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FETI-DP Methods for P-Elasticity
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A FETI-DP method is introduced for the problem of linear P-elasticity which
arises from linear elasticity by the introduction of a matrix P and which is
motivated by micromorphic models. Numerical results as well as a condition
number estimate are presented.

Copyright line will be provided by the publisher

1 Introduction

We consider the variational problem

min
ϕ

(∫

Ω

µe||sym(P−1F − Id)||2F +
λe

2
trace(sym(P−1F − Id))2 dλ

)
, (1)

where F = ∇ϕ ∈ R3×3 and ϕ is the deformation, i.e., ϕ(x) = x + u(x) with the
displacement u(x). The constants µe and λe are the Lamé constants which depend
on the Poisson ratio ν and the Young modulus E. In contrast to classical linear
elasticity a matrix P ∈ GL(3), the group of all real invertible 3 × 3 matrices, is
introduced. Here, P = P (x), x ∈ Ω, is a micromorphic field which usually is not of
gradient structure, i.e., P does not necessarily have a potential. If P is the identity,
(1) reduces to the standard formulation of linear elasticity. Due to the considered
model the matrix P can either be used to describe small scale material oscillations
superposed on the macroscopic deformation ϕ or it is the plastic distortion in a
multiplicative decomposition of the deformation gradient F ; cf. [1].
Since we use FETI-DP methods to solve the variational problem, we have to derive
the weak formulation and discretize it by low order h-finite elements (P2).

2 Condition number estimate

Since FETI-DP is a preconditioned conjugate gradient method, we are interested in
an estimate of the condition number of the preconditioned system matrix; cf. [2].
For this result we have to assume that the matrix P has gradient structure, i.e.,
there exists a function ψ : Ω ⊂ R3 → R3 such that P = ∇ψ, and that we have a
well chosen set of primal variables consisting of vertex and edge average constraints;
for further details, see [2]. Under certain assumptions on the triangulation and the
domain decomposition we can prove that there exists a positive constant C such
that

κ(M−1F ) ≤ C

(
1 + log

(
H

h

))2

, (2)

with the standard FETI-DP preconditioner M−1 and the system matrix F . In (2)
H
h is defined as maxi

Hi

hi
, where Hi is the diameter of the subdomain Ωi and hi is

the average element diameter in the subdomain.
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3 Numerical results

For our numerical experiments we choose P = ∇ψ and on the Dirichlet boundary
we assume ϕ(x) = ψ(x). Due to the variational formulation in (1) the solution
ϕ(x) is known to be ψ(x) for every x ∈ Ω. We assume a homogeneous material
with E = 210 and ν = 0.29. For the experiments we use different sets of primal
variables and quadratic nodal basis functions. The computations are carried out on
an Opteron cluster with 8 dual processor nodes with 2.2 Ghz and 4 GB each.
For the computations we choose different ψ(x) and hence different matrices P : ψ1(x)
refers to a linear increasing twist around the z-axis, ψ2(x) and ψ3(x) both belong to
a transformation of the unit cube into a spherical dome with different thickness and
angular values. The results we are interested in are the behavior of the condition
number or the maximum eigenvalue, respectively, since the minimum eigenvalue is
1, and the behavior of the number of iterations. We consider two different cases.
In the first case we keep the number of subdomains fixed , i.e., 1

H = const., and
increase the size of the subdomain, i.e., H

h . From the condition number estimate we
would expect a linear behavior of the square root of the maximum eigenvalue with
increasing log(H

h ). Hence in the following figures the square root of the maximum
eigenvalue is plotted against log(H

h ) for ψ1, ψ2, and ψ3. The dashed lines are results
for only edge averages as primal variables and the solid lines for edge average and
vertex constraints, the different colors represent the different 1

H values (blue: 2, red:
3, green: 4).
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In the second case we consider a fixed size of the subdomain, i.e., H
h = const.

Then we would expect our maximum eigenvalue and the number of iterations to
be constant when we increase the number of subdomains, i.e., 1

H . Therefore, one
figure for each ψ is presented. The solid lines are the square roots of the maximum
eigenvalues and the dashed lines the iteration numbers divided by 10, both plotted
against 1

H . The different colors represent different sets of primal variables and sizes
of subdomains (blue: edges & vertices, H/h=2; green: only edges, H/h=2; red:
edges & vertices, H/h=3; black: only edges, H/h=3).
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