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Homogeneous Cauchy stress induced by non-homogeneous deformations
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We discuss whether homogeneous Cauchy stress implies homogeneous strain in isotropic nonlinear elasticity. While for
linear elasticity the positive answer is clear, we exhibit an example with inhomogeneous continuous deformation but constant
Cauchy stress. The example is derived from a non rank-one convex elastic energy.
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1 Linear elastic deformations

The isotropic linear elastic energy takes the form Wlin(∇u) = µ‖dev sym∇u‖2 + κ
2 [tr(sym∇u)]

2, where µ > 0 is the
shear and κ > 0 is the bulk modulus. The corresponding stress-strain law is σ = 2µdev ε + κ tr(ε)1 with the infinitesimal
strain tensor ε = sym∇u. This mapping is invertible if and only if µ > 0 and κ > 0. In this case σ−1 : Sym(3) → Sym(3)
exists. In addition, when the Cauchy stress σ = T is constant, the homogeneous displacement u(X) =

[
σ−1(T ) +A

]
X + b

is uniquely determined up to infinitesimal rigid body rotations A ∈ so(3) and translations b ∈ R3.

2 Nonlinear elastic deformations

In contrast to linear elasticity, in nonlinear elasticity many different stress tensors are employed, for example the first Piola-
Kirchhoff stress S1 = DFW (F ) and the (true) Cauchy stress σ = S1(F ) · (Cof F )−1.
Now we want to answer the following questions: Does homogeneous Cauchy stress σ imply homogeneous strain and if not,
how can a homogeneous Cauchy stress be generated by non-homogeneous finite-strain deformations?
We already know that homogeneous Cauchy stress implies a self-equilibrated field and homogeneous strain causes all stress
tensors to be homogeneous. Moreover, for a homogeneous isotropic hyperelastic body under finite strain deformation, the
Cauchy stress tensor takes the form σ(B) = β01 + β1B + β−1B

−1, where B = FFT is the left Cauchy-Green tensor and

β0 =
2√
I3

(
I2
∂W

∂I2
+ I3

∂W

∂I3

)
, β1 =

2√
I3

∂W

∂I1
, β−1 = −2

√
I3
∂W

∂I2

are scalar functions of the principal invariants

I1(B) = trB = ‖F‖2, I2(B) =
1

2

[
(trB)

2 − trB2
]

= ‖Cof F‖2, I3(B) = detB = (detF )2,

withW (I1, I2, I3) as the strain energy density function describing the physical properties of the isotropic hyperelastic material.
W should be stress free in the reference configuratin Ω, i.e. β0 + β1 + β−1|F=1 = 0.
If σ : Sym+(3) → Sym(3) is invertible, then for constant Cauchy stress σ = T we have a unique left Cauchy-Green tensor
B ∈ Sym+(3) which satisfies ∇ϕ(∇ϕ)T = B = σ−1(T ) . The latter implies (formally equivalent to the infinitesimal

situation) that ϕ(X) =
(
V R

)
X + b =

[√
σ−1(T )R

]
X + b, where R ∈ SO(3) is an arbitrary constant rotation, b ∈ R3

is an arbitrary constant translation, and V is the left principal stretch tensor satisfying V
2

= B, which is uniquely determined
by the given Cauchy stress σ = T .

2.1 New strain energy function

We define the strain energy function

W =
µ

2

(
I−1/33 I1 − 3

)
+
µ̃

4
(I1 − 3)

2
+
κ

2

(
I1/23 − 1

)2
, (1)
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where µ > 0 is the infinitesimal shear modulus, κ > 0 is the infinitesimal bulk modulus, and µ̃ > 0 is a positive constant
independent of the deformation. For this material, the coefficients β0, β1 and β−1 depend only on the principal invariants I1
and I3, and W is stress free in the reference configuration [1, 2]. Consider the rank-one compatible deformation gradients

F=


k sa 0
0 a 0
0 0 1/a

, F̂=


k −sa 0
0 a 0
0 0 1/a

,
where k > 0, a > 0, and s > 0 are positive constants. The corresponding left Cauchy-Green tensors B and B̂ have the same
principal invariants and the associated Cauchy stress tensors are σ(B) = β0 1 + β1B, σ(B̂) = β0 1 + β1 B̂.

Then, if µ
3µ̃ <

(
3−a2−1/a2

4

)4/3
and 0 < s < 1

a

√
3− 4

(
µ
3µ̃

)3/4
− a2 − 1

a2 , there exists k = k0 ∈ (0, 1), such that

β1 = 0 and σ(B) = β01 = σ(B̂). Thus, we obtain homogeneous Cauchy stress although we suppose a non-homogeneous
deformation.

3 Constitutive requirements in nonlinear elasticity

Under homogeneous Dirichlet boundary conditions ϕ(x) = Fx, quasiconvexity implies that only the homogeneous solution
is energy optimal, whereas in the case of strict rank-one convexity no (infinitesimal) rank-one laminate can be energy
optimal.

F

energy optimal
homogeneous solution

a rank-one laminate is
not energy optimal

When we consider homogeneous interior Cauchy stress σ = const., strict rank-one convexity implies that no rank-one
laminate is in equilibrium, while invertibility of σ induces that only the homogeneous solution is in equilibrium.

σ

homogeneous solution is
in equilibrium

a rank-one laminate is
not in equilibrium

4 Invertibility of the Cauchy stress σ

Whereas invertibility of the first Piola-Kirchhoff stress S1 violates material objectivity (frame-indifference), invertibility of the
Cauchy stress tensor σ is not in conflict with any known physical principle, and therefore it may be imposed as a constitutive
requirement. For example consider the exponentiated Hencky-type energy

WeH(log V ) =
µ

κ
e‖dev3 log V ‖2 +

κ

2κ̂
eκ̂ [tr(log V )]2 , (2)

σeH(log V ) = 2µ eκ ‖dev3 log V ‖2−tr(log V ) · dev3 log V + κ eκ̂ [tr(log V )]2−tr(log V ) tr(log V ) · 1 ,

where V =
√
FFT is the left stretch tensor. Then σeH is invertible, while WeH is not rank-one convex [3–5].
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