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We propose a model of infinitesimal strain gradient plasticity including phenomenological Prager type linear kinematical
hardening and nonlocal kinematical hardening due to dislocation interaction. The model is a thermodynamically admissible
model of infinitesimal plasticity involving only theCurl of the non-symmetric plastic distortion p. Linearized spatial and ma-
terial covariance under constant infinitesimal rotations is satisfied. Uniqueness of strong solutions of the infinitesimal model
is obtained if two non-classical boundary conditions on the plastic distortion p are introduced: ṗ.τ = 0 on the microscopically
hard boundary ΓD ⊂ ∂Ω and [Curl p].τ = 0 on the microscopically free boundary ∂Ω \ ΓD , where τ are the tangential
vectors at the boundary ∂Ω. Moreover, a weak reformulation of the infinitesimal model allows for a global in-time solution
of the corresponding rate-independent initial boundary value problem. The method of choice are a formulation as a quasi-
variational inequality with symmetric and coercive bilinear form. Use is made of new Hilbert-space suitable for dislocation
density dependent plasticity.

1 Introduction

The proposed infinitesimal strain gradient plasticity model is derived from a finite-strain strain gradient model based on the
well-known multiplicative decomposition of the deformation gradient F into elastic and plastic parts. The underlying finite
strain model involves a thermodynamically admissible flow rule for Fp which incorporates as plastic gradient Curl Fp. This
formulation is covariant w.r.t. superposed rigid rotations of the reference, intermediate and spatial configuration but the
model is not spin-free due to the nonlocal dislocation interaction and cannot be reduced to a dependence on the plastic metric
Cp = FT

p Fp. The linearization leads to a thermodynamically admissible model of infinitesimal plasticity involving only the
Curl of the non-symmetric plastic distortion p, see [1]

The corresponding linearized model can be obtained by writing down the corresponding quadratic potential in linearized
quantities. Thus we expand F = 11 +∇u, Fp = 11 + p + . . . , Fe = 11 + e + . . . and the multiplicative decomposition turns
into

11 +∇u = (11 + e + . . .)(11 + p + . . .) � ∇u ≈ e + p + . . . ,

FT
e Fe − 11 = 11 + 2 sym e + eT e− 11 � 2 sym e = 2 sym(∇u − p) . (1)

Hence one obtains to highest order the additive decomposition of the displacement gradient ∇u = e + p, with sym e =
sym(∇u − p) the infinitesimal elastic lattice strain, skew e = skew(∇u − p) the infinitesimal elastic lattice rotation and
κe = ∇ axl(skew e) the infinitesimal elastic lattice curvature and p the infinitesimal plastic distortion. The quadratic
energy which we use is given by

W (∇u, p, Curl p) = W lin
e (∇u − p) + Wph(p) + W lin

curl(Curl p) ,

W lin
e (∇u− p) = μ‖ sym(∇u− p)‖2 +

λ

2
tr [∇u− p]

2
, (2)

W lin
ph (p) = μ h+‖ dev sym p‖2 , W lin

curl(Curl p) =
μ L2

c

2
‖Curl p‖2 ,

where μ, λ > 0 are the Lamé constants, h+ is the local hardening modulus and Lc with dimension length sets the plastic
length scale. Note that the infinitesimal plastic distortion p : Ω ⊂ R

3 �→ M
3×3 need not be symmetric, but that only its

symmetric part, the infinitesimal plastic strain sym p, contributes to the local elastic energy expression. The infinitesimal
plastic rotation skew p does not locally contribute to the elastic energy nor to the local plastic self-hardening but appears
implicitly in the nonlocal hardening. The resulting elastic energy is invariant under infinitesimal rigid rotations∇u �→ ∇u+A,
A ∈ so(3) of the body. The invariance of the curvature contribution needs the homogeneity of the infinitesimal rotations.

The evolution equation for the plastic distortion p follows by taking the variational derivative of the energy (2), where, due
to the nonlocal contribution Curl p, the possibility of specifying boundary conditions on p arises.
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2 The strong formulation of geometrically linear strain gradient plasticity

The infinitesimal strain gradient plasticity model reads then: find the displacement u : Ω ⊂ R
3 �→ R

3 and the plastic distortion
p : Ω �→ sl(3) with

u ∈ H1([0, T ]; H1
0 (Ω, ΓD, R3)) , sym p ∈ H1([0, T ]; L2(Ω, sl(3)) ,

Curl p(t) ∈ L2(Ω, M3×3) , CurlCurl p(t) ∈ L2(Ω, M3×3) , (3)

such that

Div σ = −f , σ = 2μ sym(∇u − p) + λ tr [∇u− p] 11 ,

ṗ ∈ ∂χ(Σlin) , Σlin = Σlin
e + Σlin

sh + Σlin
curl ,

Σlin
e = 2μ sym(∇u − p) + λ tr [∇u− p]11 = σ , (4)

Σlin
sh = −2μ h+ dev sym p , Σlin

curl = −μ L2
c Curl(Curl p) ,

u(x, t) = ud(x) , p(x, t).τ = p(x, 0).τ , x ∈ ΓD ,

0 = [Curl p(x, t)].τ , x ∈ ∂Ω \ ΓD , p(x, 0) = p0(x) .

Here, χ is the indicator-function of the elastic domain.
If p0 ∈ Sym(3), then Σlin

curl = −μ L2
c inc(εp), i.e., the plastic strain incompatibility drives the nonlocal hardening; more-

over Σlin
curl is symmetric provided p0 is symmetric, contrary to the finite strain case. The mathematically suitable space for

symmetric p is the classical Sobolev-space Hcurl(Ω) := {v ∈ L2(Ω) , Curl v ∈ L2(Ω)}.

If, on the contrary, p0(x) 	∈ Sym(3), then the linearized model will also have a non-zero plastic spin. It is, therefore, the initial
condition on the plastic distortion p which determines whether this model is spin-free or not.

Note that in the large scale limit Lc → 0 we recover a classical elasto-plasticity model with local kinematic hardening.
Observe also that the term μ L2

c Curl(Curl p) acts as nonlocal kinematical backstress and constitutes a crystallographically
motivated alternative to merely phenomenologically motivated backstress tensors. The term −2μ h+ dev sym p is a symmet-
ric local kinematical backstress. The model is therefore able to represent linear kinematic hardening and Bauschinger-like
phenomena. Moreover, the driving stress Σlin is non-symmetric due to the presence of the second order gradients, while the
local contribution σ, due to elastic lattice strains, remains symmetric.

The infinitesimal local contributions are fully rotationally invariant (isotropic and objective) with respect to the transforma-
tion (∇u, p) �→ (∇u+A(x), p+A(x)) and the nonlocal dislocation potential is still invariant with respect to the infinitesimal
rigid transformation (∇u, p) �→ (∇u + A, p + A).

In this present form, it can be shown that classical solutions to the system (4) are unique, see [1]. However, existence is
not clear. Using the Legendre-transformation of the indicator function χ one can convert the problem into a quasivariational
inequality [1]. Existence and uniqueness is then a matter of defining appropriate Hilbert-spaces in which coercivity can be
established. In this respect, it is remarkable that

∫
Ω

‖ symp‖2 + ‖Curl p‖2 dx (5)

defines a norm for the not necessarily symmetric plastic distortion p provided tangential homogeneous boundary conditions
p(x).τ = 0 are satisfied on ΓD . This is the basis for the introduction of a new Hilbert space appropriate for dislocation based
plasticity.
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