lambda XXXTw = \beta 

\lambda Xw \in V .
Case 3b. \lambda = 0. We have XTXw = \alpha w, XXTw = \beta w with \alpha \beta = 0. If \beta = 0, then

XXTw = 0 =\Rightarrow \langle w,XXTw\rangle = 0 =\Rightarrow \langle XTw,XTw\rangle = 0 =\Rightarrow XTw = 0 \in V

so V is again invariant. The \alpha = 0 case similarly leads to Xw = 0 in contradiction with the
assumption that w is not an eigenvector of X.

This completes the construction of the invariant subspace V and the proof of the lemma.
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Remark 7. The case \lambda > 0 of Lemma 6 can be deduced from the theory of principal angles
(see, e.g., [13]) for the eigenspaces of X with eigenvalues

\surd 
\lambda and  - 

\surd 
\lambda . We are not aware of

a similar connection in the case \lambda \leq 0.

Remark 8. Given X with symmetric X2, the decomposition of Rn into an orthogonal sum
of invariant subspaces is not unique. In particular, a subspace of dimension two can sometimes
be further decomposed into two one-dimensional subspaces.

Remark 9. Our description of real matrices which square to a real symmetric matrix
resembles the well-known characterization of the group of real orthogonal matrices O(n):
every orthogonal matrix is orthogonally conjugated to a block-diagonal matrix with blocks of
size one and two.

We also provide a simple criterion for X \in R2\times 2 to have a symmetric square, i.e., X2 =
(XT )2, which will be used in section 5 and can easily be obtained by direct computation.

Lemma 10. A real matrix X \in R2\times 2 has S = X2 \in Sym(2) if and only if X \in Sym(2) or
tr(X) = 0.

4. Critical points: Reduction to low dimension. In this section, we investigate the critical
points R \in O(n) of the function

(4.1) W (R ;D) = | | sym(RD  - 1)| | 2

in Problem 2. Since W is differentiable in R, we can proceed by taking derivatives along
curves in the matrix group O(n). The following derivation applies to any real diagonal matrix
D, but we assume here that D is positive definite with distinct eigenvalues.

We first give a simple equivalent description of the set of critical points.

Lemma 11. A point R \in O(n) is a critical point of W from (4.1) if and only if X = RD - 1
satisfies X2 \in Sym(n).

Proof. We identify the tangent space o(n) to O(n) at 1 with the linear subspace of skew
symmetric matrices Skew(n) and use the group structure of O(n) to describe the tangent
space at R. In particular, TRO(n) = o(n)R; thus the criticality condition is equivalent to the
statement that for any A \in Skew(n),

(4.2) 0 = DRW (R;D).(AR) =
d

dt

\bigl( 
W (etAR ;D)

\bigr) \bigm| \bigm| 
t=0

,

where we extend the definition of W to all matrices of size n. Up to first order in t, the
function W (etAR ;D) simplifies to

| | sym((1 + tA)RD  - 1)| | 2 = | | sym(RD  - 1) + t sym(ARD)| | 2

= | | sym(RD  - 1)| | 2 + 2t \langle sym(RD  - 1), sym(ARD)\rangle + t2 | | sym(ARD)| | 2.

Hence, a point R is a critical point for the function W if and only if (cf. [17])

\forall A \in Skew(n) : sym(RD  - 1) \bot sym(ARD).
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Since Sym(n) \bot Skew(n), we may add skew(ARD) on the right-hand side, which gives us the
equivalent condition

\forall A \in Skew(n) : sym(RD  - 1) \bot ARD.

From the definition of the Frobenius inner product, we obtain the condition

0 = \langle sym(RD  - 1), ARD\rangle = tr(sym(RD  - 1)TARD)

= tr(RD sym(RD  - 1)A) = \langle sym(RD  - 1)(RD)T , A\rangle ,

which must hold for all A \in Skew(n) and is equivalent to

sym(RD  - 1)DRT \in Sym(n).

It can be further rewritten as

Sym(n) \ni (RD +DRT  - 2 1)DRT = RD2RT + (DRT )2  - 2DRT

= ((RD  - 1)2)T +RD2RT  - 1\underbrace{}  \underbrace{}  
\in \mathrm{S}\mathrm{y}\mathrm{m}(n)

.

Remark 12. Note that R = 1 is always a critical point of W (R ;D) := | | sym(RD  - 1)| | 2.
However, in general, it will not be a global minimizer.

Our next step is to apply Lemma 6 to the special case X = RD - 1. As we shall see, this
implies restrictive conditions on R \in O(n).

We recall that D is positive definite, i.e., all di > 0, and prove the following lemma which
is key to our discussion.

Lemma 13 (simultaneous invariance of R and D). Suppose that D is positive definite. Let
V be a subspace invariant under X = RD - 1 such that V \bot is also invariant under X. Then
both V and V \bot are invariant under D and R.

Proof. By assumption, the subspace V is invariant under both RD = X+1 and (RD)T =
DRT = XT + 1. Therefore,

D2V = (DRT )(RD)V \subseteq (DRT )V \subseteq V.

It is easy to see that, since D and D2 have the same one-dimensional eigenspaces due to
Assumption 3, V is invariant under D if and only if V is invariant under D2. Since D is also
invertible by assumption, we find that D2V \subseteq V implies DV = V and thus

RDV \subseteq V =\Rightarrow RV \subseteq V.

Since R is invertible, we get RV = V . The same argument works for V \bot .

By Lemma 6, there exists a sequence of pairwise orthogonal vector spaces Vi, i = 1, . . . , r,
with 1 \leq dimVi \leq 2 which decompose

(4.3) Rn = V1 \oplus \bot V2 \oplus \bot \cdot \cdot \cdot \oplus \bot Vr.

These correspond to a block-diagonal representation of X = RD  - 1. By Lemma 13, both R
and D are also block-diagonal with respect to this choice of basis, and the latter condition in
particular imposes severe restrictions on the Vi.
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Remark 14 (implications of D-invariance). With Assumption 3, the D-invariance of the
subspaces Vi shown in Lemma 13 implies a strong restriction: the Vi are necessarily coordinate
subspaces in the standard basis of Rn. Thus, we can index these data by partitions of the
index set \{ 1, . . . , n\} into disjoint subsets of size one or two.

This decomposition structure allows us to reduce finding critical points of Problem 2 to
a finite list of decoupled one- and two-dimensional subproblems. This will be the content of
the next section.

5. Analysis of the decoupled subproblems. Let I \subseteq \{ 1, . . . , n\} be a one-element subset
\{ i\} or a two-element subset \{ i, j\} and let DI be the associated restriction of D given by\left\{       

DI :=
\Bigl( 
di

\Bigr) 
if I = \{ i\} ,

DI :=

\Biggl( 
di 0

0 dj

\Biggr) 
if I = \{ i, j\} .

In this section, we determine the critical points of the function

W (RI ;DI) := | | sym(RIDI  - 1)| | 2

for RI \in O(| I| ) and compute the corresponding critical values. This corresponds to the
solution of the decoupled lower-dimensional subproblems as described in the previous section.

Theorem 15 (critical points: size-one blocks). For I = \{ i\} we have the submatrix DI = (di)
and RI = \pm 1. The realized critical function values are

(5.1) W (+1 ;DI) = (di  - 1)2 and W ( - 1 ;DI) = (di + 1)2 .

Proof. O(1) = \{ \pm 1\} .
For the case | I| = 2, we consider the two separate cases detRI = 1 and detRI =  - 1.

Theorem 16 (critical points: size-two blocks with positive determinant). The critical points
RI with detRI = 1 are described as follows. For any values di and dj, the matrices
RI = \pm 1 are critical points with the critical values (di - 1)2+(dj - 1)2 and (di+1)2+(dj+1)2,
respectively. In addition, if di + dj > 2, then there are two nondiagonal critical points:

(5.2) RI =

\biggl( 
cos\alpha  - sin\alpha 
sin\alpha cos\alpha 

\biggr) 
, with cos\alpha =

2

di + dj
,

both of which attain the critical value

(5.3) W (RI ;DI) =
1

2
(di  - dj)

2 .

Proof. By Lemma 11 RI is a critical point if and only if (RIDI  - 1)2 is symmetric. We
may thus apply Lemma 10 to infer RIDI - 1 \in Sym(2) or tr(RIDI - 1) = 0. Using the explicit
representation

RI =

\biggl( 
cos\alpha  - sin\alpha 
sin\alpha cos\alpha 

\biggr) 
,
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we find that the symmetry condition RIDI  - 1 \in Sym(2) is equivalent to (di + dj) sin\alpha = 0,
which has two solutions RI = \pm 1 with the realized function values as claimed.

Otherwise, the trace condition tr(RIDI  - 1) = 0 is equivalent to (di+dj) cos\alpha = 2, which
can be solved for real \alpha if and only if di + dj \geq 2. It gives rise to two nondiagonal solutions
if and only if di + dj > 2. We use (di + dj) cos\alpha = 2 to get | | sym(RIDI  - 1)| | 2 = 1

2(di  - dj)
2

by a routine calculation that we leave to the reader.

Theorem 17 (critical points: size-two blocks with negative determinant). The critical points
RI with detRI =  - 1 are described as follows. For any values di and dj the diagonal matrices
RI = \pm diag(1, - 1) are critical points with the critical values (di  - 1)2 + (dj + 1)2 and (di +
1)2 + (dj  - 1)2, respectively. In addition, for | di  - dj | > 2, there are two nondiagonal critical
points

(5.4) RI =

\biggl( 
cos\alpha sin\alpha 
sin\alpha  - cos\alpha 

\biggr) 
, with cos\alpha =

2

| di  - dj | 
,

both of which attain the critical value

(5.5) W (RI ;DI) =
1

2
(di + dj)

2 .

Proof. The calculation is similar to the case of positive determinant and is left to the
reader.

Remark 18. The diagonal critical points RI = \pm 1 and RI = \pm diag(1, - 1) reduce to size-
one blocks (or index subsets | I| = 1) in the block decomposition (4.3).

6. Global minimization. Combining the results of the two preceding sections, we can now
describe the critical values of W (R ;D), which are attained at the critical points. We label
the critical points by partitions of the index set \{ 1, . . . , n\} containing only subsets I with
one or two elements. In the last section, we have seen that the subsets I and a choice of
sign for detRI uniquely determine a critical value; cf. Remark 18. These critical values are
characterized in the following theorem.

Theorem 19 (characterization of critical points and values). Let D = diag(d1, . . . , dn) with
d1 > d2 > \cdot \cdot \cdot > dn > 0. Then the critical points R \in O(n) of the function

W (R ;D) := | | sym(RD  - 1)| | 2

can be classified according to partitions of the index set \{ 1, . . . , n\} into subsets of size one or
two and choices of signs for the determinant detRI for each subset I. The subsets of size two
I = \{ i, j\} satisfy \Biggl\{ 

di + dj > 2, detRI = +1 , and

| di  - dj | > 2, detRI =  - 1 .

The corresponding critical values of W (R ;D) are given by\sum 
I=\{ i\} 

\mathrm{d}\mathrm{e}\mathrm{t}RI=1

(di  - 1)2 +
\sum 
I=\{ i\} 

\mathrm{d}\mathrm{e}\mathrm{t}RI= - 1

(di + 1)2 +
\sum 

I=\{ i,j\} 
\mathrm{d}\mathrm{e}\mathrm{t}RI=1

1

2
(di  - dj)

2 +
\sum 

I=\{ i,j\} 
\mathrm{d}\mathrm{e}\mathrm{t}RI= - 1

1

2
(di + dj)

2.
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Proof. A suitable partition of the index set \{ 1, . . . , n\} can be constructed as detailed in
section 4. The contributions of the subsets I of size one and two are given by the theorems
of section 5. It suffices to consider the nondiagonal critical points for the subproblems of size
two, because the diagonal cases can be accounted for by splitting the subset I = \{ i, j\} into
two subsets \{ i\} and \{ j\} of size one; see Remark 18.

Remark 20. If di - di+1 > 2 for all i, then all possible splittings of \{ 1, 2, . . . , n\} into subsets
of size one and two are possible. In each case the number of critical points is 2n, so the total
number of critical points is 2ncn, where cn is the well-studied sequence A000085 of self-inverse
permutations on n letters [1]. Already in the case of O(2), if we have d1  - d2 > 2, then
the number of critical points is eight, as opposed to the four critical points for the distance
problem of (1.1). In particular [1], it grows faster than exponential in n.

For what follows, it will be useful to rewrite W (R ;D) in a slightly different form in order
to distill the contributions of the size-two blocks in the partition.

Corollary 21. If detRI = +1 for all I, then the following holds:

W (R ;D) =
n\sum 

i=1

(di  - 1)2  - 1

2

\sum 
I=\{ i,j\} 

(di + dj  - 2)2.

Proof. If di + dj > 2, then the difference between the critical values of W (R ;D) corre-
sponding to the choice of a size-two subset I = \{ i, j\} as compared to the choice of two size-one
subsets \{ i\} , \{ j\} is given by

1

2
(di  - dj)

2  - (di  - 1)2  - (dj  - 1)2 =  - 1

2
(di + dj  - 2)2 .

We are now ready to prove our main result, Theorem 4. Recall that we assume d1 >
\cdot \cdot \cdot dn > 0 and that k is the greatest positive integer such that d2k - 1 + d2k > 2 or k = 0 if
d1 + d2 \leq 2.

Proof of Theorem 4. In view of the above calculation we need to argue that the minimum
value of W (R ;D) on the finite set of critical points R from Theorem 19 is realized for the
partition of

\{ 1, 2, . . . , n\} = \{ 1, 2\} \sqcup \cdot \cdot \cdot \sqcup \{ 2k  - 1, 2k\} \sqcup \{ 2k + 1\} \sqcup \cdot \cdot \cdot \sqcup \{ n\} 

and all determinants detRI picked to be 1.
Suppose that a critical point R is a global minimizer of W (R ;D).
We observe that | di  - dj | > 2 implies that di + dj > 2. Therefore, it is always possible to

replace negative determinant choices by positive ones. In the process the value of W (R ;D)
is reduced, since (di  - 1)2 < (di + 1)2 and (di  - dj)

2 < (di + dj)
2. Therefore, R only contains

blocks RI with detRI = 1.
We now argue that the blocks of size two do not intersect in the sense that the partition

of R contains size-two subsets I = \{ i1, i3\} , J = \{ i2, i4\} , with i1 < i2 < i3 < i4. It suffices
to consider the case i1 = 1, i2 = 2, i3 = 3, and i4 = 4 with the general case being completely
analogous.
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There are two cases to consider.
Case 1. d3+ d4 > 2. In this case, we can consider another critical point \r R corresponding

to the partition \{ 1, 2\} \sqcup \{ 3, 4\} instead of \{ 1, 3\} \sqcup \{ 2, 4\} . We have

W (R ;D) - W (\r R ;D) =
1

2
(d1  - d3)

2 +
1

2
(d2  - d4)

2  - 1

2
(d1  - d2)

2  - 1

2
(d3  - d4)

2

= d1d2 + d3d4  - d1d3  - d2d4 = (d1  - d4)(d2  - d3) > 0,

which contradicts the assumed minimality of R.
Case 2. d3 + d4 \leq 2. In this case, the subset \{ 3, 4\} cannot appear in the partition and

we consider the matrix \r R with partition \{ 1, 2\} \sqcup \{ 3\} \sqcup \{ 4\} instead of \{ 1, 3\} \sqcup \{ 2, 4\} . The
difference of the corresponding function values is found by comparing the previous calculation
and Corollary 21:

W (R ;D) - W (\r R ;D) = (d1  - d4)(d2  - d3) - 
1

2
(d3 + d4  - 2)2.

The latter is an increasing function of d2, and we know that d2 + d4 > 2; therefore,

W (R ;D) - W (\r R ;D) > (d1  - d4)(2 - d4  - d3) - 
1

2
(d3 + d4  - 2)2

=
1

2
(2 - d3  - d4)((d1 + d3  - 2) + (d1  - d4)) \geq 0

by assumptions on di. This is again a contradiction.
We also observe that the partition of R does not have blocks that contain each other in

the sense of having size-two subsets I = \{ i1, i4\} , J = \{ i2, i3\} , with i1 < i2 < i3 < i4. It
again suffices to consider i1 = 1, i2 = 2, i3 = 3, and i4 = 4. We proceed similarly to the case
I = \{ 1, 3\} , J = \{ 2, 4\} above; as we never used d3 > d4, we can simply switch d3 and d4 in all
formulas.

Since different size-two blocks do not overlap and are not contained in one another, we
observe that a minimizing partition of R corresponds to size-two blocks built from consecutive
indices. Indeed, if we have i < j < k and blocks \{ i, k\} and \{ j\} , we can replace them with
\{ i, j\} and \{ k\} to decrease the value of W by Corollary 21. Similarly, it is impossible that a
size-one block precedes a size-two block. To see this, assume that i < j < k and consider
blocks \{ i\} and \{ j, k\} . Since we can further decrease W by replacing them with \{ i, j\} and \{ k\} 
this contradicts minimality. Therefore, the partition of R must start with size-two blocks and
end with size-one blocks (which have to be 1). It remains to observe that Corollary 21 implies
that all possible size-two blocks must be realized.

Remark 22 (optimality of 1). Our results imply that the identity matrix 1 \in O(n) is
globally optimal for W (R ;D) with D > 0 if and only if there exists no 2 \times 2-block with a
positive choice of detRI , i.e.,

max
1\leq i \not =j\leq n

(di + dj) \leq 2.

Finally, for the case of dimension n = 3, we recover the result of [10] which was originally
obtained and verified by a completely different numerical approach that did not allow for a
rigorous proof.
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Corollary 23. Let d1 > d2 > d3 > 0. If d1 + d2 \leq 2, then the global minimum of

W (R ;D) = | | sym(RD  - 1)| | 2

occurs at R = 1 and is given by

W (R ;D) = (d1  - 1)2 + (d2  - 1)2 + (d3  - 1)2.

If d1 + d2 > 2, then the global minimum is realized by either of two critical points of the form

R =

\left(  cos\alpha  - sin\alpha 0
sin\alpha cos\alpha 0
0 0 1

\right)  with (d1 + d2) cos\alpha = 2 .

In this case the global minimum is

W (R ;D) = (d1  - 1)2 + (d2  - 1)2 + (d3  - 1)2  - 1

2
(d1 + d2  - 2)2 =

1

2
(d1  - d2)

2 + (d3  - 1)2.

Proof. If d1 + d2 > 2, then k = 1. Otherwise, k = 0.

Further reducing this result to dimension n=2, we can also recover the results of [9].
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