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We consider the two logarithmic strain measures

ωiso = ‖devn logU‖ = ‖ devn log
√
FTF‖ and ωvol = | tr(logU)| = | tr(log

√
FTF )| ,

which are isotropic invariants of the Hencky strain tensor logU , and show that they can
be uniquely characterized by purely geometric methods based on the geodesic distance on
the general linear group GL(n). Here, F is the deformation gradient, U =

√
FTF is the

right Biot-stretch tensor, log denotes the principal matrix logarithm, ‖ . ‖ is the Frobenius
matrix norm, tr is the trace operator and devnX = X − 1

n
tr(X) · 1 is the n-dimensional

deviator of X ∈ Rn×n. This characterization identifies the Hencky (or true) strain tensor
as the natural nonlinear extension of the linear (infinitesimal) strain tensor ε = sym∇u,
which is the symmetric part of the displacement gradient ∇u, and reveals a close geometric
relation between the classical quadratic isotropic energy potential

µ ‖ devn sym∇u‖2 +
κ

2
[tr(sym∇u)]2

in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy

µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2 .

Our deduction involves a new fundamental logarithmic minimization property of the or-
thogonal polar factor R, where F = RU is the polar decomposition of F . We also contrast
our approach with prior attempts to establish the logarithmic Hencky strain tensor directly
as the preferred strain tensor in nonlinear isotropic elasticity.
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1. Introduction

1.1. What’s in a strain?

The concept of strain is of fundamental importance in elasticity theory. In linearized
elasticity, one assumes that the Cauchy stress tensor σ is a linear function of the in-
finitesimal strain tensor

ε = sym∇u = sym(∇ϕ− 1) = sym(F − 1) ,
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where ϕ : Ω→ Rn is the deformation of an elastic body with a given reference configu-
ration Ω ⊂ Rn, ϕ(x) = x + u(x) with the displacement u, F = ∇ϕ is the deformation
gradient, sym∇u = 1

2(∇u+ (∇u)T ) is the symmetric part of the displacement gradient
∇u and 1 ∈ GL+(n) is the identity tensor in the group of invertible tensors with positive
determinant. In geometrically nonlinear elasticity models, it is no longer necessary to
postulate a linear connection between some stress and some strain. However, nonlinear
strain tensors are often used in order to simplify the stress response function, and many
constitutive laws are expressed in terms of linear relations between certain strains and
stresses1 [15, 16, 25] (cf. Appendix A.2 for examples).

There are many different definitions of what exactly the term “strain” encompasses:
while Truesdell and Toupin [189, p. 268] consider “any uniquely invertible isotropic sec-
ond order tensor function of [the right Cauchy-Green deformation tensor C = F TF ]” to
be a strain tensor, it is commonly assumed [100, 101, 24, 149] that a (material or La-
grangian2) strain takes the form of a primary matrix function of the right Biot-stretch
tensor U =

√
F TF of the deformation gradient F ∈ GL+(n), i.e. an isotropic tensor

function E : PSym(n) → Sym(n) from the set of positive definite tensors to the set of
symmetric tensors of the form

E(U) =

n∑

i=1

e(λi) · ei ⊗ ei for U =

n∑

i=1

λi · ei ⊗ ei (1)

with a scale function e : (0,∞) → R, where ⊗ denotes the tensor product, λi are the
eigenvalues and ei are the eigenvectors of U . However, there is no consensus on the exact
conditions for the scale function e; Hill (cf. [100, p. 459] and [101, p. 14]) requires e to
be “suitably smooth” and monotone with e(1) = 0 and e′(1) = 1, whereas Ogden [152,
p. 118] also requires e to be infinitely differentiable and e′ > 0 to hold on all of (0,∞).

The general idea underlying these definitions is clear: strain is a measure of defor-
mation (i.e. the change in form and size) of a body with respect to a chosen (arbi-
trary) reference configuration. Furthermore, the strain of the deformation gradient
F ∈ GL+(n) should correspond only to the non-rotational part of F . In particular,
the strain must vanish if and only if F is a pure rotation, i.e. if and only if F ∈ SO(n),
where SO(n) = {Q ∈ GL(n) |QTQ = 1, detQ = 1} denotes the special orthogonal
group. This ensures that the only strain-free deformations are rigid body movements:

F TF ≡ 1 =⇒ ∇ϕ(x) = F (x) = R(x) ∈ SO(n) (2)

=⇒ ϕ(x) = Qx+ b for some fixed Q ∈ SO(n), b ∈ Rn,

1In a short note [31], R. Brannon observes that “usually, a researcher will select the strain measure
for which the stress-strain curve is most linear”. In the same spirit, Bruhns [33, p. 147] declares that “we
should [. . . ] always use the logarithmic Hencky strain measure in the description of finite deformations.”.
Truesdell and Noll [188, p. 347] explain: “Various authors [. . . ] have suggested that we should select the
strain [tensor] afresh for each material in order to get a simple form of constitutive equation. [. . . ] Every
invertible stress relation T = f(B) for an isotropic elastic material is linear, trivially, in an appropriately
defined, particular strain [tensor f(B)].”

2Similarly, a spatial or Eulerian strain tensor Ê(V ) depends on the left Biot-stretch tensor V =√
FFT (cf. [67]).

3



where the last implication is due to the rigidity [160] inequality ‖CurlR‖2 ≥ c+ ‖∇R‖2
for R ∈ SO(n) (with a constant c+ > 0), cf. [144]. A similar connection between
vanishing strain and rigid body movements holds for linear elasticity: if ε ≡ 0 for the
linearized strain ε = sym∇u, then u is an infinitesimal rigid displacement of the form

u(x) = Ax+ b with fixed A ∈ so(n), b ∈ Rn,

where so(n) = {A ∈ Rn×n : AT = −A} denotes the space of skew symmetric matrices.
This is due to the inequality ‖CurlA‖2 ≥ c+ ‖∇A‖2 for A ∈ so(n), cf. [144].

In the following, we will use the term strain tensor (or, more precisely, material strain
tensor) to refer to an injective isotropic tensor function U 7→ E(U) of the right Biot-
stretch tensor U mapping PSym(n) to Sym(n) with

E(QTU Q) = QTE(U)Q for all Q ∈ O(n) (isotropy)

and E(U) = 0 ⇐⇒ U = 1 ;

where O(n) = {Q ∈ GL(n) |QTQ = 1} is the orthogonal group and 1 denotes the
identity tensor. In particular, these conditions ensure that 1 = U =

√
F TF if and only

if F ∈ SO(n). Note that we do not require the mapping to be of the form (1).
Among the most common examples of material strain tensors used in nonlinear elas-

ticity is the Seth-Hill family3 [174]

Er(U) =

{
1

2 r (U2r − 1) : r ∈ R \ {0}
logU : r = 0

(3)

of material strain tensors4, which includes the Biot strain tensor E1/2(U) = U − 1, the

Green-Lagrangian strain tensor E1(U) = 1
2(C −1) = 1

2(U2−1), where C = F TF = U2

is the right Cauchy-Green deformation tensor, the Almansi strain tensor [2] E−1(U) =
1
2(1−C−1) and the Hencky strain tensor E0(U) = logU , where log : PSym(n)→ Sym(n)
is the principal matrix logarithm [98, p. 20] on the set PSym(n) of positive definite
symmetric matrices. The Hencky (or logarithmic) strain tensor has often been considered
the natural or true strain in nonlinear elasticity [183, 182, 68, 81]. It is also of great
importance to so-called hypoelastic models, as is discussed in [195, 69] (cf. Section 4.2.1).
A very useful approximation of the material Hencky strain tensor was given by Bažant
[17, 155, 1]:

Ẽ1/2(U) := 1
2 [E1/2(U) + E−1/2(U)] = 1

2 (U − U−1) . (4)

3Note that logU = lim
r→0

1
2 r

(U2r−1). Many more examples of strain tensors used throughout history

can be found in [45] and [52].
4The corresponding family of spatial strain tensors

Êr(V ) =

{
1

2 r
(V 2r − 1) : r 6= 0

log V : r = 0

includes the Almansi-Hamel strain tensor Ê1/2(V ) = V − 1 as well as the Euler-Almansi strain tensor

Ê−1(V ) = 1
2
(1−B−1), where B = FFT = V 2 is the Finger tensor [62].
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Figure 1: Scale functions er, ẽr associated with
the strain tensors Er and Ẽr = 1

2
(Er −

E−r) via eigenvalue λ.

Additional motivations of the logarithmic
strain tensor were also given by Vallée [190,
191], Rougée [167, p. 302] and Murphy [132].
An extensive overview of the properties of the
logarithmic strain tensor and its applications
can be found in [194] and [141].

All strain tensors, by the definition em-
ployed here, can be seen as equivalent : since
the mapping U 7→ E(U) is injective, for every
pair E,E′ of strain tensors there exists a map-
ping ψ : Sym(n)→ Sym(n) such that E′(U) =
ψ(E(U)) for all U ∈ PSym(n). Therefore, ev-
ery constitutive law of elasticity can – in prin-
ciple – be expressed in terms of any strain ten-
sor5 and no strain tensor can be inherently su-
perior to any other strain tensor.6 Note that this invertibility property also holds if the
definition by Hill or Ogden is used: if the strain is given via a scale function e, the strict
monotonicity of e implies that the mapping U 7→ E(U) is strictly monotone [121], i.e.

〈E(U1)− E(U2), U1 − U2〉 > 0

for all U1, U2 ∈ PSym(n) with U1 6= U2, where 〈X,Y 〉 = tr(XTY ) denotes the Frobenius
inner product on Sym(n) and tr(X) =

∑n
i=1Xi,i is the trace of X ∈ Rn×n. This

monotonicity in turn ensures that the mapping U 7→ E(U) is injective.
In contrast to strain or strain tensor, we use the term strain measure to refer to

a nonnegative real-valued function ω : GL+(n) → [0,∞) depending on the deformation
gradient which vanishes if and only if F is a pure rotation, i.e. ω(F ) = 0 if and only if
F ∈ SO(n).

Note that the terms “strain tensor” and “strain measure” are sometimes used inter-
changeably in the literature (e.g. [101, 149]). A simple example of a strain measure in
the above sense is the mapping F 7→ ‖E(

√
F TF )‖ of F to an orthogonally invariant

norm of any strain tensor E.
There is a close connection between strain measures and energy functions in isotropic

hyperelasticity: an isotropic energy potential [77] is a function W depending on the

5According to Truesdell and Toupin [189, p. 268], “. . . any [tensor] sufficient to determine the direc-
tions of the principal axes of strain and the magnitude of the principal stretches may be employed and is
fully general”. Truesdell and Noll [188, p. 348] argue that there “is no basis in experiment or logic for
supposing nature prefers one strain [tensor] to another”.

6Nevertheless, “[in] spite of this equivalence, one strain [tensor] may present definite technical ad-

vantages over another one” [45, p. 467]. For example, there is one and only one spatial strain tensor Ê

together with a unique objective and corotational rate d
dt

�
such that d

dt

�
Ê = sym(ḞF−1) = D. Here,

d
dt

�
= d

dt

log
is the logarithmic rate, D is the unique rate of stretching and Ê is the spatial Hencky strain

tensor Ê0 = log V ; cf. Section 4.2.1 and [35, 195, 148, 198, 79].
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deformation gradient F such that

W (F ) ≥ 0 , (normalization)

W (QF ) = W (F ) , (frame-indifference)

W (FQ) = W (F ) (material symmetry: isotropy)

for all F ∈ GL+(n), Q ∈ SO(n) and

W (F ) = 0 if and only if F ∈ SO(n) . (stress-free reference configuration)

While every such energy function can be taken as a strain measure, many additional con-
ditions for “proper” energy functions are discussed in the literature, such as constitutive
inequalities [187, 11, 42, 118], generalized convexity conditions [10, 13] or monotonicity
conditions to ensure that “stress increases with strain” [141, Section 2.2]. Apart from
that, the main difference between strain measures and energy functions is that the former
are purely mathematical expressions used to quantitatively assess the extent of strain
in a deformation, whereas the latter postulate some physical behaviour of materials in
a condensed form: an elastic energy potential, interpreted as the elastic energy per unit
volume in the undeformed configuration, induces a specific stress response function7,
and therefore completely determines the physical behaviour of the modelled hyperelastic
material. The connection between “natural” strain measures and energy functions will
be further discussed later on.

In particular, we will be interested in energy potentials which can be expressed in
terms of certain strain measures. Note carefully that, in contrast to strain tensors,
strain measures cannot simply be used interchangeably: for two different strain mea-
sures (as defined above) ω1, ω2, there is generally no function f : R+ → R+ such that
ω2(F ) = f(ω1(F )) for all F ∈ GL+(n). Compared to “full” strain tensors, this can be
interpreted as an unavoidable loss of information for strain measures (which are only
scalar quantities).

Sometimes a strain measure is employed only for a particular kind of deformation.
For example, on the group of simple shear deformations (in a fixed plane) consisting of
all Fγ ∈ GL+(3) of the form

Fγ =
(

1 γ 0
0 1 0
0 0 1

)
, γ ∈ R ,

we could consider the mappings

Fγ 7→
1

2
γ2 , Fγ 7→

1√
3
|γ| or Fγ 7→

2√
3

ln

(
γ

2
+

√
1 +

γ2

4

)
;

the latter two are the von Mises equivalent strain [26] and the Hencky equivalent strain
[154, 176] in simple shear. The expression |γ| is also referred to as the amount of shear

7The specific elasticity tensor further depends on the particular choice of a strain and a stress tensor
in which to express the constitutive law.
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[18, p. 25; 188, p. 174]. We will come back to these partial strain measures in Section
3.2.

In the following we consider the question of what strain measures are appropriate for
the theory of nonlinear isotropic elasticity. Since, by our definition, a strain measure
attains zero if and only if F ∈ SO(n), a simple geometric approach is to consider a
distance function on the group GL+(n) of admissible deformation gradients, i.e. a sym-
metric function dist : GL+(n)×GL+(n)→ [0,∞) which satisfies the triangle inequality
and vanishes if and only if its arguments are identical.8 Such a distance function induces
a “natural” strain measure on GL+(n) by means of the distance to the special orthogonal
group SO(n):

ω(F ) := dist(F,SO(n)) := inf
Q∈SO(n)

dist(F,Q) . (5)

In this way, the search for an appropriate strain measure reduces to the task of finding
a natural, intrinsic distance function on GL+(n).

1.2. The search for appropriate strain measures

The remainder of this article is dedicated to this task: after some simple (Euclidean)
examples in Section 2, we consider the geodesic distance on GL+(n) in Section 3. Our
main result is stated in Theorem 3.3: if the distance on GL+(n) is induced by a left-
GL(n)-invariant, right-O(n)-invariant Riemannian metric on GL(n), then the distance
of F ∈ GL+(n) to SO(n) is given by

dist2
geod(F,SO(n)) = dist2

geod(F,R) = µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2 ,

where F = RU with U =
√
F TF ∈ PSym(n) and R ∈ SO(n) is the polar decomposition

of F . Section 3 also contains some additional remarks and corollaries which further
expand upon this Riemannian strain measure.

In Section 4, we discuss a number of different approaches towards motivating the use
of logarithmic strain measures and strain tensors, whereas applications of our results
and further research topics are indicated in Section 5.

Our main result (Theorem 3.3) has previously been announced in a Comptes Rendus
Mécanique article [138] as well as in Proceedings in Applied Mathematics and Mechanics
[137].

The idea for this paper has been conceived in late 2006. However, a number of technical
difficulties had to be overcome (cf. [29, 146, 110, 119, 135]) in order to prove our results.
The completion of this article might have taken more time than was originally foreseen,
but we adhere to the old German saying: Gut Ding will Weile haben.

8A distance function is more commonly known as a metric of a metric space. The term “distance” is
used here and throughout the article in order to avoid confusion with the Riemannian metric introduced
later on.
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2. Euclidean strain measures

2.1. The Euclidean strain measure in linear isotropic elasticity

A similar approach to the definition of strain measures via distance functions on GL+(n),
as stated in equation (5), can be employed in linearized elasticity theory: let ϕ(x) =
x+u(x) with the displacement u. Then the infinitesimal strain measure may be obtained
by taking the distance of the displacement gradient ∇u ∈ Rn×n to the set of linearized
rotations so(n) = {A ∈ Rn×n : AT = −A}, which is the vector space9 of skew symmetric
matrices. An obvious choice for a distance measure on the linear space Rn×n ∼= Rn2

is
the Euclidean distance induced by the canonical Frobenius norm

‖X‖ =
√

tr(XTX) =

√
n∑

i,j=1

X2
ij .

We use the more general weighted norm defined by

‖X‖2µ,µc,κ = µ ‖devn symX‖2 + µc ‖ skewX‖2 +
κ

2
[tr(X)]2 , µ, µc, κ > 0 , (6)

which separately weights the deviatoric (or trace free) symmetric part devn symX =
symX − 1

n tr(symX) · 1, the spherical part 1
n tr(X) · 1, and the skew symmetric part

skewX = 1
2(X −XT ) of X; note that ‖X‖µ,µc,κ = ‖X‖ for µ = µc = 1, κ = 2

n , and that

‖ . ‖µ,µc,κ is induced by the inner product10

〈X,Y 〉µ,µc,κ = µ 〈devn symX,devn symY 〉+ µc 〈skewX, skew Y 〉+ κ
2 tr(X) tr(Y ) (7)

on Rn×n, where 〈X,Y 〉 = tr(XTY ) denotes the canonical inner product. In fact, every
isotropic inner product on Rn×n, i.e. every inner product 〈·, ·〉iso with

〈QX,QY 〉iso = 〈XQ,Y Q〉iso = 〈X,Y 〉iso

for all X,Y ∈ Rn×n and all Q ∈ O(n), is of the form (7), cf. [47]. The suggestive choice of
variables µ and κ, which represent the shear modulus and the bulk modulus, respectively,
will prove to be justified later on. The remaining parameter µc will be called the spin
modulus.

Of course, the element of best approximation in so(n) to ∇u with respect to the
weighted Euclidean distance distEuclid,µ,µc,κ(X,Y ) = ‖X − Y ‖µ,µc,κ is given by the as-
sociated orthogonal projection of ∇u to so(n), cf. Figure 2. Since so(n) and the space
Sym(n) of symmetric matrices are orthogonal with respect to 〈·, ·〉µ,µc,κ, this projection is

9Note that so(n) also corresponds to the Lie algebra of the special orthogonal group SO(n).
10The family (7) of inner products on Rn×n is based on the Cartan-orthogonal decomposition

gl(n) =
(
sl(n) ∩ Sym(n)

)
⊕ so(n)⊕ R · 1

of the Lie algebra gl(n) = Rn×n. Here, sl(n) = {X ∈ gl(n) | trX = 0} denotes the Lie algebra corre-
sponding to the special linear group SL(n) = {A ∈ GL(n) | detA = 1}.

8



so(n)Rn
×n

0
ε = sym∇u

skew∇u

∇u

Figure 2: The Euclidean distance dist2
Euclid,µ,µc,κ(∇u, so(n)) = µ ‖ devn ε‖2 + κ

2
[tr(ε)]2 of ∇u to so(n)

in Rn×n in the infinitesimal strain setting. The strain tensor ε = sym∇u is orthogonal to the
infinitesimal continuum rotation skew∇u.

given by the continuum rotation, i.e. the skew symmetric part skew∇u = 1
2(∇u−(∇u)T )

of ∇u, the axial vector of which is curlu. Thus the distance is11

distEuclid,µ,µc,κ(∇u, so(n)) : = inf
A∈so(n)

‖∇u−A‖µ,µc,κ
= ‖∇u− skew∇u‖µ,µc,κ = ‖ sym∇u‖µ,µc,κ . (8)

We therefore find

dist2
Euclid,µ,µc,κ(∇u, so(n)) = ‖ sym∇u‖2µ,µc,κ

= µ ‖ devn sym∇u‖2 +
κ

2
[tr(sym∇u)]2

= µ ‖devn ε‖2 +
κ

2
[tr(ε)]2

for the linear strain tensor ε = sym∇u, which is the quadratic isotropic elastic energy,
i.e. the canonical model of isotropic linear elasticity. This shows the aforementioned
close connection of the energy potential to geometrically motivated measures of strain.
Note also that the so computed distance to so(n) is independent of the parameter µc,
the spin modulus, weighting the skew-symmetric part in the quadratic form (6). We will
encounter the (lack of) influence of the parameter µc subsequently again.

Furthermore, this approach motivates the symmetric part ε = sym∇u of the displace-
ment gradient as the strain tensor in the linear case: instead of postulating that our strain

11The distance can also be computed directly: since

‖∇u−A‖2µ,µc,κ
= µ ‖devn sym(∇u−A)‖2 + µc ‖ skew(∇u−A)‖2 +

κ

2
[tr(∇u−A)]2

= µ ‖devn sym∇u‖2 + µc ‖(skew∇u)−A‖2 +
κ

2
[tr(∇u)]2 ,

for all A ∈ so(n), the infimum inf
A∈so(n)

‖∇u−A‖µ,µc,κ
= µ ‖devn sym∇u‖2 + κ

2
[tr(∇u)]2 is obviously

uniquely attained at A = skew∇u.
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measure should depend only on ε, the above computations deductively characterize ε as
the infinitesimal strain tensor from simple geometric assumptions alone.

2.2. The Euclidean strain measure in nonlinear isotropic elasticity

In order to obtain a strain measure in the geometrically nonlinear case, we must compute
the distance

dist(∇ϕ,SO(n)) = dist(F,SO(n)) = inf
Q∈SO(n)

dist(F,Q)

of the deformation gradient F = ∇ϕ ∈ GL+(n) to the actual set of pure rotations
SO(n) ⊂ GL+(n). It is therefore necessary to choose a distance function on GL+(n); an
obvious choice is the restriction of the Euclidean distance on Rn×n to GL+(n). For the
canonical Frobenius norm ‖ . ‖, the Euclidean distance between F, P ∈ GL+(n) is

distEuclid(F, P ) = ‖F − P‖ =
√

tr[(F − P )T (F − P )] .

Now let Q ∈ SO(n). Since ‖ . ‖ is orthogonally invariant, i.e. ‖Q̂X‖ = ‖XQ̂‖ = ‖X‖ for
all X ∈ Rn×n, Q̂ ∈ O(n), we find

distEuclid(F,Q) = ‖F −Q‖ = ‖QT (F −Q)‖ = ‖QTF − 1‖ . (9)

Thus the computation of the strain measure induced by the Euclidean distance on
GL+(n) reduces to the matrix nearness problem [97]

distEuclid(F,SO(n)) = inf
Q∈SO(n)

‖F −Q‖ = min
Q∈SO(n)

‖QTF − 1‖ .

By a well-known optimality result discovered by Giuseppe Grioli [75] (cf. [143, 76, 122,
30]), also called “Grioli’s Theorem” by Truesdell and Toupin [189, p. 290], this minimum
is attained for the orthogonal polar factor R.

Theorem 2.1 (Grioli’s Theorem [75, 143, 189]). Let F ∈ GL+(n). Then

min
Q∈SO(n)

‖QTF − 1‖ = ‖RTF − 1‖ = ‖
√
F TF − 1‖ = ‖U − 1‖ ,

where F = RU is the polar decomposition of F with R = polar(F ) ∈ SO(n) and U =√
F TF ∈ PSym(n). The minimum is uniquely attained at the orthogonal polar factor R.

Remark 2.2. The minimization property stated in Theorem 2.1 is equivalent to [123]

max
Q∈SO(n)

tr(QTF ) = max
Q∈SO(n)

〈QTF,1〉 = 〈RTF,1〉 = 〈U,1〉 . �

Thus for nonlinear elasticity, the restriction of the Euclidean distance to GL+(n) yields
the strain measure

distEuclid(F,SO(n)) = ‖U − 1‖ .
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GL+
(n

)

SO(n)

F −R

U − 1 = RTF − 1

R

1

F = RU

U

Figure 3: The “flat” interpretation of GL+(n) ⊂ Rn×n endowed with the Euclidean distance. Note that
‖F−R‖ = ‖R (U−1)‖ = ‖U−1‖ by orthogonal invariance of the Frobenius norm, where F = RU
is the polar decomposition of F .

In analogy to the linear case, we obtain

dist2
Euclid(F,SO(n)) = ‖U − 1‖2 = ‖E1/2‖2 , (10)

where E1/2 = U−1 is the Biot strain tensor. Note the similarity between this expression
and the Saint-Venant-Kirchhoff energy [109]

‖E1‖2µ,µc,κ = µ ‖ dev3E1‖2 +
κ

2
[tr(E1)]2 , (11)

where E1 = 1
2(C − 1) = 1

2(U2 − 1) is the Green-Lagrangian strain.
The squared Euclidean distance of F to SO(n) is often used as a lower bound for more

general elastic energy potentials. Friesecke, James and Müller [71], for example, show
that if there exists a constant C > 0 such that

W (F ) ≥ C · dist2
Euclid(F,SO(3)) (12)

for all F ∈ GL+(3) in a large neighbourhood of 1, then the elastic energy W shows
some desirable properties which do not otherwise depend on the specific form of W . As
a starting point for nonlinear theories of bending plates, Friesecke et al. also use the
weighted squared norm

‖
√
F TF − 1‖2µ,µc,κ = µ ‖ dev3(U −1)‖2 +

κ

2
[tr(U −1)]2 = µ ‖U −1‖2 +

λ

2
[tr(U −1)]2 ,

where λ is the second Lamé parameter, as an energy function satisfying (12). The same
energy, also called the Biot energy [139], has been recently motivated by applications in
digital geometry processing [41].

However, the resulting strain measure ω(U) = distEuclid(F,SO(n)) = ‖U−1‖ does not
truly seem appropriate for finite elasticity theory: for U → 0 we find ‖U −1‖ → ‖1‖ =

11



√
n, thus singular deformations do not necessarily correspond to an infinite measure

ω. Furthermore, the above computations are not compatible with the weighted norm
introduced in Section 2.1: in general [139, 63],

min
Q∈SO(n)

‖F −Q‖2µ,µc,κ 6= min
Q∈SO(n)

‖QTF − 1‖2µ,µc,κ 6= ‖
√
F TF − 1‖2µ,µc,κ , (13)

thus the Euclidean distance of F to SO(n) with respect to ‖ . ‖µ,µc,κ does not equal

‖
√
F TF − 1‖µ,µc,κ in general. In these cases, the element of best approximation is not

the orthogonal polar factor R = polar(F ).
In fact, the expression on the left-hand side of (13) is not even well defined in terms of

linear mappings F and Q [139]: the deformation gradient F = ∇ϕ at a point x ∈ Ω is a
two-point tensor and hence, in particular, a linear mapping between the tangent spaces
TxΩ and Tϕ(x)ϕ(Ω). Since taking the norm

‖X‖µ,µc,κ = µ ‖ devn symX‖2 + µc ‖ skewX‖2 +
κ

2
[tr(X)]2

of X requires the decomposition of X into its symmetric and its skew symmetric part,
it is only well defined if X is an endomorphism on a single linear space.12 Therefore
‖F −Q‖µ,µc,κ, while being a valid expression for arbitrary matrices F,Q ∈ Rn×n, is not
an admissible term in the setting of finite elasticity.

We also observe that the Euclidean distance is not an intrinsic distance measure on
GL+(n): in general, A − B /∈ GL+(n) for A,B ∈ GL+(n), hence the term ‖A − B‖
depends on the underlying linear structure of Rn×n. Since it is not a closed subset of
Rn×n, GL+(n) is also not complete with respect to distEuclid; for example, the sequence(

1
n · 1

)
n∈N is a Cauchy sequence which does not converge.

Most importantly, because GL+(n) is not convex, the straight line {A+ t (B−A) | t ∈
[0, 1]} connecting A and B is not necessarily contained13 in GL+(n), which shows that
the characterization of the Euclidean distance as the length of a shortest connecting
curve is also not possible in a way intrinsic to GL+(n), as the intuitive sketches14 in
Figures 4 and 5 indicate.

These issues amply demonstrate that the Euclidean distance can only be regarded as
an extrinsic distance measure on the general linear group. We therefore need to expand
our view to allow for a more appropriate, truly intrinsic distance measure on GL+(n).

12If X : V1 → V2 is a mapping between two different linear spaces V1, V2, then XT is a mapping from
V2 to V1, hence symX = 1

2
(X +XT ) is not well-defined.

13The straight line connecting F ∈ GL+(n) to its orthogonal polar factorR (i.e. the shortest connecting
line from F to SO(n)), however, lies in GL+(n), which easily follows from the convexity of PSym(n): for
all t ∈ [0, 1], t U + (1− t)1 ∈ PSym(n) and thus

R+ t(F −R) = R (t U + (1− t)1) ∈ R · PSym(n) ⊂ GL+(n) .

14Note that the representation of GL+(n) as a sphere only serves to visualize the curved nature of
the manifold and that further geometric properties of GL+(n) should not be inferred from the figures.
In particular, GL+(n) is not compact and the geodesics are generally not closed.
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SO(n)

1

R = polar(F )

GL+(n)

F

dist2euclid(F,SO(n))

= ‖U − 1‖2 = ‖
√
FTF − 1‖2

Figure 4: The Euclidean distance as an extrinsic measure on GL+(n).

3. The Riemannian strain measure in nonlinear isotropic
elasticity

3.1. GL+(n) as a Riemannian manifold

In order to find an intrinsic distance function on GL+(n) that alleviates the drawbacks
of the Euclidean distance, we endow GL(n) with a Riemannian metric.15 Such a metric
g is defined by an inner product

gA : TA GL(n)× TA GL(n)→ R

on each tangent space TA GL(n), A ∈ GL(n). Then the length of a sufficiently smooth
curve γ : [0, 1]→ GL(n) is given by

L(γ) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt ,

where γ̇(t) = d
dt γ(t), and the geodesic distance (cf. Figure 5) between A,B ∈ GL+(n) is

defined as the infimum over the lengths of all (twice continuously differentiable) curves
connecting A to B:

distgeod(A,B) = inf{L(γ) | γ ∈ C2([0, 1]; GL+(n)), γ(0) = A, γ(1) = B} .

Our search for an appropriate strain measure is thereby reduced to the task of finding
an appropriate Riemannian metric on GL(n). Although it might appear as an obvious
choice, the metric ǧ with

ǧA(X,Y ) := 〈X,Y 〉 for all A ∈ GL+(n), X, Y ∈ Rn×n (14)

15For technical reasons, we define g on all of GL(n) instead of its connected component GL+(n); for
more details, we refer to [119], where a more thorough introduction to geodesics on GL(n) can be found.
Of course, our strain measure depends only on the restriction of g to GL+(n).
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AGL+(n) B
dist2euclid(A,B) = ‖A−B‖2

dist2geod(A,B)

Figure 5: The geodesic (intrinsic) distance compared to the Euclidean (extrinsic) distance.

provides no improvement over the already discussed Euclidean distance on GL+(n): since
the length of a curve γ with respect to ǧ is the classical (Euclidean) length

L(γ) =

∫ 1

0

√
ǧγ(t)(γ̇(t), γ̇(t)) dt =

∫ 1

0
‖γ̇(t)‖dt ,

the shortest connecting curves with respect to ǧ are straight lines of the form t 7→
A + t(B − A) with A,B ∈ GL+(n). Locally, the geodesic distance induced by ǧ is
therefore equal to the Euclidean distance. However, as discussed in the previous section,
not all straight lines connecting arbitrary A,B ∈ GL+(n) are contained within GL+(n),
thus length minimizing curves with respect to ǧ do not necessarily exist (cf. Figure 6).
Many of the shortcomings of the Euclidean distance therefore apply to the geodesic
distance induced by ǧ as well.

GL+
(n

)

γ̂(t) = A+ t(B −A)

γ̂(t0) /∈ GL+(n)

γ

A
B

C

Figure 6: The shortest connecting (geodesic) curves in GL+(n) with respect to the Euclidean metric
are straight lines, thus not every pair A,B ∈ GL+(n) can be connected by curves of minimal
length. The length of the straight line γ : t 7→ A + t(C − A) connecting A to C is given by∫ 1

0

√
ǧγ(t)(γ̇(t), γ̇(t)) dt = ‖C − A‖, whereas the curve γ̂ connecting A to B is not contained in

GL+(n); its length is therefore not well defined.

In order to find a more viable Riemannian metric g on GL(n), we consider the me-
chanical interpretation of the induced geodesic distance distgeod: while our focus lies on
the strain measure induced by g, that is the geodesic distance of the deformation gradi-
ent F to the special orthogonal group SO(n), the distance distgeod(F1, F2) between two
deformation gradients F1, F2 can also be motivated directly as a measure of difference
between two linear (or homogeneous) deformations F1, F2 of the same body Ω. More
generally, we can define a difference measure between two inhomogeneous deformations

14



ϕ1, ϕ2 : Ω ⊂ Rn → Rn via

dist(ϕ1, ϕ2) :=

∫

Ω
distgeod(∇ϕ1(x),∇ϕ2(x)) dx (15)

under suitable regularity conditions for ϕ1, ϕ2 (e.g. if ϕ1, ϕ2 are sufficiently smooth with
det∇ϕi > 0 up to the boundary). This extension of the distance to inhomogeneous
deformations is visualized in Figure 7.

x

ϕ1 ϕ2

∇ϕ1(x) ∇ϕ2(x)

distgeod(∇ϕ1(x),∇ϕ2(x))

dist(ϕ1, ϕ2) :=∫
Ω distgeod(∇ϕ1(x),∇ϕ2(x)) dx

ΩΩ

Figure 7: The distance dist(ϕ1, ϕ2) :=
∫

Ω
distgeod(∇ϕ1(x),∇ϕ2(x)) dx measures how much two deforma-

tions ϕ1, ϕ2 of a body Ω differ from each other via integration over the pointwise geodesic distances
between ∇ϕ1(x) and ∇ϕ2(x).

In order to find an appropriate Riemannian metric g on GL(n), we must discuss the
required properties of this “difference measure”. First, the requirements of objectivity
(left-invariance) and isotropy (right-invariance) suggest that the metric g should be bi-
O(n)-invariant, i.e. satisfy

gQA(QX,QY ) = gA(X,Y )︸ ︷︷ ︸
objectivity

isotropy︷ ︸︸ ︷
= gAQ(XQ,Y Q) (16)

for all Q ∈ O(n), A ∈ GL(n) and X,Y ∈ TA GL(n), to ensure that distgeod(A,B) =
distgeod(QA,QB) = distgeod(AQ,B Q).

However, these requirements do not sufficiently determine a specific Riemannian met-
ric. For example, (16) is satisfied by the metric ǧ defined in (14) as well as by the metric
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ˇ̌g with ˇ̌gA(X,Y ) = 〈AT X,AT Y 〉. In order to rule out unsuitable metrics, we need to
impose further restrictions on g. If we consider the distance measure dist(ϕ1, ϕ2) be-
tween two deformations ϕ1, ϕ2 introduced in (15), a number of further invariances can
be motivated: if we require that the distance is not changed by the superposition of a
homogeneous deformation, i.e. that

dist(B · ϕ1, B · ϕ2) = dist(ϕ1, ϕ2)

for all constant B ∈ GL(n), then g must be left GL(n)-invariant, i.e.

gBA(BX,B Y ) = gA(X,Y ) (17)

for all A,B ∈ GL(n) andX,Y ∈ TA GL(n). The physical interpretation of this invariance
requirement is readily visualized in Figure 8.

B B

ϕ1(Ω) ϕ2(Ω)

B · ϕ1(Ω) B · ϕ2(Ω)

dist(ϕ1, ϕ2)

dist(B · ϕ1, B · ϕ1)

=

Figure 8: The distance between two deformations should not be changed by the composition with an
additional homogeneous transformation B: dist(ϕ1, ϕ2) = dist(B · ϕ1, B · ϕ2).

It can easily be shown [119] that a Riemannian metric g is left-GL(n)-invariant16 as
well as right-O(n)-invariant if and only if g is of the form

gA(X,Y ) = 〈A−1X,A−1Y 〉µ,µc,κ , (18)

where 〈·, ·〉µ,µc,κ is the fixed inner product on the tangent space gl(n) = T1 GL(n) = Rn×n
at the identity with

〈X,Y 〉µ,µc,κ = µ 〈devn symX,devn symY 〉+ µc〈skewX, skew Y 〉+ κ
2 tr(X) tr(Y ) (19)

for constant positive parameters µ, µc, κ > 0, and where 〈X,Y 〉 = tr(XTY ) denotes the
canonical inner product on gl(n) = Rn×n. A Riemannian metric g defined in this way
behaves in the same way on all tangent spaces: for every A ∈ GL+(n), g transforms the
tangent space TA GL+(n) at A to the tangent space T1 GL+(n) = gl(n) at the identity
via the left-hand multiplication with A−1 and applies the fixed inner product 〈·, ·〉µ,µc,κ
on gl(n) to the transformed tangents, cf. Figure 9.
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GL+(n)
TAGL+(n)
= A · gl(n)

T1GL+(n) = gl(n)

1

A

X

Y

A−1X

A−1Y

A−1

gA(X,Y ) = 〈A−1X,A−1Y 〉µ,µc,κ

Figure 9: A left-GL(n)-invariant Riemannian metric on GL(n) transforms the tangent space at A ∈
GL+(n) to the tangent space T1 GL+(n) = gl(n) at the identity and applies a fixed inner product
on gl(n) to the transformed tangents. Thus no tangent space is treated preferentially.

In the following, we will always assume that GL(n) is endowed with a Riemannian
metric of the form (18) unless indicated otherwise.

In order to find the geodesic distance

distgeod(F,SO(n)) = inf
Q∈SO(n)

distgeod(F,Q)

of F ∈ GL+(n) to SO(n), we need to consider the geodesic curves on GL+(n). It has
been shown [119, 125, 80, 5] that every geodesic on GL+(n) with respect to the left-
GL(n)-invariant Riemannian metric induced by the inner product (19) is of the form

γξF (t) = F exp(t(sym ξ − µc
µ skew ξ)) exp(t(1 + µc

µ ) skew ξ) (20)

with F ∈ GL+(n) and some ξ ∈ gl(n), where exp denotes the matrix exponential.17

These curves are defined globally, hence GL+(n) is geodesically complete. We can there-
fore apply the Hopf-Rinow theorem [104, 119] to find that for all F, P ∈ GL+(n) there

exists a length minimizing geodesic γξF connecting F and P . Without loss of generality,

we can assume that γξF is defined on the interval [0, 1]. Then the end points of γξF are

γξF (0) = F and P = γξF (1) = F exp(sym ξ − µc
µ skew ξ) exp((1 + µc

µ ) skew ξ) ,

16Of course, the left-GL(n)-invariance of a metric also implies the left-O(n)-invariance.
17The mapping ξ 7→ expgeod(ξ) := γξF (1) = F exp(sym ξ − µc

µ
skew ξ) exp((1 + µc

µ
) skew ξ) is also

known as the geodesic exponential function at F . Note that in general expgeod(ξ) 6= F · exp(ξ) if ξ is

not normal (i.e. if ξξT 6= ξT ξ), thus the geodesic curves are generally not one-parameter groups of the
form t 7→ F exp(t ξ), in contrast to bi-invariant metrics on Lie groups (e.g. SO(n) with the canonical
bi-invariant metric [127]).
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and the length of the geodesic γξF starting in F with initial tangent F ξ ∈ TF GL+(n)
(cf. (20) and Figure 11) is given by [119]

L(γξF ) = ‖ξ‖µ,µc,κ .

The geodesic distance between F and P can therefore be characterized as

distgeod(F, P ) = min{‖ξ‖µ,µc,κ | ξ ∈ gl(n) : γξF (1) = P} ,

that is the minimum of ‖ξ‖µ,µc,κ over all ξ ∈ gl(n) which connect F and P , i.e. satisfy

exp(sym ξ − µc
µ skew ξ) exp((1 + µc

µ ) skew ξ) = F−1P . (21)

Although some numerical computations have been employed [197] to approximate the
geodesic distance in the special case of the canonical left-GL(n)-invariant metric, i.e.
for µ = µc = 1, κ = 2

n , there is no known closed form solution to the highly nonlinear
system (21) in terms of ξ for given F, P ∈ GL+(n) and thus no known method of directly
computing distgeod(F, P ) in the general case exists. However, this parametrization of
the geodesic curves will allow us to obtain a lower bound on the distance of F to SO(n).

3.2. The geodesic distance to SO(n)

Having defined the geodesic distance on GL+(n), we can now consider the geodesic strain
measure, which is the geodesic distance of the deformation gradient F to SO(n):

distgeod(F,SO(n)) = inf
Q∈SO(n)

distgeod(F,Q) . (22)

Without explicit computation of this distance, the left-GL(n)-invariance and the right-
O(n)-invariance of the metric g immediately allow us to show the inverse deformation
symmetry of the geodesic strain measure:

distgeod(F,SO(n)) = inf
Q∈SO(n)

distgeod(F,Q) = inf
Q∈SO(n)

distgeod(F−1F, F−1Q)

= inf
Q∈SO(n)

distgeod(1, F−1Q) = inf
Q∈SO(n)

distgeod(QTQ,F−1Q)

= inf
Q∈SO(n)

distgeod(QT , F−1) = distgeod(F−1, SO(n)) . (23)

This symmetry property demonstrates that the Eulerian (spatial) and the Lagrangian
(referential) points of view are equivalent with respect to the geodesic strain measure:
in the Eulerian setting, the inverse F−1 of the deformation gradient appears more nat-
urally18, whereas F is used in the Lagrangian frame (cf. Figure 10). Equality (23)
shows that both points of view can equivalently be taken if the geodesic strain mea-
sure is used. As we will see later on (Remark 3.5), the equality distgeod(B, SO(n)) =

18Note that Cauchy originally introduced the tensors C−1 and B−1 in his investigations of the nonlin-
ear strain [39, 40, 70, 167], where C = FTF = U2 is the right Cauchy-Green deformation tensor [74, 70]
and B = FFT = V 2 is the Finger tensor.
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F
Ω

ϕ(Ω)

F
−1

Lagrangian frame
(material setting)

Eulerian frame
(spatial setting)

Figure 10: The Lagrangian and the Eulerian point of view are equivalently represented by the geodesic
strain measure: distgeod(F,SO(n)) = distgeod(F−1, SO(n)).

distgeod(C,SO(n)) also holds for the right Cauchy-Green deformation tensor C = F TF =
U2 and the Finger tensor B = FF T = V 2, further indicating the independence of the
geodesic strain measure from the chosen frame of reference. This property is, however,
not unique to geodesic (or logarithmic) strain measures; for example, the Frobenius norm

‖Ẽ1/2(U)‖ = 1
2‖U − U−1‖ = 1

2‖V − V −1‖

of the Bažant approximation Ẽ1/2 = 1
2 (U − U−1), cf. (4), which can be considered

a “quasilogarithmic” strain measure, fulfils the inverse deformation symmetry as well.
However, it is not satisfied for the Euclidean distance to SO(n): in general,

‖U − 1‖ = distEuclid(F,SO(n)) 6= distEuclid(F−1, SO(n)) = ‖V −1 − 1‖ . (24)

Now, let F = RU denote the polar decomposition of F with U ∈ PSym(n) and
R ∈ SO(n). In order to establish a simple upper bound on the geodesic distance
distgeod(F,SO(n)), we construct a particular curve γR connecting F to its orthogonal
factor R ∈ SO(n) and compute its length L(γR). For

γR(t) := R exp((1− t) logU) ,

where logU ∈ Sym(n) is the principal matrix logarithm of U , we find

γR(0) = R exp(logU) = RU = F and γR(1) = R exp(0) = R ∈ SO(n) .

It is easy to confirm that γR is in fact a geodesic as given in (20) with ξ = logU ∈ Sym(n).
Since

γ−1
R (t)γ̇R(t) = (R exp((1− t) logU))−1 R exp((1− t) logU) · (− logU) = − logU ,
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the length of γR is given by

L(γR) =

∫ 1

0

√
gγR(t)(γ̇R(t), γ̇R(t)) dt (25)

=

∫ 1

0

√
〈γR(t)−1γ̇R(t), γR(t)−1γ̇R(t)〉µ,µc,κ dt

=

∫ 1

0

√
〈− logU,− logU〉µ,µc,κ dt =

∫ 1

0
‖ logU‖µ,µc,κ dt = ‖ logU‖µ,µc,κ .

We can thereby establish the upper bound

dist2
geod(F,SO(n)) = inf

Q∈SO(n)
dist2

geod(F,Q) ≤ dist2
geod(F,R) (26)

≤ L2(γR) = ‖ logU‖2µ,µc,κ = µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2 (27)

for the geodesic distance of F to SO(n).
Our task in the remainder of this section is to show that the right hand side of

inequality (27) is also a lower bound for the (squared) geodesic strain measure, i.e. that,
altogether,

dist2
geod(F,SO(n)) = µ ‖devn logU‖2 +

κ

2
[tr(logU)]2 .

However, while the orthogonal polar factor R is the element of best approximation
in the Euclidean case (for µ = µc = 1, κ = 2

n) due to Grioli’s Theorem, it is not clear
whether R is indeed the element in SO(n) with the shortest geodesic distance to F (and
thus if equality holds in (26)). Furthermore, it is not even immediately obvious that the
geodesic distance between F and R is actually given by the right hand side of (27), since
a shorter connecting geodesic might exist (and hence inequality might hold in (27)).

Nonetheless, the following fundamental logarithmic minimization property19 of the
orthogonal polar factor, combined with the computations in Section 3.1, allows us to
show that (27) is indeed also a lower bound for distgeod(F,SO(n)).

Proposition 3.1. Let F = R
√
F TF be the polar decomposition of F ∈ GL+(n) with

R ∈ SO(n) and let ‖ . ‖ denote the Frobenius norm on Rn×n. Then

inf
Q∈SO(n)

‖ sym Log(QTF )‖ = ‖ sym log(RTF )‖ = ‖ log
√
F TF‖ ,

where

inf
Q∈SO(n)

‖ sym Log(QTF )‖ := inf
Q∈SO(n)

inf{‖ symX‖ | X ∈ Rn×n , exp(X) = QTF}

is defined as the infimum of ‖ sym . ‖ over “all real matrix logarithms” of QTF .

19Of course, the application of such minimization properties to elasticity theory has a long tradition:
Leonhard Euler, in the appendix “De curvis elasticis” to his 1744 book “Methodus inveniendi lineas
curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu
accepti” [56, 153], already proclaimed that “[. . . ] since the fabric of the universe is most perfect, and is
the work of a most wise creator, nothing whatsoever takes place in the universe in which some rule of
maximum and minimum does not appear.”
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Proposition 3.1, which can be seen as the natural logarithmic analogue of Grioli’s
Theorem (cf. Section 2.2), was first shown for dimensions n = 2, 3 by Neff et al. [146]
using the so-called sum-of-squared-logarithms inequality [29, 158, 46]. A generalization
to all unitarily invariant norms and complex logarithms for arbitrary dimension was
given by Lankeit, Neff and Nakatsukasa [110]. We also require the following corollary
involving the weighted Frobenius norm, which is not orthogonally invariant.20

Corollary 3.2. Let

‖X‖2µ,µc,κ = µ ‖ devn symX‖2 + µc ‖ skewX‖2 +
κ

2
[tr(X)]2 , µ, µc, κ > 0 ,

for all X ∈ Rn×n, where ‖ . ‖ is the Frobenius matrix norm. Then

inf
Q∈SO(n)

‖ sym Log(QTF )‖µ,µc,κ = ‖ log
√
F TF‖µ,µc,κ .

Proof. We first note that the equality det exp(X) = etr(X) holds for all X ∈ Rn×n. Since
detQ = 1 for all Q ∈ SO(n), this implies that for all X ∈ Rn×n with exp(X) = QTF ,

tr(symX) = tr(X) = ln(det(exp(X))) = ln(det(QTF )) = ln(detF ) .

Therefore21

‖ symX‖2µ,µc,κ
= µ ‖ devn symX‖2 +

κ

2
[tr(symX)]2

= µ ‖ symX‖2 +
nκ− 2µ

2n
[tr(symX)]2 = µ ‖ symX‖2 +

nκ− 2µ

2n
(ln(detF ))2

and finally

inf
Q∈SO(n)

‖ sym Log(QTF )‖2µ,µc,κ (28)

= inf
Q∈SO(n)

inf{‖ symX‖2µ,µc,κ |X ∈ Rn×n , exp(X) = QTF}

= inf
Q∈SO(n)

inf{µ ‖ symX‖2 +
nκ− 2µ

2n
(ln(detF ))2 |X ∈ Rn×n , exp(X) = QTF}

= µ inf
Q∈SO(n)

inf{‖ symX‖2 |X ∈ Rn×n , exp(X) = QTF}+
nκ− 2µ

2n
(ln(detF ))2

= µ‖ log
√
F TF‖2 +

nκ− 2µ

2n
(ln(detF ))2

= µ‖ log
√
F TF‖2 +

nκ− 2µ

2n
[tr(log

√
F TF )]2

= µ ‖ devn log
√
F TF‖2 +

κ

2
[tr(log

√
F TF )]2 = ‖ log

√
F TF‖2µ,µc,κ . �

20While ‖QTXQ‖µ,µc,κ
= ‖X‖µ,µc,κ

for all X ∈ Rn×n and Q ∈ O(n), the orthogonal invariance
requires the equalities ‖QX‖µ,µc,κ

= ‖XQ‖µ,µc,κ
= ‖X‖µ,µc,κ

, which do not hold in general.
21Observe that µ ‖ devn Y ‖2 + κ

2
[tr(Y )]2 = µ ‖Y ‖2 + nκ−2µ

2n
[tr(Y )]2 for all Y ∈ Rn×n.
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Note that Corollary 3.2 also implies the weaker statement

inf
Q∈SO(n)

‖Log(QTF )‖µ,µc,κ = ‖ log
√
F TF‖µ,µc,κ

by using the simple estimate ‖X‖2µ,µc,κ ≥ ‖ symX‖2µ,µc,κ.

We are now ready to prove our main result.

Theorem 3.3. Let g be the left-GL(n)-invariant, right-O(n)-invariant Riemannian met-
ric on GL(n) defined by

gA(X,Y ) = 〈A−1X,A−1Y 〉µ,µc,κ , µ, µc, κ > 0 ,

for A ∈ GL(n) and X,Y ∈ Rn×n, where

〈X,Y 〉µ,µc,κ = µ 〈devn symX,devn symY 〉+ µc〈skewX, skew Y 〉+ κ
2 tr(X) tr(Y ) . (29)

Then for all F ∈ GL+(n), the geodesic distance of F to the special orthogonal group
SO(n) induced by g is given by

dist2
geod(F,SO(n)) = µ ‖devn logU‖2 +

κ

2
[tr(logU)]2 , (30)

where log is the principal matrix logarithm, tr(X) =
∑n

i=1Xi,i denotes the trace and
devnX = X − 1

n tr(X) · 1 is the n-dimensional deviatoric part of X ∈ Rn×n. The
orthogonal factor R ∈ SO(n) of the polar decomposition F = RU is the unique element
of best approximation in SO(n), i.e.

distgeod(F,SO(n)) = distgeod(F,R) = distgeod(RTF,1) = distgeod(U,1) .

In particular, the geodesic distance does not depend on the spin modulus µc.

Remark 3.4 (Uniqueness of the metric). We remark once more that the Riemannian
metric considered in Theorem 3.3 is not chosen arbitrarily: every left-GL(n)-invariant,
right-O(n)-invariant Riemannian metric on GL(n) is of the form given in (29) for some
choice of parameters µ, µc, κ > 0 [119]. �

Remark 3.5. Since the weighted Frobenius norm on the right hand side of equation
(30) only depends on the eigenvalues of U =

√
F TF , the result can also be expressed in

terms of the left Biot-stretch tensor V =
√
FF T , which has the same eigenvalues as U :

dist2
geod(F,SO(n)) = µ ‖devn log V ‖2 +

κ

2
[tr(log V )]2 . (31)

Applying the above formula to the case F = P with P ∈ PSym(n), we find
√
P TP =√

PP T = P and therefore

dist2(P,SO(n)) = dist2(P, 1) = µ ‖devn logP‖2 +
κ

2
[tr(logP )]2 , (32)

22



since 1 is the orthogonal polar factor of P . For the tensors U and V , the right Cauchy-
Green deformation tensor C = F TF = U2 and the Finger tensor B = FF T = V 2, we
thereby obtain the equalities

distgeod(B, SO(n)) = distgeod(B,1) = distgeod(B−1,1) (33)

= distgeod(C,1) = distgeod(C−1,1) = distgeod(C,SO(n))

and distgeod(V,SO(n)) = distgeod(V,1) = distgeod(V −1,1) (34)

= distgeod(U,1) = distgeod(U−1,1) = distgeod(U,SO(n)) .

Note carefully that, although (32) for P ∈ PSym(n) immediately follows from Theorem
3.3, it is not trivial to compute the distance distgeod(P, 1) directly: while the curve given
by exp(t logP ) for t ∈ [0, 1] is in fact a geodesic [80] connecting 1 to P with length
µ ‖devn logP‖2 + κ

2 [tr(logP )]2, it is not obvious whether or not a shorter connecting
geodesic might exist. Our result ensures that this is in fact not the case. �

Proof of Theorem 3.3. Let F ∈ GL+(n) and Q̂ ∈ SO(n). Then according to our previous
considerations (cf. Section 3.1) there exists ξ ∈ gl(n) with

exp(sym ξ − µc
µ skew ξ) exp((1 + µc

µ ) skew ξ) = F−1Q̂ (35)

and
‖ξ‖µ,µc,κ = distgeod(F, Q̂) . (36)

In order to find a lower estimate on ‖ξ‖µ,µc,κ (and thus on distgeod(F, Q̂)), we compute

exp(sym ξ − µc
µ skew ξ) exp((1 + µc

µ ) skew ξ) = F−1Q̂

=⇒ exp((1 + µc
µ ) skew ξ)−1 exp(sym ξ − µc

µ skew ξ)−1 = Q̂TF

=⇒ exp(− sym ξ + µc
µ skew ξ) = exp( (1 + µc

µ ) skew ξ
︸ ︷︷ ︸

∈so(n)

) Q̂TF .

Since exp(W ) ∈ SO(n) for all skew symmetric W ∈ so(n), we find

exp(− sym ξ + µc
µ skew ξ

︸ ︷︷ ︸
=:Y

) = QTξ F (37)

with Qξ = Q̂ exp(−(1 + µc
µ ) skew ξ ) ∈ SO(n); note that symY = − sym ξ. According

to (37), Y = − sym ξ + µc
µ skew ξ is “a logarithm”22 of QTξ F . The weighted Frobenius

norm of the symmetric part of Y = − sym ξ+ µc
µ skew ξ is therefore bounded below by

22Loosely speaking, we use the term “a logarithm of A ∈ GL+(n)” to denote any (real) solution X of
the equation expX = A.
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F ξ

SO(n)

1

GL+(n)

F

Q̂

dist2geod(F,SO(n))

Figure 11: The geodesic (intrinsic) distance to SO(n); neither the element Q̂ of best approximation nor
the initial tangent F ξ ∈ TF GL+(n) of the connecting geodesic is known beforehand.

the infimum of ‖ symX‖µ,µc,κ over “all logarithms” X of QTξ F :

‖ sym ξ‖µ,µc,κ = ‖ symY ‖µ,µc,κ
(37)

≥ inf{‖ symX‖µ,µc,κ |X ∈ Rn×n , exp(X) = QTξ F}
≥ inf

Q∈SO(n)
inf{‖ symX‖µ,µc,κ |X ∈ Rn×n , exp(X) = QTF}

= inf
Q∈SO(n)

‖ sym Log(QTF )‖µ,µc,κ . (38)

We can now apply Corollary 3.2 to find

dist2
geod(F, Q̂) = ‖ξ‖2µ,µc,κ = µ ‖ devn sym ξ‖2 + µc ‖ skew ξ‖2 +

κ

2
[tr(sym ξ)]2

≥ µ ‖devn sym ξ‖2 +
κ

2
[tr(sym ξ)]2 (39)

= ‖ sym ξ‖2µ,µc,κ
(38)

≥ inf
Q∈SO(n)

‖ sym Log(QTF )‖2µ,µc,κ
Corollary 3.2

= µ ‖ log
√
F TF‖2µ,µc,κ = µ ‖ devn logU‖2 +

κ

2
[tr(logU)]2

for U =
√
F TF . Since this inequality is independent of Q̂ and holds for all Q̂ ∈ SO(n),

we obtain the desired lower bound

dist2
geod(F,SO(n)) = inf

Q̂∈SO(n)
dist2

geod(F, Q̂) ≥ µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2

on the geodesic distance of F to SO(n). Together with the upper bound

dist2
geod(F,SO(n)) ≤ dist2

geod(F,R) ≤ µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2
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already established in (27), we finally find

dist2
geod(F,SO(n)) = dist2

geod(F,R) = µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2 . (40)

By equation (40), apart from computing the geodesic distance of F to SO(n), we have
shown that the orthogonal polar factor R = polar(F ) is an element of best approximation
to F in SO(n). However, it is not yet clear whether there exists another element of best
approximation, i.e. whether there is a Q̂ ∈ SO(n) with Q̂ 6= R and distgeod(F, Q̂) =
distgeod(F,R) = distgeod(F,SO(n)). For this purpose, we need to compare geodesic
distances corresponding to different parameters µ, µc, κ. We therefore introduce the
following notation: for fixed µ, µc, κ > 0, let distgeod,µ,µc,κ denote the geodesic distance
on GL+(n) induced by the left-GL(n)-invariant, right-O(n)-invariant Riemannian metric
g (as introduced in (18)) with parameters µ, µc, κ. Furthermore, the length of a curve γ
with respect to his metric will be denoted by Lµ,µc,κ(γ).

Assume that Q̂ ∈ SO(n) is an element of best approximation to F with respect to g
for some fixed parameters µ, µc, κ > 0. Then there exists a length minimizing geodesic
γ : [0, 1]→ GL+(n) connecting Q̂ to F of the form

γ(t) = Q̂ exp(t(sym ξ − µc
µ skew ξ)) exp(t(1 + µc

µ ) skew ξ)

with ξ ∈ Rn×n, and the length of γ is given by

L2
µ,µc,κ(γ) = ‖ξ‖2µ,µc,κ = µ ‖ devn sym ξ‖2 + µc ‖ skew ξ‖2 +

κ

2
[tr(ξ)]2 .

We first assume that skew ξ 6= 0. We choose µ̃c > 0 with µ̃c < µc and find

dist2
geod,µ,µ̃c,κ(F,SO(n)) = inf

Q∈SO(n)
dist2

geod,µ,µ̃c,κ(F,Q) (41)

≤ dist2
geod,µ,µ̃c,κ(F, Q̂) ≤ L2

µ,µ̃c,κ(γ) ,

since γ is a curve connecting F to Q̂ ∈ SO(n); note that although γ is a shortest
connecting geodesic with respect to parameters µ, µc, κ by assumption, it must not nec-
essarily be a length minimizing curve with respect to parameters µ, µ̃c, κ. Obviously,
‖ξ‖µ,µ̃c,κ < ‖ξ‖µ,µc,κ if skew ξ 6= 0, and therefore

L2
µ,µ̃c,κ(γ) = ‖ξ‖2µ,µ̃c,κ < ‖ξ‖

2
µ,µc,κ

= L2
µ,µc,κ(γ) = dist2

geod,µ,µc,κ(F, Q̂) .

By assumption, Q̂ is an element of best approximation to F in SO(n) for parameters
µ, µc, κ, thus

dist2
geod,µ,µc,κ(F, Q̂) = dist2

geod,µ,µc,κ(F,SO(n)) (42)

= µ ‖devn logU‖2 +
κ

2
[tr(logU)]2 = dist2

geod,µ,µ̃c,κ(F,SO(n)) ,

where the last equality utilizes the fact that the distance from F to SO(n) is independent
of the second parameter (µc or µ̃c). Combining (41), (3.2) and (42), we thereby obtain
the contradiction

dist2
geod,µ,µ̃c,κ(F,SO(n)) ≤ L2

µ,µ̃c,κ(γ) < dist2
geod,µ,µc,κ(F, Q̂) = dist2

geod,µ,µ̃c,κ(F,SO(n)) ,
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hence we must have skew ξ = 0. But then

γ(1) = Q̂ exp(sym ξ − µc
µ skew ξ) exp((1 + µc

µ ) skew ξ) = Q̂ exp(sym ξ) ,

and since exp(sym ξ) ∈ PSym(n), the uniqueness of the polar decomposition F = RU
yields exp(sym ξ) = U and, finally, Q̂ = R. �

The fact that the orthogonal polar factor R = polar(F ) is the unique element of
best approximation to F in SO(n) with respect to the geodesic distance corresponds
directly to the linear case (cf. equality (8) in Section 2.1), where the skew symmetric
part skew∇u of the displacement gradient ∇u is the element of best approximation with
respect to the Euclidean distance: for F = 1+∇u we have

U = 1+ sym∇u+O(‖∇u‖2) and R = 1+ skew∇u+O(‖∇u‖2) ,

hence the linear approximation of the orthogonal and the positive definite factor in
the polar decomposition is given by skew∇u and sym∇u, respectively. The geometric
connection between the geodesic distance on GL+(n) and the Euclidean distance on the
tangent space Rn×n = gl(n) at 1 is illustrated in Figure 12.

SO(n)

1

R = polar(F )

GL+(n)

T1GL+(n) = gl(n) ∼= Rn×n

T1SO(n) = so(n)

F

∇u

skew∇u

dist2euclid, gl(∇u, so(n))

= µ ||devn sym∇u||2 + κ
2

[tr∇u]2

dist2euclid(F,SO(n))

= ||U − 1||2 = ||
√
FTF − 1||2

dist2geod(F,SO(n))

= µ ||devn logU ||2 + κ
2

[tr(logU)]2

Figure 12: The isotropic Hencky energy of F measures the geodesic distance between F and SO(n). The
linear Euclidean strain measure is obtained as the linearization via the tangent space gl(n) at 1.

Remark 3.6. Using a similar proof, exactly the same result can be shown for the
geodesic distance distgeod,right induced by the right-GL(n)-invariant, left-O(n)-invariant
Riemannian metric [192]

gright
A (X,Y ) = 〈XA−1, Y A−1〉µ,µc,κ

on GL(n):

dist2
geod,right(F,SO(n)) = dist2

geod(F,SO(n)) = µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2 .
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B

F1 F1

F2 F2

Ω B · Ω

F1 · Ω F1 ·B · Ω

F2 · Ω F2 ·B · Ω

distgeod(F1, F2) distgeod(F1 ·B,F2 ·B)=

Figure 13: The right-GL(n)-invariance of a distance measure on GL(n): The distance between two
homogeneous deformations F1, F2 is not changed by a prior homogeneous deformation B, i.e.
distgeod(F1, F2) = distgeod(F1 ·B,F2 ·B).

The right-GL(n)-invariant Riemannian metric can be motivated in a way similar to the
left-GL(n)-invariant case: it corresponds to the requirement that the distance between
two deformations F1 and F2 should not depend on the initial shape of Ω, i.e. should
not be changed if Ω is homogeneously deformed beforehand (cf. Figure 13). A similar
independence from prior deformations (and so-called “pre-stresses”), called “elastic de-
terminacy” by L. Prandtl [159], was postulated by H. Hencky in the deduction of his
elasticity model; cf. [93, p. 618], [136, p. 19] and Section 4.2. �

According to Theorem 3.3, the squared geodesic distance between F and SO(n) with
respect to any left-GL(n)-invariant, right-O(n)-invariant Riemannian metric on GL(n)
is the isotropic quadratic Hencky energy

WH(F ) = µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2 ,

where the parameters µ, κ > 0 represent the shear modulus and the bulk modulus,
respectively. The Hencky energy function was introduced in 1929 by H. Hencky [94],
who derived it from geometrical considerations as well: his deduction23 was based on a
set of axioms including a law of superposition (cf. Section 4.2) for the stress response

23Hencky’s approach is often misrepresented as empirically motivated. Truesdell claims that “Hencky
himself does not give a systematic treatement” in introducing the logarithmic strain tensor [184, p. 144]
and attributes the axiomatic approach to Richter [162] instead [189, p. 270]. Richter’s resulting deviatoric
strain tensors dev3 logU and dev3 log V are disqualified as “complicated algebraic functions” by Truesdell
and Toupin [189, p. 270].
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function [136], an approach previously employed by G.F. Becker [19, 145] in 1893 and
later followed in a more general context by H. Richter [162], cf. [163, 161, 164]. A different
constitutive model for uniaxial deformations based on logarithmic strain had previously
been proposed by Imbert [106] and Hartig [82]. While Ludwik is often credited with
the introduction of the uniaxial logarithmic strain, his ubiquitously cited article [115]
(which is even referenced by Hencky himself [95, p. 175]) does not provide a systematic
introduction of such a strain measure.

While the energy function WH(F ) = dist2
geod(F,SO(n)) already defines a measure of

strain as described in Section 1.1, we are also interested in characterizing the two terms
‖ devn logU‖ and | tr(logU)| as separate partial strain measures.

Theorem 3.7 (Partial strain measures). Let

ωiso(F ) := ‖ devn log
√
F TF‖ and ωvol(F ) := | tr(log

√
F TF )| .

Then

ωiso(F ) = distgeod, SL(n)

(
F

detF 1/n
, SO(n)

)

and

ωvol(F ) =
√
n · distgeod,R+·1

(
(detF )1/n · 1, 1

)
,

where the geodesic distances distgeod, SL(n) and distgeod,R+·1 on the Lie groups SL(n) =
{A ∈ GL(n) | detA = 1} and R+ · 1 are induced by the canonical left-invariant metric

ḡA(X,Y )1 = 〈A−1X,A−1Y 〉 = tr(XTA−TA−1Y ) .

Remark 3.8. Theorem 3.7 states that ωiso and ωvol appear as natural measures of
the isochoric and volumetric strain, respectively: if F = Fiso Fvol is decomposed mul-
tiplicatively [66] into an isochoric part Fiso = (detF )−1/n · F and a volumetric part
Fvol = (detF )1/n ·1, then ωiso(F ) measures the SL(n)-geodesic distance of Fiso to SO(n),
whereas 1√

n
ωvol(F ) gives the geodesic distance of Fvol to the identity 1 in the group

R+ · 1 of purely volumetric deformations. �

Proof. First, observe that the canonical left-invariant metrics on SL(n) and R+ · 1 are
obtained by choosing µ = µc = 1 and κ = 2

n and restricting the corresponding metric g
on GL+(n) to the submanifolds SL(n), R+ ·1 and their respective tangent spaces. Then
for this choice of parameters, every curve in SL(n) or R+ · 1 is a curve of equal length
in GL+(n) with respect to g. Since the geodesic distance is defined as the infimal length
of connecting curves, this immediately implies

distgeod, SL(n) (Fiso, SO(n)) ≥ distgeod,GL+(n) (Fiso, SO(n))

as well as

distgeod,R+·1 (Fvol, 1) ≥ distgeod,GL+(n) (Fvol, 1) ≥ distgeod,GL+(n) (Fvol, SO(n))
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for Fiso := (detF )−1/n · F and Fvol := (detF )1/n · 1. We can therefore use Theorem 3.3
to obtain the lower bounds24

dist2
geod, SL(n) (Fiso, SO(n))

≥ dist2
geod,GL+(n) (Fiso, SO(n))

= ‖ devn log

(√
F TisoFiso

)
‖2 +

1

n

[
tr

(
log
√
F TisoFiso

)]2

= ‖ log

((
det
√
F TisoFiso

)−1/n√
F TisoFiso

)
‖2 +

1

n

[
ln

( =1︷ ︸︸ ︷
det
√
F TisoFiso

)]2

= ‖ log

(√
F TisoFiso

)
‖2 = ‖ log

(
(detF )−1/n

√
F TF

)
‖2 = ω2

iso(F ) (43)

and

dist2
geod,R+·1 (Fvol, 1) ≥ dist2

geod,GL+(n) (Fvol, SO(n))

= ‖ devn log

(√
F TvolFvol

)
‖2 +

1

n
[tr(log

(√
F TvolFvol

)
)]2 (44)

= ‖ devn

(
ln((detF )1/n) · 1

)
‖2 +

1

n
[ln(det

(
(detF )1/n · 1

)
)]2

=
1

n
[ln(det

√
F TF )]2 =

1

n
[tr(log

√
F TF )]2 =

1

n
ω2

vol(F ) .

To obtain an upper bound on the geodesic distances, we define the two curves

γiso : [0, 1]→ SL(n) , γiso(t) = R exp(t devn logU)

and

γvol : [0, 1]→ R+ · 1 , γvol(t) = e
t
n

tr(logU) · 1 ,

where F = RU with R ∈ SO(n) and U ∈ PSym(n) is the polar decomposition of F .
Then γiso connects (detF )−1/n · F to SO(n):

γiso(0) = R ∈ SO(n) ,

γiso(1) = R exp(devn logU) = R exp(logU − tr(logU)
n · 1)

= R exp(logU) exp(− tr(logU)
n · 1)

= RU exp(− ln detU
n · 1) = (detU)−1/n · F = (detF )−1/n · F ,

while γvol connects (detF )1/n · 1 and 1:

γvol(0) = 1 , γvol(1)= e
1
n

tr(logU) · 1 = e
1
n

ln(detU) · 1 = (detU)1/n · 1 = (detF )1/n · 1 .
24For some of the rules of computation employed here involving the matrix logarithm, we refer to

Lemma A.1 in the appendix.
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The lengths of the curves compute to

L(γiso) =

∫ 1

0
‖γiso(t)−1γ̇iso(t)‖dt (45)

=

∫ 1

0
‖(R exp(t devn logU))−1R exp(t devn logU) devn logU‖ dt

=

∫ 1

0
‖ devn logU‖ dt = ‖ devn log

√
F TF‖ = ωiso(F )

as well as

L(γvol) =

∫ 1

0
‖γvol(t)

−1γ̇vol(t)‖ dt (46)

=

∫ 1

0
‖(e tn tr(logU) · 1)−1 · tr(logU)

n · e tn tr(logU) · 1‖ dt

=

∫ 1

0
‖ tr(logU)

n · 1‖ dt =
| tr(logU)|

n
· ‖1‖ =

1√
n
| tr(log

√
F TF )| = 1√

n
ωvol(F ) ,

showing that

dist2
geod, SL(n)

(
(detF )−1/n · F, SO(n)

)
≤ L2(γiso) = ω2

iso(F )

and

dist2
geod,R+·1

(
(detF )1/n · 1, 1

)
≤ L2(γvol) =

1

n
· ω2

vol(F ) ,

which completes the proof. �

Remark 3.9. In addition to the isochoric (distortional) part Fiso = (detF )−1/n · F and
the volumetric part Fvol = (detF )1/n · 1, we may also consider the cofactor Cof F =
(detF ) · F−T of F ∈ GL+(n). Theorem 3.3 allows us to directly compute (cf. Appendix
A.4) the distance

dist2
geod(Cof F,SO(n)) = µ ‖ devn logU‖2 +

κ (n− 1)2

2
[tr(logU)]2 . �

4. Alternative motivations for the logarithmic strain

4.1. Riemannian geometry applied to PSym(n)

Extensive work on the use of Lie group theory and differential geometry in continuum
mechanics has already been done by Rougée [166, 165, 167, 168], Moakher [128], Bhatia
[28] and, more recently, by Fiala [58, 59, 60, 61] (cf. [111]). They all endowed the convex
cone PSym(3) of positive definite symmetric (3×3)-tensors with the Riemannian metric25

g̃C(X,Y ) = tr(C−1XC−1Y ) = 〈XC−1, C−1Y 〉 = 〈C−1/2X C−1/2, C−1/2 Y C−1/2〉 , (47)

25Note the subtle difference to our metric gC(X,Y ) = 〈C−1X,C−1Y 〉.
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where C ∈ PSym(3) and X,Y ∈ Sym(3) = TC PSym(3). Fiala and Rougée deduced
a motivation of the logarithmic strain tensor logU via geodesic curves connecting el-
ements of PSym(n). However, their approach differs markedly from our method em-
ployed in the previous sections: the manifold PSym(n) already corresponds to metric
states C = F TF , whereas we consider the full set GL+(n) of deformation gradients F
(cf. Appendix A.3 and Table 1 in Section 6). This restriction can be viewed as the
nonlinear analogue of the a priori restriction to ε = sym∇u in the linear case, i.e. the
nature of the strain measure is not deduced but postulated. Note also that the metric g̃
cannot be obtained by restricting our left-GL(3)-invariant, right-O(3)-invariant metric g
to PSym(3).26 Furthermore, while Fiala and Rougée aim to motivate the Hencky strain
tensor logU directly, our focus lies on the strain measures ωiso, ωvol and the isotropic
Hencky strain energy WH.

The geodesic curves on PSym(n) with respect to g̃ are of the simple form27

γ(t) = C
1/2
1 exp(t · C−1/2

1 M C
−1/2
1 )C

1/2
1 (48)

with C1 ∈ PSym(n) and M ∈ Sym(n) = T1 PSym(n). These geodesics are defined glob-
ally, i.e. PSym(n) is geodesically complete. Furthermore, for given C1, C2 ∈ PSym(n),
there exists a unique geodesic curve connecting them; this easily follows from the repre-
sentation formula (48) or from the fact that the curvature of PSym(n) with g̃ is constant
and negative [59, 108, 27]. Note that this implies that, in contrast to GL+(n) with our
metric g, there are no closed geodesics on PSym(n).

An explicit formula for the corresponding geodesic distance was given by Moakher:28

distgeod,PSym(n)(C1, C2) = ‖ log(C
−1/2
2 C1C

−1/2
2 )‖ . (49)

In the special case C2 = 1, this distance measure is equal to our geodesic distance on
GL+(n) induced by the canonical inner product: Theorem 3.3, applied with parameters
µ = µc = 1 and κ = 2

n to R = 1 and U = C1, shows that

distgeod,GL+(n)(C1,1) = ‖ logC1‖ = distgeod,PSym(n)(C1,1) .

More generally, assume that the two metric states C1, C2 ∈ PSym(n) commute. Then

26Since PSym(n) is not a Lie group with respect to matrix multiplication, the metric g̃ itself cannot
be left- or right-invariant in any suitable sense.

27While Moakher gives the parametrization stated here, Rougée writes the geodesics in the form
γ(t) = exp(t ·Log(C2C

−1
1 ))C1 with C1, C2 ∈ PSym(n), which can also be written as γ(t) = (C2C

−1
1 )t C1;

a similar formulation is given by Tarantola [182, (2.78)]. For a suitable definition of a matrix logarithm

Log on GL+(n), these representations are equivalent to (48) with M = log(C
−1/2
2 C1 C

−1/2
2 ).

28Moakher [128, (2.9)] writes this result as ‖Log(C−1
2 C1)‖ =

√∑n
i=1 ln2 λi, where λi are the (real

and positive) eigenvalues of C−1
2 C1. The right hand side of this equation is identical to the result stated

in (49). However, since C−1
2 C1 is not necessarily normal, there is in general no logarithm Log(C−1

2 C1)
whose Frobenius norm satisfies this equality.
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C−1
2 C1 ∈ PSym(n), and the left-GL(n)-invariance of the geodesic distance implies

distgeod,GL+(n)(C1, C2) = distgeod,GL+(n)(C
−1
2 C1,1) = ‖ log(C−1

2 C1)‖
= ‖ log(C

−1/2
2 C

−1/2
2 C1)‖ = ‖ log(C

−1/2
2 C1C

−1/2
2 )‖ (50)

= distgeod,PSym(n)(C1, C2) .

However, since C−1
2 C1 /∈ PSym(n) in general, this equality does not hold on all of

PSym(n).
A different approach towards distance functions on the set PSym(n) was suggested

by Arsigny et al. [8, 9, 7] who, motivated by applications of geodesic and logarith-
mic distances in diffusion tensor imaging, directly define their Log-Euclidean metric on
PSym(n) by

distLog-Euclid(C1, C2) := ‖ logC1 − logC2‖ , (51)

where ‖ . ‖ is the Frobenius matrix norm. If C1 and C2 commute, this distance equals
the geodesic distance on GL+(n) as well:

distgeod,GL+(n)(C1, C2) = ‖ log(C−1
2 C1)‖

= ‖ log(C−1
2 ) + log(C1)‖ (52)

= ‖ logC1 − logC2‖ = distLog-Euclid(C1, C2) ,

where equality in (52) holds due to the fact that C1 and C−1
2 commute. Again, this

equality does not hold for arbitrary C1 and C2.
Using a similar Riemannian metric, geodesic distance measures can also be applied

to the set of positive definite symmetric fourth-order elasticity tensors, which can be
identified with PSym(6). Norris and Moakher applied such a distance function in order
to find an isotropic elasticity tensor C : Sym(3) → Sym(3) which best approximates a
given anisotropic tensor [129, 147].

The connection between geodesic distances on the metric states in PSym(n) and loga-
rithmic distance measures was also investigated extensively by the late Albert Tarantola
[182], a lifelong advocate of logarithmic measures in physics. In his view [182, 4.3.1],
“. . . the configuration space is the Lie group GL+(3), and the only possible measure of
strain (as the geodesics of the space) is logarithmic.”

4.2. Further mechanical motivations for the quadratic isotropic Hencky
model based on logarithmic strain tensors

“At the foundation of all elastic theories lies the definition of strain, and
before introducing a new law of elasticity we must explain how finite strain
is to be measured.”

Heinrich Hencky: The elastic behavior of vulcanized rubber [96].

Apart from the geometric considerations laid out in the previous sections, the Hencky
strain tensor E0 = logU can be characterized via a number of unique properties.
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For example, the Hencky strain is the only strain tensor (for a suitably narrow defini-
tion, cf. [145]) that satisfies the law of superposition for coaxial deformations:

E0(U1 · U2) = E0(U1) + E0(U2) (53)

for all coaxial stretches U1 and U2, i.e. U1, U2 ∈ PSym(n) such that U1 ·U2 = U2 ·U1. This
characterization was used by Heinrich Hencky [181, 90, 95, 96] in his original introduction
of the logarithmic strain tensor [92, 94, 93, 136] and, indeed much earlier, by the geologist
George Ferdinand Becker [124], who postulated a similar law of superposition in order
to deduce a logarithmic constitutive law of nonlinear elasticity [19, 145] (cf. Appendix
A.2).

In the case n = 1, this superposition principle simply amounts to the fact that the
logarithm function f = log satisfies Cauchy’s [38] well-known functional equation

f(λ1 · λ2) = f(λ1) + f(λ2) . (54)

This means that for a sequence of incremental one-dimensional deformations, the loga-
rithmic strains eilog can be added in order to obtain the total logarithmic strain etot

log of
the composed deformation [65]:

e1
log + e2

log + . . .+ enlog = log
L1

L0
+ log

L2

L1
+ . . .+ log

Ln
Ln−1

= log
Ln
L0

= etot
log ,

where Li denotes the length of the (one-dimensional) body after the i-th elongation.
This property uniquely characterizes the logarithmic strain elog among all differentiable
one-dimensional strain mappings e : R+ → R with e′(1) = 1.

Since purely volumetric deformations of the form λ ·1 with λ > 0 are coaxial to every
stretch U ∈ PSym(n), the decomposition property (53) allows for a simple additive
volumetric-isochoric split of the Hencky strain tensor [162]:

logU = log

[
U

(detU)1/n

︸ ︷︷ ︸
isochoric

· (detU)1/n · 1
︸ ︷︷ ︸

volumetric

]
= devn logU

︸ ︷︷ ︸
isochoric

+
1

n
tr(logU) · 1

︸ ︷︷ ︸
volumetric

.

In particular, the incompressibility condition detF = 1 can be easily expressed as
tr(logU) = 0 in terms of the logarithmic strain.

4.2.1. From Truesdell’s hypoelasticity to Hencky’s hyperelastic model

As indicated in Section 1.1, the quadratic Hencky energy is also of great importance to
the concept of hypoelasticity [76, Chapter IX]. It was found that the Truesdell equation29

[184, 186, 185, 69]

d

dt

�

[τ ] = 2µD + λ tr(D) · 1 , D = sym(Ḟ F−1) , (55)

29It is telling to see that equation (55) had already been proposed by Hencky himself in [93] for
the Zaremba-Jaumann stress rate (cf. (58)). Hencky’s work, however, contains a typographical error
[93, eq. (10) and eq. (11e)] changing the order of indices in his equations (cf. [33]). The strong point of
writing (55) is that no discussion of any suitable strain tensor is necessary.
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with constant coefficients µ, λ > 0, under the assumption that the stress rate d
dt

�
is

objective30 and corotational, is satisfied if and only if d
dt

�
is the so-called logarithmic

corotational rate d
dt

log
and τ = 2µ log V + λ tr(log V ) · 1 [196, 194, 148], i.e. if and

only if the hypoelastic model is exactly Hencky’s hyperelastic constitutive model. Here,
τ = detF ·σ(V ) denotes the Kirchhoff stress tensor and D is the unique rate of stretching
tensor (i.e. the symmetric part of the velocity gradient in the spatial setting). A rate
d
dt

�
is called corotational if it is of the special form

d

dt

�

[X] = Ẋ − ΩX +XΩ with Ω ∈ so(3) ,

which means that the rate is computed with respect to a frame that is rotated.31 This
extra rate of rotation is defined only by the underlying spins of the problem. Upon
specialisation, for µ = 1, λ = 0 we obtain32 [32, eq. 71]

d

dt

log

[log V ] = D

as the unique solution to (55) with a corotational rate. Note that this characterization
of the spatial logarithmic strain tensor log V is by no means exceptional. For example,
it is well known that [83, p. 49, Theorem 1.8] (cf. [34])

d

dt

M

[A] = Ȧ+ LTA+AL = D ,

where A = Ê−1 = 1
2(1−B−1) is the spatial Almansi strain tensor and d

dt

M
is the upper

Oldroyd rate (as defined in (59)).
The quadratic Hencky model

τ = 2µ log V + λ tr(log V ) · 1 = Dlog VWH(log V ) (56)

was generalized in Hill’s generalized linear elasticity laws33 [132]

Tr = 2µEr + λ tr(Er) · 1 (57)

30A rate d
dt

�
is called objective if d

dt

�[
S(QBQ̇T )

]
= Q ( d

dt

�
[S(B)])QT for all (not necessarily constant)

Q = Q(t) ∈ O(n), where S is any objective stress tensor, and if d
dt

�
[S] = 0 ⇔ S = 0, i.e. the motion is

rigid if and only if d
dt

�
[S] ≡ 0.

31Corotational rates are also special cases of Lie derivatives [118].
32Cf. Xiao, Bruhns and Meyers [195, p. 90]: “. . . the logarithmic strain [does] possess certain intrinsic

far-reaching properties [which] establish its favoured position in all possible strain measures”.
33Hooke’s law [103] (cf. [131]) famously states that the strain in a deformation depends linearly on

the occurring stress (“ut tensio, sic vis”). However, for finite deformations, different constitutive laws
of elasticity can be obtained from this assumption, depending on the choice of a stress/strain pair. An
idealized version of such a linear relation is given by (56), i.e. by choosing the spatial Hencky strain
tensor log V and the Kirchhoff stress tensor τ . Since, however, Hooke speaks of extension versus force,
the correct interpretation of Hooke’s law is TBiot = 2µ (U − 1) + λ tr(U − 1) · 1, i.e. the case r = 1

2
in

(57).
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with work-conjugate pairs (Tr, Er) based on the Lagrangian strain measures given in (3);
cf. Appendix A.2 for examples. The concept of work-conjugacy was introduced by Hill
via an invariance requirement; the spatial stress power must be equal to its Lagrangian
counterpart:

detF · 〈σ,D〉 = 〈Tr, Ėr〉 ,
by means of which a material stress tensor is uniquely linked to its (material rate) conju-
gate strain tensor. Hence it generalizes the virtual work principle and is the foundation
of derived methods like the finite element method.

For the case of isotropic materials, Hoger [102] shows by spectral decomposition tech-
niques that the work-conjugate stress to logU is the back-rotated Cauchy stress σ mul-
tiplied by detF , hence 〈σ,D〉 = 〈RT σ R, d

dt logU〉, which is a generalization of Hill’s
earlier work [99, 101]. Sansour [170] additionally found that the Eshelby-like stress ten-
sor Σ = CS2 is equally conjugate to logU ; here, S2 denotes the second Piola-Kirchhoff
stress tensor. For anisotropy, however, the conjugate stress exists but follows a more
complex format than for isotropy [102]. The logarithm of the left stretch log V in con-
trast exhibits a work conjugate stress tensor only for isotropic materials, namely the
Kirchhoff stress tensor τ = detF · σ [152, 102].

While hyperelasticity in its potential format avoids rate equations, the use of stress
rates (i.e. stress increments in time) may be useful for the description of inelastic material
behavior at finite strains. Since the material time derivative of an Eulerian stress tensor
is not objective, rates for a tensor X were developed, like the (objective and corotational)
Zaremba-Jaumann rate

d

dt

◦
[X] = Ẋ −WX +XW , W = skewL , L = ḞF−1 , (58)

or the (objective but not corotational) lower and upper Oldroyd rates

d

dt

O

[X] = Ẋ + LTX +XL and
d

dt

M

[X] = Ẋ − LX −XLT , (59)

to name but a few (cf. [83, Section 1.7]). Which one of these or the great number of
other objective rates should be used seems to be rather a matter of taste, hence of
arbitrariness34 or heuristics35, but not a matter of theory.

The concept of dual variables36 as introduced by Tsakmakis and Haupt in [84] into
continuum mechanics overcame the arbitrariness of the chosen rate in that it uniquely
connects a particular (objective) strain rate to a stress tensor and, analogously, a stress
rate to a strain tensor. The rational rule is that, when stress and strain tensors operate
on configurations other than the reference configurations, the physically significant scalar

34Truesdell and Noll [188, p. 404] declared that “various such stress rates have been used in literature.
Despite claims and whole papers to the contrary, any advantage claimed for one such rate over another
is pure illusion.”

35For a shear test in Eulerian elasto-plasticity using the Zaremba-Jaumann rate (58), an unphysical
artefact of oscillatory shear stress was observed, first in [113]. A similar oscillatory behavior was observed
for hypoelasticity in [49].

36Hill [101] used the terms conjugate and dual as synonyms.
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products 〈S2, Ė1〉, 〈Ṡ2, E1〉, 〈S2, E1〉 and 〈Ṡ2, Ė1〉 (with the second Piola-Kirchhoff stress
tensor S2 and its work-conjugate Green strain tensor E1) must remain invariant, see
[84, 83].

4.2.2. Advantageous properties of the quadratic Hencky energy

For modelling elastic material behavior there is no theoretical reason to prefer one strain
tensor over another one, and the same is true for stress tensors. As discussed in Section
1.1, stress and strain are immaterial.37 Primary experimental data (forces, displace-
ments) in material testing are sufficient to calculate any strain tensor and any stress
tensor and to display any combination thereof in stress-strain curves, while only work-
conjugate pairs are physically meaningful.

However, for modelling finite-strain elasticity, the quadratic Hencky model

WH = µ ‖devn log V ‖2 +
κ

2
[tr(log V )]2 = µ ‖ devn logU‖2 +

κ

2
[tr(logU)]2 ,

τ = 2µ devn log V + κ tr(log V )1 , (60)

exhibits a number of unique, favorable properties, including its functional simplicity and
its dependency on only two material parameters µ and κ that are determined in the
infinitesimal strain regime and remain constant over the entire strain range. In view
of the linear dependency of stress from logarithmic strain in (60), it is obvious that
any nonlinearity in the stress-strain curves can only be captured in Hencky’s model
by virtue of the nonlinearity in the strain tensor itself. There is a surprisingly large
number of different materials, where Hencky’s elasticity relation provides a very good
fit to experimental stress-strain data, which is true for different length scales and strain
regimes. In the following we substantiate this claim with some examples.

Nonlinear elasticity on macroscopic scales for a variety of materials. Anand [3, 4]
has shown that the Hencky model is in good agreement with experiments on a wide
class of materials, e.g. vulcanized natural rubber, for principal stretches between 0.7
and 1.3. More precisely, this refers to the characteristic that in tensile deformation the
stiffness becomes increasingly smaller compared with the stiffness at zero strain, while
for compressive deformation the stiffness becomes increasingly larger.

Nonlinear elasticity in the very small strain regime. We mention in passing that a
qualitatively similar dependency of material stiffness on the sign of the strain has been
made much earlier in the regime of extremely small strains (10−6–10−3). In Hartig’s
law [82] from 1893 this dependency was expressed as dσ

dε = E0 + b σ, where E0 is the
elasticity modulus at zero stress and b < 0 is a dimensionless constant,38 cf. the book

37Cf. Truesdell [184, p. 145]: “It is important to realize that since each of the several material tensors
[. . . ] is an isotropic function of any one of the others, an exact description of strain in terms of any
one is equivalent to a description in terms of any other” or Antman [6, p. 423]: “In place of C, any
invertible tensor-valued function of C can be used as a measure of strain.”

38The negative curvature (b < 0) was already suggested by Jacob Bernoulli in 1705 [22] (cf. [21, p.
276]): “Homogeneous fibers of the same length and thickness, but loaded with different weights, neither
lengthen nor shorten proportional to these weights; but the lengthening or the shortening caused by the
small weight is less than the ratio that the first weight has to the second.”
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of Bell [20] and [117] in the context of linear elasticity with initial stress. Hartig also
observed that the stress-stretch relation should have negative curvature39 in the vicinity
of the identity, as shown in Figure 14.

Crystalline elasticity on the nanoscale. Quite in contrast to the strictly stress-
based continuum constitutive modelling, atomistic theories are based on a concept of
interatomic forces. These forces are derived from potentials40 V according to the po-
tential relation fa = −∂xaV, which endows the model with a variational structure. A
further discussion of hybrid, atomistic-continuum coupling can be found in [54]. Thereby
the discreteness of matter at the nanoscale and the nonlocality of atomic interactions
are inherently captured. Here, atomistic stress is neither a constitutive agency nor does
it enter a balance equation. Instead, it optionally can be calculated following the virial
stress theorem [180, Chapter 8] to illustrate the state of the system.

0.7 1 1.4 λ

TBiot

Neo-Hooke

Ogden

Hencky
Experimental data for rubber

Figure 14: The Biot stress TBiot corresponding to
uniaxial stretches by factor λ of incompress-
ible materials fitted to experimental measure-
ments by Jones and Treloar [107]. The cur-
vature in λ = 1 suggests negative third order
constants (b < 0), which has also been postu-
lated by Grioli [77, eq. (32)].

With their analyses in [50] and [51],
D lużewski and coworkers aim to link the
atomistic world to the macroscopic world
of continuum mechanics. They search
for the ”best” strain measure with a
view towards crystalline elasticity on the
nanoscale. The authors consider the de-
formation of a crystal structure and com-
pare the atomistic and continuum ap-
proaches. Atomistic calculations are made
using the Stillinger-Weber potential. The
stress-strain behaviour of the best-known
anisotropic hyperelastic models are com-
pared with the behaviour of the atom-
istic one in the uniaxial deformation test.
The result is that the anisotropic en-
ergy based on the Hencky strain en-
ergy 1

2 〈C. logU, logU〉, where C is the
anisotropic elasticity tensor from linear
elasticity, gives the best fit to atomistic
simulations. More in detail, this best fit manifests itself in the observation that for
considerable compression (up to ≈ 20%) the material stiffness is larger than the refer-
ence stiffness at zero strain, and for considerable tension (up to ≈ 20%) it is smaller
than the zero-strain stiffness, again in good agreement with the atomistic result. This is

39As Bell insists [20, p. 155], a purely linear elastic response to finite strain, corresponding to zero
curvature of the stress-strain curve at the identity 1, is never exhibited by any physical material: “The
experiments of 280 years have demonstrated amply for every solid substance examined with sufficient
care, that the [finite engineering] strain [U−1] resulting from small applied stress is not a linear function
thereof.”

40For molecular dynamics (MD) simulations, a well-established level of sophistication is the modelling
by potentials with environmental dependence (pair functionals like in the Embedded Atom Method
(EAM) account for the energy cost to embed atomic nuclei into the electron gas of variable density) and
angular dependence (like for Stillinger-Weber or Tersoff functionals).
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also corroborated by comparing tabulated experimentally determined third order elastic
constants41 [50].

Elastic energy potentials based on logarithmic strain have also recently been motivated
via molecular dynamics simulations [85] by Henann and Anand [87].

5. Applications and ongoing research

5.1. The exponentiated Hencky energy

As indicated in Section 1.1 and shown in Sections 2.1 and 3, strain measures are closely
connected to isotropic energy functions in nonlinear hyperelasticity: similarly to how
the linear elastic energy may be obtained as the square of the Euclidean distance of
∇u to so(n), the nonlinear quadratic Hencky strain energy is the squared Riemannian
distance of ∇ϕ to SO(n). For the partial strain measures ωiso(F ) = ‖ devn log

√
F TF‖

and ωvol(F ) = | tr(log
√
F TF )| defined in Theorem 3.7, the Hencky strain energy WH

can be expressed as

WH(F ) = µω2
iso(F ) +

κ

2
ω2

vol(F ) . (61)

However, it is not at all obvious why this weighted squared sum should be viewed as the
“canonical” energy associated with the geodesic strain measures: while it is reasonable
to view the elastic energy as a quantity depending on some strain measure alone, the
specific form of this dependence must not be determined by purely geometric deductions,
but must take into account physical constraints as well as empirical observations.42

For a large number of materials, the Hencky energy does indeed provide a very accurate
model up to moderately large elastic deformations [3, 4], i.e. up to stretches of about
40%, with only two constant material parameters which can be easily determined in the
small strain range. For very large strains43, however, the subquadratic growth of the
Hencky energy in tension is no longer in agreement with empirical measurements.44 In a
series of articles [141, 142, 140, 73], Neff et al. have therefore introduced the exponentiated

41Third order elastic constants are corrections to the elasticity tensor in order to improve the response
curves beyond the infinitesimal neighbourhood of the identity. They exist as tabulated values for many
materials. Their numerical values depend on the choice of strain measure used which needs to be
corrected. D lużewski [50] shows that again the Hencky-strain energy 1

2
〈C. logU, logU〉 provides the best

overall approximation.
42G.W. Leibniz, in a letter to Jacob Bernoulli [114, p. 572], stated as early as 1690 that “the [con-

stitutive] relation between extension and stretching force should be determined by experiment”, cf. [20,
p. 10].

43The elastic range of numerous materials, including vulcanized rubber or skin and other soft tissues,
lies well above stretches of 40%.

44While the behaviour of elasticity models for extremely large strains might not seem important due
to physical restraints and intermingling plasticity effects outside a narrow range of perfect elasticity, it is
nevertheless important to formulate an idealized law of elasticity over the whole range of deformations;
cf. Hencky [92, p. 215] (as translated in [136, p.2]): “It is not important that such an idealized elastic
[behaviour] does not actually exist and our ideally elastic material must therefore remain an ideal. Like so
many mathematical and geometric concepts, it is a useful ideal, because once its deducible properties are
known it can be used as a comparative rule for assessing the actual elastic behaviour of physical bodies.”

38



1 5 25

WH(λ) = ln2(λ)

WeH(λ) = eln
2(λ)

λ

1 5

σH

σeH

λ

Figure 15: The one-dimensional Hencky energy WH compared to the exponentiated Hencky energy WeH

and the corresponding Cauchy stresses σH, σeH for very large uniaxial stretches λ. Observe the
non-convexity of WH and the non-invertibility of σH .

Hencky energy

WeH(F ) =
µ

k
ek ω

2
iso(F ) +

κ

2k̂
ek̂ ω

2
vol(F ) =

µ

k
ek ‖ devn logU‖2 +

κ

2k̂
ek̂ [tr(logU)]2 (62)

with additional dimensionless material parameters k ≥ 1
4 and k̂ ≥ 1

8 , which for all values

of k, k̂ approximates WH for deformation gradients F sufficiently close to the identity 1,
but shows a vastly different behaviour for ‖F‖ → ∞, cf. Figure 15.

1 2 3

1
3 tr(σeH)

1
3 tr(σH)

detF

1
3 tr(σ)

Figure 16: The equation of state (EOS), i.e. the
trace of the Cauchy stress corresponding to a
purely volumetric deformation (cf. [156]), for
the quadratic and the exponentiated Hencky
model (with parameter k̂ = 4).

The exponentiated Hencky energy has
many advantageous properties over the
classical quadratic Hencky energy; for ex-
ample, WeH is coercive on all Sobolev
spaces W 1,p for 1 ≤ p < ∞, thus cavi-
tation is excluded [12, 133]. In the pla-
nar case n = 2, WeH is also polyconvex
[142, 73] and thus Legendre-Hadamard-
elliptic [10], whereas the classical Hencky
energy is not even LH-elliptic (rank-one
convex) outside a moderately large neigh-
bourhood of 1 [35, 134] (see also [105],
where the loss of ellipticity for energies of
the form ‖dev3 logU‖β with hardening in-
dex 0 < β < 1 are investigated). There-
fore, many results guaranteeing the exis-
tence of energy-minimizing deformations
for a variety of boundary value problems
can be applied directly to WeH for n = 2.

Furthermore, WeH satisfies a number of constitutive inequalities [141] such as the
Baker-Ericksen inequality [118], the pressure-compression inequality and the tension-

39



extension inequality as well as Hill’s inequality45 [100, 150, 151], which is equivalent to
the convexity of the elastic energy with respect to the logarithmic strain tensor [177].

Moreover, for WeH, the Cauchy-stress-stretch relation V 7→ σeH(V ) is invertible (a
property hitherto unknown for other hyperelastic formulations) and pure Cauchy shear
stress corresponds to pure shear strain, as is the case in linear elasticity [141]. The
physical meaning of Poisson’s ratio [157, 72] ν = 3κ−2µ

2(3κ+µ) is also similar to the linear

case; for example, ν = 1
2 directly corresponds to incompressibility of the material and

ν = 0 implies that no lateral extension or contraction occurs in uniaxial tensions tests.

5.2. Related geodesic distances

The logarithmic distance measures obtained in Theorems 3.3 and 3.7 show a strong
similarity to other geodesic distance measures on Lie groups. For example, consider the
special orthogonal group SO(n) endowed with the canonical bi-invariant Riemannian
metric46

ĝQ(X,Y ) = 〈QTX,QTY 〉 = 〈X,Y 〉
for Q ∈ SO(n) and X,Y ∈ TQ SO(n) = Q · so(n). Then the geodesic exponential at
1 ∈ SO(n) is given by the matrix exponential on the Lie algebra so(n), i.e. all geodesic
curves are one-parameter groups of the form

γ̂(t) = Q · exp(t A)

with Q ∈ SO(n) and A ∈ so(n) (cf. [127]). It is easy to show that the geodesic distance
between Q,R ∈ SO(n) with respect to this metric is given by

distgeod, SO(n)(Q,R) = ‖ log(QTR)‖ ,

where ‖ . ‖ is the Frobenius matrix norm and log : SO(n)→ so(n) denotes the principal
matrix logarithm on SO(n), which is uniquely defined by the equality exp(logQ) = Q
and the requirement λi(logQ) ∈ (−π, π] for all Q ∈ SO(n) and all eigenvalues λi(logQ).

This result can be extended to the geodesic distance on the conformal special orthog-
onal group CSO(n) consisting of all angle-preserving linear mappings:

CSO(n) := {c ·Q | c > 0 , Q ∈ SO(n)} ,

where the bi-invariant metric gCSO(n) is given by the canonical inner product:

g
CSO(n)
A (X,Y ) = 〈A−1X,A−1Y 〉 . (63)

45Hill’s inequality [151] can be stated more generally as 〈 d
dt

◦
[τ ] − m [τ D − D τ ], D〉 ≥ 0 in the

hypoelastic formulation, where d
dt

◦
is the Zaremba-Jaumann stress rate (58) and τ is the Kirchhoff stress

tensor. For m = 0, as Šilhavý explains, “Hill’s inequalities [. . . ] require the convexity of [the strain
energy W ] in [terms of the strain tensor log V ] . . . This does not seem to contradict any theoretical or
experimental evidence” [178, p. 309].

46Note that µc · ĝ is the restriction of our left-GL(n)-invariant, right-O(n)-invariant metric g (as
defined in Section 3.1) to SO(n).
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Then

dist2
geod,CSO(n)(c ·Q, d ·R) = ‖ log(QTR)‖2 +

1

n

[
ln
( c
d

)]2
,

where log again denotes the principal matrix logarithm on SO(n). Note that the punc-
tured complex plane C \ {0} can be identified with CSO(2) via the mapping

z = a+ i b 7→ Z ∈ CSO(2) =

{(
a b
−b a

)
: a2 + b2 6= 0

}
.

5.3. Outlook

While first applications of the exponentiated Hencky energy, which is based on the
partial strain measures ωiso, ωvol introduced here, show promising results, including an
accurate modelling of so-called tire-derived material [130, 64], a more thorough fitting
of the new parameter set to experimental data is necessary in order to assess the range
of applicability of WeH towards elastic materials like vulcanized rubber. A different
formulation in terms of the partial strain measures ωiso and ωvol, i.e. an energy function
of the form

W (F ) = Ψ(ωiso(F ), ωvol(F )) = Ψ(‖ dev3 logU‖, |tr(logU)|) (64)

with Ψ : [0,∞)2 → [0,∞), might even prove to be polyconvex in the three-dimensional
case. The main open problem of finding a polyconvex (or rank-one convex) isochoric
energy function47 F 7→ Ψ̃(‖dev3 logU‖) has also been considered by Sendova and Walton
[173]. Note that while every isotropic elastic energy W can be expressed as W (F ) =
h(K1,K2,K3) with Criscione’s invariants48 [44, 43, 48, 193]

K1 = tr(logU) , K2 = ‖ dev3 logU‖ and K3 = det

(
dev3 logU

‖ dev3 logU‖

)
, (65)

not every elastic energy has a representation of the form (64); for example, (64) implies
the tension-compression symmetry49 W (F ) = W (F−1), which is not necessarily satisfied

47Ideally, the function Ψ̃ should also satisfy additional requirements, such as monotonicity, convexity
and exponential growth.

48The invariants K1 and K2
2 = tr

[
(dev3 logU)2

]
as well as K̃3 = tr((dev3 logU)3) had already been

discussed exhaustively by H. Richter in a 1949 ZAMM article [162, §4], while K1 and K2 have also been
considered by A.I. Lurie [116, p. 189]. Criscione has shown that the invariants given in (65) enjoy a
favourable orthogonality condition which is useful when determining material parameters.

49The tension-compression symmetry is often expressed as τ(V −1) = −τ(V ), where τ(V ) is the
Kirchhoff stress tensor corresponding to the left Biot stretch V . This condition, which is the natural
nonlinear counterpart of the equality σ(−ε) = −σ(ε) in linear elasticity, is equivalent to the condition
W (F−1) = W (F ) for hyperelastic constitutive models.
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ϕ

Ω ϕ(Ω)

ϕ
−1

Figure 17: The tension-compression symmetry for incompressible materials: if det∇ϕ ≡ 1 andW (F−1) =
W (F ) for all F ∈ SL(n), then

∫
Ω
W (∇ϕ(x)) dx =

∫
ϕ(Ω)

W (∇(ϕ−1)(x)) dx.

by energy functions in general.50 In terms of the Shield transformation51 [175, 37]

W ∗(F ) := detF ·W (F−1) ,

the tension-compression symmetry amounts to the requirement 1
detF W

∗(F ) = W (F )
or, for incompressible materials, W ∗(F ) = W (F ). Moreover, under the assumption of
incompressibility, the symmetry can be immediately extended to arbitrary deformations
ϕ : Ω → ϕ(Ω) and ϕ−1 : ϕ(Ω) → Ω: if det∇ϕ ≡ 1, we can apply the substitution rule
to find

∫

ϕ(Ω)
W (∇(ϕ−1)(x)) dx =

∫

Ω
W (∇(ϕ−1)(ϕ(x))) · | det∇ϕ(x)|dx

=

∫

Ω
W (∇ϕ(x)−1) dx =

∫

Ω
W (∇ϕ(x)) dx

if W (F−1) = W (F ) for all F ∈ SL(n), thus the total energies of the deformations ϕ,ϕ−1

are equal, cf. Figure 17.
Since the function

F 7→ e‖ dev2 logU‖2 = e
dist2

geod, SL(2)

(
F

detF1/2
, SO(2)

)

in planar elasticity is polyconvex [142, 73], it stands to reason that a similar formulation
in the three-dimensional case might prove to be polyconvex as well. A first step towards

50Truesdell and Noll [188, p. 174] argue that “. . . there is no foundation for the widespread belief that
according to the theory of elasticity, pressure and tension have equal but opposite effects”. Examples
for isotropic energy functions which do not satisfy this symmetry condition in general but only in
the incompressible case can be found in [86]. For an idealized isotropic elastic material, however, the
tension-compression symmetry is a plausible requirement (with an obvious additive counterpart in linear
elasticity), especially for incompressible bodies.

51Further properties of the Shield transformation can be found in [178, p.288]; for example, it preserves
the polyconvexity, quasiconvexity and rank-one convexity of the original energy.
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finding such an energy is to identify where the function W with

W (F ) = e‖ dev3 logU‖2 = e
dist2

geod, SL(3)

(
F

detF1/3
, SO(3)

)
, (66)

which is not rank-one convex [141], loses its ellipticity properties. For that purpose, it
may be useful to consider the quasiconvex hull of W . There already are a number of
promising results for similar energy functions; for example, the quasiconvex hull of the
mapping

F 7→ dist2
Euclid(F,SO(2)) = ‖U − 1‖2

can be explicitly computed [179], and the quasiconvex hull of the similar Saint-Venant-
Kirchhoff energy WSVK(F ) = µ

4 ‖C − 1‖2 + λ
8 [tr(C − 1)]2 has been given by Le Dret

and Raoult [112]. For the mappings

F 7→ dist2
Euclid(F,SO(3)) or F 7→ dist2

geod(F,SO(n))

with n ≥ 2, however, no explicit representation of the quasiconvex hull is yet known,
although it has been shown that both expressions are not rank-one convex [25].

It might also be of interest to calculate the geodesic distance distgeod(A,B) for a
larger class of matrices A,B ∈ GL+(n):52 although Theorem 3.3 allows us to explicitly
compute the distance distgeod(1, P ) for P ∈ PSym(n) and local results are available
for certain special cases [119], it is an open question whether there is a general formula
for the distance distgeod,GL+(n)(Q,R) between arbitrary rotations R,Q ∈ SO(n) for all
parameters µ, µc, κ > 0. Since restricting our left-GL(n)-invariant, right-O(n)-invariant
metric on GL(n) to SO(n) yields a multiple of the canonical bi-SO(n)-invariant metric
on SO(n), we can compute

dist2
geod,GL+(n)(Q,R) = µc · dist2

geod,SO(n)(Q,R) = µc ‖ log(QTR)‖2

if for all Q,R ∈ SO(n) a shortest geodesic in GL+(n) connecting Q and R is already
contained within SO(n), cf. Figure 18. However, whether this is the case depends on
the chosen parameters µ, µc; a general closed-form solution for distgeod,GL+(n) on SO(n)
is therefore not yet known [120].

Moreover, it is not known whether our result can be generalized to anisotropic Rie-
mannian metrics, i.e. if the geodesic distance to SO(n) can be explicitly computed for a
larger class of left-GL(n)-invariant Riemannian metrics which are not necessarily right-
O(n)-invariant. A result in this direction would have immediate impact on the modelling
of finite strain anisotropic elasticity [14, 171, 172]. The difficulties with such an exten-
sion are twofold: one needs a representation formula for Riemannian metrics which are
right-invariant under a given symmetry subgroup of O(n), as well as an understanding
of the corresponding geodesic curves.

52An improved understanding of the geometric structure of mechanical problems could, for example,
help to develop new discretization methods [169, 78].
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SO(n)

GL+
(n

)

Q
R

µc · distSO(n)(Q,R) = µc‖log(QTR)‖2

distGL+(n)(Q,R) ?

distGL+(n)(Q,R) = µc‖log(QTR)‖2 ?

SO(n)

GL+
(n

)

Q
R

µc · distSO(n)(Q,R) = µc‖log(QTR)‖2

distGL+(n)(Q,R) ?

distGL+(n)(Q,R) = µc‖log(QTR)‖2 ?

Figure 18: If SO(n) contains a length minimizing geodesic connecting Q,R ∈ SO(n) with respect to our
left-GL(n)-invariant, right-O(n)-invariant metric g on GL(n), then the GL+(n)-geodesic distance
between Q and R is equal to the well-known SO(n)-geodesic distance µc ‖ log(QTR)‖2.

6. Conclusion

We have shown that the squared geodesic distance of the (finite) deformation gradient
F ∈ GL+(n) to the special orthogonal group SO(n) is the quadratic isotropic Hencky
strain energy:

dist2
geod(F,SO(n)) = µ ‖ devn logU‖2 +

κ

2
[tr(logU)]2 ,

if the general linear group is endowed with the left-GL(n)-invariant, right-O(n)-invariant
Riemannian metric gA(X,Y ) = 〈A−1X,A−1Y 〉µ,µc,κ , where

〈X,Y 〉µ,µc,κ = µ 〈devn symX,devn symY 〉+ µc 〈skewX, skew Y 〉+ κ
2 tr(X) tr(Y )

with 〈X,Y 〉 = tr(XTY ). Furthermore, the (partial) logarithmic strain measures

ωiso = ‖ devn logU‖ = ‖devn log
√
F TF‖ and ωvol = | tr(logU)| = | tr(log

√
F TF )|

have been characterized as the geodesic distance of F to the special orthogonal group
SO(n) and the identity tensor 1, respectively:

‖devn logU‖ = distgeod, SL(n)

(
F

detF 1/n
, SO(n)

)
,

| tr(logU)| = √n · distgeod,R+·1
(

(detF )1/n · 1, 1
)
,

where the geodesic distances on SL(n) and R+ · 1 are induced by the canonical left
invariant metric ḡA(X,Y ) = 〈A−1X,A−1Y 〉.

We thereby show that the two quantities ωiso = ‖ devn logU‖ and ωvol = | tr(logU)|
are purely geometric properties of the deformation gradient F , similar to the invariants
‖ devn ε‖ and | tr(ε)| of the infinitesimal strain tensor ε in the linearized setting.

While there have been prior attempts to deductively motivate the use of logarithmic
strain in nonlinear elasticity theory, these attempts have usually focussed on the loga-
rithmic Hencky strain tensor E0 = logU (or Ê0 = log V ) and its status as the “natural”

44



material (or spatial) strain tensor in isotropic elasticity. We discussed, for example, a

well-known characterization of log V in the hypoelastic context: if the strain rate d
dt

�
is

objective as well as corotational, and if

d

dt

�

[Ê] = D := sym(ḞF−1)

for some strain Ê, then d
dt

�
= d

dt

log
must be the logarithmic rate and Ê = Ê0 = log V

must be the spatial Hencky strain tensor.
However, as discussed in Section 1.1, all strain tensors are interchangeable: the choice

of a specific strain tensor in which a constitutive law is to be expressed is not a restriction
on the available constitutive relations. Such an approach can therefore not be applied
to deduce necessary conditions or a priori properties of constitutive laws.

Our deductive approach, on the other hand, directly motivates the use of the strain
measures ωiso and ωvol from purely differential geometric observations. As we have
indicated, the requirement that a constitutive law depends only on ωiso and ωvol has
direct implications; for example, the tension-compression symmetry W (F ) = W (F−1)
is satisfied by every hyperelastic potential W which can be expressed in terms of ωiso

and ωvol alone.
Moreover, as demonstrated in Section 4, similar approaches oftentimes presuppose the

role of the positive definite factor U =
√
F TF as the sole measure of the deformation,

whereas this independence from the orthogonal polar factor is obtained deductively in
our approach (cf. Table 1).

Measure of deformation deduced Measure of deformation postulated

linear
dist2

Euclid,µ,µc,κ
(∇u, so(n))

= µ ‖devn sym∇u‖2 +
κ

2
[tr(sym∇u)]2

dist2
Euclid, Sym(n),µ,κ(ε, 0)

= µ ‖devn ε‖2 +
κ

2
[tr(ε)]2

geometrically

nonlinear
dist2

Euclid(F,SO(n)) = µ ‖
√
FTF − 1‖2 dist2

Euclid,Sym(n)(U,1) = µ ‖U − 1‖2

geodesic
dist2

geod,µ,µc,κ
(F,SO(n))

= µ ‖devn log(
√
FTF )‖2 +

κ

2
[tr(log

√
FTF )]2

dist2
geod,PSym(n),µ,κ(U,1)

= µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2

geometrically

nonlinear

(weighted)53

not well defined
dist2

Euclid, Sym(n),µ,κ(U,1)

= µ ‖devn(U − 1)‖2 +
κ

2
[tr(U − 1)]2

log-Euclidean not well defined

dist2
Log-Euclid,µ,κ(U,1)

= dist2
Euclid, Sym(n),µ,κ(logU, 0)

= µ ‖ devn logU‖2 +
κ

2
[tr(logU)]2

Table 1: Different approaches towards the motivation of different strain tensors and strain measures.

53Observe that ‖ devn(U − 1)‖2 does not measure the isochoric (distortional) part F

(detF )1/n
of F .
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Note also that the specific distance measure distgeod on GL+(n) used here is not chosen
arbitrarily: the requirements of left-GL(n)-invariance and right-O(n)-invariance, which
have been motivated by mechanical considerations, uniquely determine g up to the three
parameters µ, µc, κ > 0. This uniqueness property further emphasizes the generality of
our results, which yet again strongly suggest that Hencky’s constitutive law should be
considered the idealized nonlinear model of elasticity for very small strains outside the
infinitesimal range.
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[25] A. Bertram, T. Böhlke, and M. Šilhavỳ. On the rank 1 convexity of stored energy functions of
physically linear stress-strain relations. Journal of Elasticity, 86(3):235–243, 2007.

47

https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/becker_latex_new1893.pdf
https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/becker_latex_new1893.pdf


[26] Y. Beygelzimer. Equivalent strain in simple shear deformations. available at arXiv:1301.1281,
2013.

[27] R. Bhatia. Positive definite matrices. Princeton University Press, 2009.

[28] R. Bhatia and J. Holbrook. Riemannian geometry and matrix geometric means. Linear Algebra
and its Applications, 413(2):594–618, 2006.

[29] M. B̂ırsan, P. Neff, and J. Lankeit. Sum of squared logarithms—an inequality relating positive
definite matrices and their matrix logarithm. Journal of Inequalities and Applications, 2013. open
access.
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[73] I.D. Ghiba, P. Neff, and M. Šilhavý. The exponentiated Hencky-logarithmic strain energy. Im-
provement of planar polyconvexity. International Journal of Non-Linear Mechanics, 71:48–51,
2015.

[74] G. Green. On the propagation of light in crystallized media. Transactions of the Cambridge
Philosophical Society, 7:121, 1841.

[75] G. Grioli. Una proprieta di minimo nella cinematica delle deformazioni finite. Bollettino
dell’Unione Matematica Italiana, 2:252–255, 1940.

[76] G. Grioli. Mathematical Theory of Elastic Equilibrium (recent results), volume 7 of Ergebnisse der
angewandten Mathematik. Springer, 1962.

[77] G. Grioli. On the thermodynamic potential for continuums with reversible transformations - some
possible types. Meccanica, 1(1-2):15–20, 1966.

[78] P. Grohs, H. Hardering, and O. Sander. Optimal a priori discretization error bounds for geodesic
finite elements. Foundations of Computational Mathematics, pages 1–55, 2013.

[79] M.E. Gurtin and K. Spear. On the relationship between the logarithmic strain rate and the
stretching tensor. International Journal of Solids and Structures, 19(5):437–444, 1983.

50



[80] K. Hackl, A. Mielke, and D. Mittenhuber. Dissipation distances in multiplicative elastoplasticity.
In W.L. Wendland and M. Efendiev, editors, Analysis and Simulation of Multifield Problems, pages
87–100. Springer, 2003.

[81] M. Hanin and M. Reiner. On isotropic tensor-functions and the measure of deformation. Zeitschrift
für angewandte Mathematik und Physik, 7(5):377–393, 1956.
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A. Appendix

A.1. Notation

• R is the set of real numbers,

• R+ = (0,∞) is the set of positive real numbers,

• Rn is the set of real column vectors of length n,

• Rn×n is the set of real n× n-matrices,

• 1 is the identity tensor ;

• XT is the transpose of a matrix X ∈ Rn×m,

• tr(X) =
∑n

i=1Xi,i is the trace of X ∈ Rn×n,

• Cof X is the cofactor of X ∈ Rn×n,

• 〈X,Y 〉 = tr(XTY ) =
∑n

i,j=1Xi,jYi,j is the canonical inner product on Rn×n,

• ‖X‖ =
√
〈X,X〉 is the Frobenius matrix norm on Rn×n,

• symX = 1
2(X +XT ) is the symmetric part of X ∈ Rn×n,

• skewX = 1
2(X −XT ) is the skew-symmetric part of X ∈ Rn×n,

• devnX = X − 1
n tr(X) · 1 is the n-dimensional deviator of X ∈ Rn×n,

• 〈X,Y 〉µ,µc,κ = µ 〈devn symX,devn symY 〉+µc 〈skewX, skew Y 〉+ κ
2 tr(X) tr(Y ) is the

weighted inner product on Rn×n,

• ‖X‖µ,µc,κ =
√
〈X,X〉µ,µc,κ is the weighted Frobenius norm on Rn×n,

• GL(n) = {A ∈ Rn×n | detA 6= 0} is the general linear group of all invertible A ∈ Rn×n,

• GL+(n) = {A ∈ Rn×n | detA > 0} is the identity component of GL(n),

• SL(n) = {A ∈ Rn×n | detA = 1} is the special linear group of all A ∈ GL(n) with
detA = 1,

• O(n) is the orthogonal group of all Q ∈ Rn×n with QTQ = 1,

• SO(n) is the special orthogonal group of all Q ∈ O(n) with detQ = 1,

• Sym(n) is the set of symmetric, real n× n-matrices, i.e. ST = S for all S ∈ Sym(n),

• PSym(n) is the set of positive definite, symmetric, real n× n-matrices, i.e. xTPx > 0
for all P ∈ PSym(n), 0 6= x ∈ Rn,
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• gl(n) = Rn×n is the Lie algebra of all real n× n-matrices,

• so(n) = {W ∈ Rn×n |W T = −W} is the Lie algebra of skew symmetric, real n × n-
matrices,

• sl(n) = {X ∈ Rn×n | tr(X) = 0} is the Lie algebra of trace free, real n × n-matrices,
i.e. tr(X) = 0 for all X ∈ sl(n),

• Ω ⊂ Rn is the reference configuration of an elastic body,

• ∇f = Df is the first derivative of a differentiable function f

• curl v denotes the curl of a vector valued function v : R3 → R3,

• Curl p denotes the curl of a matrix valued function p : R3 → R3×3, taken row-wise,

• ϕ : Ω→ Rn is a continuously differentiable deformation with ∇ϕ(x) ∈ GL+(n) for all
x ∈ Ω,

• F = ∇ϕ ∈ GL+(n) is the deformation gradient,

• U =
√
F TF ∈ PSym(n) is the right Biot-stretch tensor,

• V =
√
FF T ∈ PSym(n) is the left Biot-stretch tensor,

• B = FF T = V 2 is the Finger tensor,

• C = F TF = U2 is the right Cauchy-Green deformation tensor,

• F = RU = V R is the polar decomposition of F with R = polar(F ) ∈ SO(n),

• E0 = logU is the material Hencky strain tensor,

• Ê0 = log V is the spatial Hencky strain tensor,

• S1 = DFW (F ) is the first Piola-Kirchhoff stress corresponding to an elastic energy
W = W (F ),

• S2 = F−1 S1 = 2DCW (C) is the second Piola-Kirchhoff stress corresponding to an
elastic energy W = W (C) (Doyle-Ericksen formula),

• τ = S1 F
T = Dlog VW (log V ) [116, p. 116] is the Kirchhoff stress tensor,

• σ = 1
detF τ is the Cauchy stress tensor,

• TBiot = U S2 = DUW (U) is the Biot stress tensor corresponding to an elastic energy
W = W (U),

• L = ḞF−1 is the spatial velocity gradient,

• D = symL is the rate of stretching or spatial strain rate tensor,

• W = skewL is the spatial continuum spin.
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A.2. Linear stress-strain relations in nonlinear elasticity

Many constitutive laws commonly used in applications are expressed in terms of linear
relations between certain strains and stresses, including Hill’s family of generalized linear
elasticity laws (cf. Section 4.2.1) of the form

Tr = 2µEr + λ tr(Er) · 1 (67)

with work-conjugate pairs (Tr, Er) based on the Lagrangian strain measures given in (3).
A widely known example of such a constitutive law is the hyperelastic Saint-Venant-
Kirchhoff model

S2 = 2µE1 + λ tr(E1)1 = µ (C − 1) +
λ

2
tr(C − 1) · 1

for r = 1 and T1 = S2, where S2 denotes the second Piola-Kirchhoff stress tensor.
Similarly, a number of elasticity laws can be written in the form

T̂r = 2µ Êr + λ tr(Êr) · 1

with a spatial strain tensor Êr and a corresponding stress tensor T̂r. Examples include
the Neo-Hooke type model

σ = 2µ Ê1 + λ tr(Ê1)1 = µ (B − 1) +
λ

2
tr(B − 1) · 1

for r = 1, where T1 = σ is the Cauchy stress tensor, the Almansi-Signorini model

σ = 2µ Ê−1 + λ tr(Ê−1)1 = µ (1−B−1) +
λ

2
tr(1−B−1) · 1

for r = −1 and T−1 = σ, as well as the hyperelastic Hencky model

τ = 2µ log V + λ tr(log V ) · 1

for r = 0 and T̂0 = τ . A thorough comparison of these four constitutive laws can be
found in [16].

Another example of a postulated linear stress-strain relation is the model

TBiot = 2µ log V + λ tr(log V ) · 1 ,

where TBiot denotes the Biot stress tensor. This constitutive relation was first given in
an 1893 article by the geologist G.F. Becker [19, 145], who deduced it from a law of
superposition in an approach similar to that of H. Hencky. The same constitutive law
was considered by Carroll [36] as an example to emphasize the necessity of a hyperelastic
formulation in order to ensure physical plausibility in the description of elastic behaviour.
Note that of the constitutive relations listed in this section, only the Hencky model and
the Saint-Venant-Kirchhoff model are hyperelastic (cf. [24, Chapter 7.4]).
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A.3. Tensors and tangent spaces

In the more general setting of differential geometry, the linear mappings F,U,C, V,B
and R as well as various stresses at a single point x in an elastic body Ω are defined as
mappings between different tangent spaces: for a point x ∈ Ω and a deformation ϕ, we
must then distinguish between the two tangent spaces TxΩ and Tϕ(x)ϕ(Ω). The domains
and codomains of various linear mappings are listed below and indicated in Figure 19.
Note that we do not distinguish between tangent and cotangent vector spaces (cf. [57]).

F,R : TxΩ → Tϕ(x)ϕ(Ω) ,

U, C : TxΩ → TxΩ ,

V,B : Tϕ(x)ϕ(Ω) → Tϕ(x)ϕ(Ω) .

ϕ(x(t))

∇ϕ(x(t)).ẋ(t)

x(t)

ẋ(t)

Ω ϕ(Ω)ϕ

ẋ(t) ∈ Tx(t)Ω

U,C : TxΩ → TxΩ

∇ϕ.ẋ(t) ∈ Tϕ(x(t))ϕ(Ω)

V,B : Tϕ(x)ϕ(Ω) → Tϕ(x)ϕ(Ω)

F,R : TxΩ → Tϕ(x)ϕ(Ω)

(two-point tensors)

Figure 19: Various linear mappings between the tangent spaces TxΩ and Tϕ(x)ϕ(Ω).

The right Cauchy-Green tensor C = F TF , in particular, is often interpreted as a
Riemannian metric on Ω; Epstein [55, p. 113] explains that “the right Cauchy-Green
tensor is precisely the pull-back of the spatial metric to the body manifold”. If Ω and
ϕ(Ω) are embedded in the Euclidean space Rn, this connection can immediately be seen:
while the length of a curve x : [0, 1] → Ω is given by

∫ 1
0

√
〈ẋ, ẋ〉 dt, where 〈·, ·〉 is the

canonical inner product on Rn, the length of the deformed curve ϕ ◦ x is given by (cf.
Figure 19)
∫ 1

0

√
〈 d

dt(ϕ ◦ x), d
dt(ϕ ◦ x)〉 dt =

∫ 1

0

√
〈F (x) ẋ, F (x) ẋ〉 dt =

∫ 1

0

√
〈C(x) ẋ, ẋ〉dt .

The quadratic form gx(v, v) = 〈C(x) v, v〉 at x ∈ Ω therefore measures the length of the
deformed line element Fv at ϕ(x) ∈ ϕ(Ω). In particular,

distEuclid,ϕ(Ω)(ϕ(x), ϕ(y)) = distgeod,Ω(x, y) ,
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where distEuclid,ϕ(Ω)(ϕ(x), ϕ(y)) = ‖ϕ(x) − ϕ(y)‖ is the Euclidean distance between
ϕ(x), ϕ(y) ∈ ϕ(Ω) and distgeod,Ω(x, y) denotes the geodesic distance between x, y ∈ Ω
with respect to the Riemannian metric gx(v, w) = 〈C(x) v, w〉.

Moreover, this interpretation characterizes the Green-Lagrangian strain tensor E1 =
1
2(C − 1) as a measure of change in length: the difference between the squared length
of a line element v ∈ TxΩ in the reference configuration and the squared length of the
deformed line element F (x) v ∈ Tϕ(x)Ω is given by

‖F (x) v‖2 − ‖v‖2 = 〈C(x) v, v〉 − 〈v, v〉 = 〈(C(x)− 1) v, v〉 = 2 〈E1(x) v, v〉 ,

where ‖ . ‖ denotes the Euclidean norm on Rn. Note that for F (x) = 1 + ∇u(x) with
the displacement gradient ∇u(x), the expression ‖F (x) v‖2 can be linearized to

‖F (x) v‖2 = ‖(1+∇u(x)) v‖2 = 〈(1+∇u(x)) v, (1+∇u(x)) v〉
= 〈v, v〉+ 2 〈∇u(x) v, v〉+ 〈∇u(x) v, ∇u(x) v〉
= ‖v‖2 + 2 〈sym∇u(x) v, v〉+ ‖∇u(x) v‖2

= ‖v‖2 + 2 〈sym∇u(x) v, v〉+ h.o.t. ,

where h.o.t. denotes higher order terms with respect to ∇u(x). Thus

‖F (x) v‖2 − ‖v‖2 = 2 〈ε(x) v, v〉+ h.o.t. ,

where ε = sym∇u is the linear strain tensor.

A.4. Additional computations

Let Cof F = (detF ) · F−T denote the cofactor of F ∈ GL+(n). Then the geodesic
distance of Cof F to SO(n) with respect to the Riemannian metric g introduced in (18)
can be computed directly by applying Theorem 3.3:

dist2
geod(Cof F,SO(n))

= µ ‖devn log
√

(Cof F )T Cof F‖2 +
κ

2

[
tr
(

log
√

(Cof F )T Cof F
)]2

= µ ‖ devn log
√

(detF )2 · F−1F−T ‖2 +
κ

2

[
tr
(

log
√

(detF )2 · F−1F−T
)]2

= µ ‖ devn log
√
F−1F−T ‖2 +

κ

2

[
tr
(

log
(
(detF ) · 1

)
+ log

√
F−1F−T

)]2

= µ ‖ devn log(U−1)‖2 +
κ

2
[tr
(
(ln detF ) · 1+ log(U−1)

)
]2

= µ ‖ − devn logU‖2 +
κ

2
[n · (ln detU)− tr(logU)]2

= µ ‖ devn logU‖2 +
κ (n− 1)2

2
[tr(logU)]2 .
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A.5. The principal matrix logarithm on PSym(n) and the matrix
exponential

The following lemma states some basic computational rules for the matrix exponential
exp : Rn×n → GL+(n) and the principal matrix logarithm log : PSym(n) → Sym(n)

involving the trace operator tr and the deviatoric part devnX = X − tr(X)
n · 1 of a

matrix X ∈ Rn×n.

Lemma A.1. Let X ∈ Rn×n, P ∈ PSym(n) and c > 0. Then

i) det(exp(X)) = etr(X) ,

ii) exp(devnX) = e−
tr(X)
n · exp(X) ,

iii) log(c · 1) = ln(c) · log(1) ,

iv) log((detP )−1/n · P ) = logP − ln(detP )
n · 1 = devn logP .

Proof. Equality i) is well known (see e.g. [23]). Equality iii) follows directly from the
fact that exp : Sym(n)→ PSym(n) is bijective and that exp(ln(c) ·1) = eln(c) ·1 = c ·1.
Since AB = BA implies exp(AB) = exp(A) exp(B), we find

exp(devnX) = exp(X − tr(X)

n
· 1) = exp(X) · exp(−tr(X)

n
· 1) = exp(X) · e−

tr(X)
n · 1 ,

showing ii). For iv), note that

tr(logP ) = ln(detP ) =⇒ logP − ln(detP )
n · 1 = devn logP ,

and

exp(devn logP ) = e−
tr(logP )

n · exp(logP )

=
(
eln(detP )

)−1/n
· P = (detP )−1/n · P .

according to ii). Then the injectivity of the matrix exponential on Sym(n) shows iv). �
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A.6. A short biography of Heinrich Hencky

Hencky at MIT, age 45 [126]

Biographical information on Heinrich Hencky, as laid out in [181, 33, 88]:

• November 2, 1885: Hencky is born in Ansbach, Franken, Germany

• 1904: Hencky finishes high school in Speyer

• 1904–1908: Technische Hochschule München

• 1909: Military service with the 3rd Pioneer
Battalion in München

• 1912–1913: Ph.D studies at Technische
Hochschule Darmstadt

• 1910–1912: Work on the Alsatian Railways

• 1915–1918: Internment in Kharkov, Ukraine

• 1919–1920: Habilitation at TH Darmstadt

• 1920–1921: Technische Universität Dresden

• 1922–1929: Technical University of Delft

• 1930–1932: Massachusetts Institute of Technology (MIT)

• 1933–1936: Potato farming in New Hampshire

• 1936–1938: Mechanics Institute of Moscow University

• 1938–1950: MAN (Maschinenfabrik Augsburg-Nürnberg) in Mainz

• July 6, 1951: Hencky dies in an avalanche at age 65 during mountain climbing

Hencky received his diploma in civil engineering from TH München in 1908 and his Ph.D
from TH Darmstadt in 1913. The title of his thesis was “Über den Spannungszustand
in rechteckigen, ebenen Platten bei gleichmäßig verteilter und bei konzentrierter Belas-
tung” (“On the stress state in rectangular flat plates under uniformly distributed and
concentrated loading”). In 1915, the main results of his thesis were also published in the
Zeitschrift für angewandte Mathematik und Physik [89].

After working on plasticity theory and small-deformation elasticity, he began his work
on finite elastic deformations in 1928. In 1929 he introduced the logarithmic strain
elog = log

( final length
original length

)
in a tensorial setting [92] and applied it to the description of

the elastic behavior of vulcanized rubber [96].
Today, Hencky is mostly known for his contributions to plasticity theory: the article

“Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern” [91]
(“On statically determined cases of equilibrium in plastic bodies”), published in 1923,
is considered his most famous work [181].
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