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Abstract

In this work we study the homogenization for infinitesimal disloca-
tion based gradient viscoplasticity with linear kinematic hardening and
general non-associative monotone plastic flows. The constitutive equa-
tions in the models we study are assumed to be only of monotone type.
Based on the generalized version of Korn’s inequality for incompatible
tensor fields (the non-symmetric plastic distortion) due to Neff et al., we
derive uniform estimates for the solutions of quasistatic initial-boundary
value problems under consideration and then using an unfolding operator
technique and a monotone operator method we obtain the homogenized
system of equations.
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1 Introduction

We study the homogenization of quasistatic initial-boundary value problems
arising in gradient viscoplasticity. The models we study use rate-dependent
constitutive equations with internal variables to describe the deformation be-
haviour of metals at infinitesimally small strain.

Our focus is on a phenomenological model on the macroscale not including
the case of single crystal plasticity. From a mathematical point of view, the maze
of equations, slip systems and physical mechanisms in single crystal plasticity
is only obscuring the mathematical structure of the problem.
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Our model has been first presented in [37]. It is inspired by the early work
of Menzel and Steinmann [33]. Contrary to more classical strain gradient ap-
proaches, the model features from the outset a non-symmetric plastic distortion
field p ∈ M3 [9], a dislocation based energy storage based solely on |Curl p| (and
not ∇p) and therefore second gradients of the plastic distortion in the form of
Curl Curl p acting as dislocation based kinematical backstresses. We only con-
sider energetic length scale effects and not higher gradients in the dissipation.

Uniqueness of classical solutions in the subdifferential case (associated plas-
ticity) for rate-independent and rate-dependent formulations is shown in [36].
The existence question for the rate-independent model in terms of a weak refor-
mulation is addressed in [37]. The rate-independent model with isotropic hard-
ening is treated in [19]. First numerical results for a simplified rate-independent
irrotational formulation (no plastic spin, symmetric plastic distortion p) are pre-
sented in [41]. In [22, 50] well-posedness for a rate-independent model of Gurtin
and Anand [24] is shown under the decisive assumption that the plastic distor-
tion is symmetric (the irrotational case), in which case one may really speak of
a strain gradient plasticity model, since the full gradient acts on the symmetric
plastic strain.

In order to appreciate the simplicity and elegance of our model we sketch
some of its ingredients. First, as is usual in infinitesimal plasticity theory,
we split the total displacement gradient into non-symmetric elastic and non-
symmetric plastic distortions

∇u = e + p .

For invariance reasons, the elastic energy contribution may only depend on the
elastic strains sym e = sym(∇u−p). While p is non-symmetric, a distinguishing
feature of our model is that, similar to classical approaches, only the symmetric
part εp := sym p of the plastic distortion appears in the local Cauchy stress σ,
while only the higher order stresses are non-symmetric. The reason for this is
that we assume that p has to obey the same transformation behavior as ∇u
does, and thus the energy storage due to kinematical hardening should depend
only on the plastic strains sym p. For more on the basic invariance questions
related to this issue dictating this type of behaviour, see [54, 35]. We assume as
well plastic incompressibility tr p = 0, as is usual.

The thermodynamic potential of our model can therefore be written as
∫

Ω

(

C[x](sym(∇u− p))(sym(∇u− p))
︸ ︷︷ ︸

elastic energy

(1)

+
C1[x]

2
| dev sym p|2

︸ ︷︷ ︸

kinematical hardening

+
C2

2
|Curl p|2

︸ ︷︷ ︸

dislocation storage

+ u · b
︸︷︷︸

external volume forces

)

dx

The positive definite elasticity tensor C is able to represent the elastic anisotropy
of the material. The evolution equations for the plastic distortion p are taken
such that the stored energy is non-increasing along trajectories of p at frozen
displacement u, see [37]. This ensures the validity of the second law of thermo-
dynamics in the form of the reduced dissipation inequality.

For the reduced dissipation inequality we fix u in time and consider the time
derivative of the free energy (and taking into account that Curl is a self-adjoint
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operator provided that the appropriate boundary conditions are specified), we
have

d

dt

∫

Ω

W (∇u(t0)− p(t), p(t),Curl p(t)) dx

=

∫

Ω

D1W · (−∂tp) +D2W · ∂tp+D3W · Curl ∂tp dx

= −

∫

Ω

(D1W −D2W − CurlD3W ) · ∂tp dx .

Choosing ∂tp ∈ g(D1W −D2W − CurlD3W ) with a monotone function g we
obtain the reduced dissipation inequality

d

dt

∫

Ω

W (∇u(t0)− p(t), p(t),Curl p(t)) dx ≤ 0 .

Adapted to our situation, the plastic flow has the form

∂tp ∈ g(σ − C1[x] dev sym p− C2 Curl Curl p) , (2)

where σ = C[x] sym(∇u − p) is the elastic symmetric Cauchy stress of the
material and g is a multivalued monotone flow function which is not necessary
the subdifferential of a convex plastic potential (associative plasticity). In this
generality, our formulation comprises certain non-associative plastic flows in
which the yield condition and the flow direction are independent and governed
by distinct functions. Moreover, the flow function g is supposed to induce a
rate-dependent response as all materials are, in reality, rate-dependent.

Clearly, in the absence of energetic length scale effects (C2 = 0), the CurlCurl p-
term is absent. In general we assume that g maps symmetric tensors to symmet-
ric tensors. Thus, for C2 = 0 the plastic distortion remains always symmetric
and the model reduces to a classical plasticity model. Therefore, the energetic
length scale is solely responsible for the plastic spin in the model. The appear-
ance of the CurlCurl p-term in the argument of g is clear: the argument of g
consists of the Eshelby-stress tensor Σ driving the plastic evolution, see [37].

Regarding the boundary conditions necessary for the formulation of the
higher order theory we assume that the boundary is a perfect conductor, this
means that the tangential component of p vanishes on ∂Ω. In the context of
dislocation dynamics these conditions express the requirement that there is no
flux of the Burgers vector across a hard boundary. Gurtin [25] introduces the
following different types of boundary conditions for the plastic distortion1

∂tp× n|Γhard
= 0 ”micro-hard” (perfect conductor)

∂tp|Γhard
= 0 ”hard-slip” (3)

Curl p× n|Γhard
= 0 ”micro-free” .

We specify a sufficient condition for the micro-hard boundary condition, namely

p× n|Γhard
= 0

and assume for simplicity Γhard = ∂Ω. This is the correct boundary condition
for tensor fields in H(Curl) which admits tangential traces.

1Here, v × n with v ∈ M3 and n ∈ R3 denotes a row by column operation.
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We combine this with a new inequality extending Korn’s inequality to in-
compatible tensor fields, namely

∃C = C(Ω) > 0 ∀ p ∈ H(Curl) : p× n|Γhard
= 0 : (4)

‖p‖L2(Ω)
︸ ︷︷ ︸

plastic distortion

≤ C(Ω)
(

‖ sym p‖L2(Ω)
︸ ︷︷ ︸

plastic strain

+ ‖Curl p‖L2(Ω)
︸ ︷︷ ︸

dislocation density

)

.

Here, Γhard ⊂ ∂Ω with full two-dimensional surface measure and the domain
Ω needs to be sliceable, i.e. cuttable into finitely many simply connected
subdomains with Lipschitz boundaries. This inequality has been derived in [38,
39, 40] and is precisely motivated by the well-posedness question for our model
[37]. The inequality (4) expresses the fact that controlling the plastic strain
sym p and the dislocation density Curl p in L2(Ω) gives a control of the plastic
distortion p in L2(Ω) provided the correct boundary conditions are specified:
namely the micro-hard boundary condition. Since we assume that tr(p) = 0
(plastic incompressibility) the quadratic terms in the thermodynamic potential
provide a control of the right hand side in (4).

It is worthy to note that with g only monotone and not necessarily a subdif-
ferential the powerful energetic solution concept [32, 22, 31] cannot be applied.
In our model we face the combined challenge of a gradient plasticity model
based on the dislocation density tensor Curl p involving the plastic spin, a gen-
eral non-associative monotone flow-rule and a rate-dependent response.

Setting of the homogenization problem. Let Ω ⊂ R3 be an open bounded
set, the set of material points of the solid body, with a C1-boundary and Y ⊂ R3

be a set having the paving property with respect to a basis (b1, b2, b3) defining the
periods, a reference cell. By Te we denote a positive number (time of existence),
which can be chosen arbitrarily large, and for 0 < t ≤ Te

Ωt = Ω× (0, t).

The sets, M3 and S3 denote the sets of all 3× 3–matrices and of all symmetric
3× 3–matrices, respectively. Let sl(3) be the set of all traceless 3× 3–matrices,
i.e.

sl(3) = {v ∈ M3 | tr v = 0}.

Unknown in our small strain formulation are the displacement uη(x, t) ∈ R3

of the material point x at time t and the non-symmetric infinitesimal plastic
distortion pη(x, t) ∈ sl(3).

The model equations of the problem are

− divx ση(x, t) = b(x, t), (5)

ση(x, t) = C[x/η](sym(∇xuη(x, t) − pη(x, t))), (6)

∂tpη(x, t) ∈ g
(
x/η,Σlin

η (x, t)
)
, Σlin

η = Σlin
e,η +Σlin

sh,η +Σlin
curl,η, (7)

Σlin
e,η = ση, Σlin

sh,η = −C1[x/η] dev sym pη, Σlin
curl,η = −C2 Curl Curl pη ,

which must be satisfied in Ω × [0, Te). Here, C2 ≥ 0 is a given material con-
stant independent of η and Σlin

η is the infinitesimal Eshelby stress tensor driving
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the evolution of the plastic distortion pη and η is a scaling parameter of the
microstructure. The initial condition and Dirichlet boundary condition are

pη(x, 0) = p(0)(x), x ∈ Ω, (8)

pη(x, t)× n(x) = 0, (x, t) ∈ ∂Ω× [0, Te), (9)

uη(x, t) = 0, (x, t) ∈ ∂Ω× [0, Te) , (10)

where n is a normal vector on the boundary ∂Ω2. For simplicity we consider
only homogeneous boundary condition and we assume that the cell of periodicity
is given by Y = [0, 1)3. Then, we assume that C1 : Y → R, a given material
function, is measurable, periodic with the periodicity cell Y and satisfies the
inequality

C1[y] ≥ α1 > 0

for all y ∈ Y and some positive constant α1. For every y ∈ Y the elasticity
tensor C[y] : S3 → S3 is a linear, symmetric, positive definite mapping and the
mapping y 7→ C[y] : R3 → S3 is measurable and periodic with the same periodic-
ity cell Y . Due to the above assumption (C1 > 0), the classical linear kinematic
hardening is included in the model. Here, the nonlocal backstress contribution
is given by the dislocation density motivated term Σlin

curl,η = −C2 Curl Curl pη
together with corresponding Neumann conditions.

For the model we require that the nonlinear constitutive mapping v 7→
g(y, v) : M3 → 2sl(3) is monotone for all y ∈ Y , i.e. it satisfies

0 ≤ (v1 − v2) · (v
∗
1 − v∗2), (11)

for all vi ∈ M3, v∗i ∈ g(y, vi), i = 1, 2 and all y ∈ Y . We also require that

0 ∈ g(y, 0), a.e. y ∈ Y. (12)

The mapping y 7→ g(y, ·) : R3 → 2sl(3) is periodic with the same periodicity cell
Y . Given are the volume force b(x, t) ∈ R3 and the initial datum p(0)(x) ∈ sl(3).

Remark 1.1. It is well known that classical viscoplasticity (without gradient ef-
fects) gives rise to a well-posed problem. We extend this result to our formulation
of rate-dependent gradient plasticity. The presence of the classical linear kine-
matic hardening in our model is related to C1 > 0 whereas the presence of the
nonlocal gradient term is always related to C2 > 0.

The development of the homogenization theory for the quasi-static initial
boundary value problem of monotone type in the classical elasto/visco-plasticity
introduced by Alber in [2] has started with the work [3], where the homogenized
system of equations has been derived using the formal asymptotic ansatz. In
the following work [4] Alber justified the formal asymptotic ansatz for the case
of positive definite free energy3, employing the energy method of Murat-Tartar,
yet only for local smooth solutions of the homogenized problem. It is shown
there that the solutions of elasto/visco-plasticity problems can be approximated
in the L2(Ω)−norm by the smooth functions constructed from the solutions of
the homogenized problem. Later in [42], under the assumption that the free
energy is positive definite, it is proved that the difference of the solutions of

2Here, v × n with v ∈ M3 and n ∈ R3 denotes a row by column operation.
3Positive definite energy corresponds to linear kinematic hardening behavior of materials.
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the microscopic problem and the solutions constructed from the homogenized
problem, which both need not be smooth, tends to zero in the L2(Ω×Y )−norm,
where Y is the periodicity cell. Based on the results obtained in [42], in [5] the
convergence in L2(Ω×Y ) is replaced by convergence in L2(Ω). In the meantime,
for the rate-independent problems in plasticity similar results are obtained in
[34] using the unfolding operator method (see Section 3) and methods of ener-
getic solutions due to Mielke. For special rate-dependent models of monotone
type, namely for rate-dependent generalized standard materials, the two-scale
convergence of the solutions of the microscopic problem to the solutions of the
homogenized problem has been shown in [56, 57]. The homogenization of the
Prandtl-Reuss model is performed in [52, 57]. In [43] the author considered
the rate-dependent problems of monotone type with constitutive functions g,
which need not be subdifferentials, but which belong to the class of functions
M(Ω,M3, q, α,m) introduced in Section 5. Using the unfolding operator method
and in particular the homogenization methods developed in [16], for this class of
functions the homogenized equations for the viscoplactic problems of monotone
type are obtained in [43].

In the present work the construction of the homogenization theory for the
initial boundary value problem (5) - (10) is based on the existence result derived
in [45] (see Theorem 5.6) and on the homogenization techniques developed in
[43] for classical viscoplasticity of monotone type. The existence result in [45]
extends the well-posedness for infinitesimal dislocation based gradient viscoplas-
ticity with linear kinematic hardening from the subdifferential case (see [44]) to
general non-associative monotone plastic flows for sliceable domains. In this
work we also assume that the domain Ω is sliceable and that the monotone
function g : R3 × M3 → 2sl(3) belongs to the class M(Ω,M3, q, α,m). For
sliceable domains Ω, based on the inequality (4), we are able to derive then uni-
form estimates for the solutions of (5) - (10) in Lemma 5.8. Using the uniform
estimates for the solutions of (5) - (10), the unfolding operator method and
the homogenization techniques developed in [16, 43], for the class of functions
M(Ω,M3, q, α,m) we obtain easily the homogenized equations for the original
problem under consideration (see Theorem 5.7). To the best our knowledge
this is the first homogenization result obtained for the problem (5) - (10). We
note that similar homogenization results for the strain-gradient model of Fleck
and Willis [20] are derived in [21, 23, 27] using the unfolding method together
with the Γ-convergence method in the rate-independent setting. In [21] the
authors, based on the assumption that the model under consideration is of rate-
independent type, are able to treat the case when C2 is a Y -periodic function
as well. In the rate-independent setting this is possible due to the fact that the
whole system (5) - (10) can be rewritten as a standard variational inequality
(see [26]) and then the subsequant usage of the techniques of the convex anal-
ysis enable the passage to the limit in the model equations. Contrary to this,
in the rate-independent case this reduction to a single variational inequality is
not possible and one is forced to use the monotonicity argument to study the
asymptotic behavior of the third term Σlin

curl,η in (7).

Notation. Suppose that Ω is a bounded domain with C∞-boundary ∂Ω.
Throughout the whole work we choose the numbers q, q∗ satisfying the following
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conditions
1 < q, q∗ <∞ and 1/q + 1/q∗ = 1,

and | · | denotes a norm in Rk. Moreover, the following notations are used in
this work. The space Wm,q(Ω,Rk) with q ∈ [1,∞] consists of all functions in
Lq(Ω,Rk) with weak derivatives in Lq(Ω,Rk) up to orderm. If m is not integer,
then Wm,q(Ω,Rk) denotes the corresponding Sobolev-Slobodecki space. We set
Hm(Ω,Rk) =Wm,2(Ω,Rk). The norm in Wm,q(Ω,Rk) is denoted by ‖ · ‖m,q,Ω

(‖ · ‖q := ‖ · ‖0,q,Ω). The operator Γ0 defined by

Γ0 : v ∈W 1,q(Ω,Rk) 7→W 1−1/q,q(∂Ω,Rk)

denotes the usual trace operator. The space Wm,q
0 (Ω,Rk) with q ∈ [1,∞] con-

sists of all functions v inWm,q(Ω,Rk) with Γ0v = 0. One can define the bilinear
form on the product space Lq(Ω,M3)×Lq∗(Ω,M3) by

(ξ, ζ)Ω =

∫

Ω

ξ(x) · ζ(x)dx.

The space

Lq
Curl(Ω,M

3) = {v ∈ Lq(Ω,M3) | Curl v ∈ Lq(Ω,M3)}

is a Banach space with respect to the norm

‖v‖q,Curl = ‖v‖q + ‖Curl v‖q.

By H(Curl) we denote the space of measurable functions in L2
Curl(Ω,M

3), i.e.
H(Curl) = L2

Curl(Ω,M
3). The well known result on the generalized trace oper-

ator can be easily adopted to the functions with values in M3 (see [53, Section
II.1.2]). Then, according to this result, there is a bounded operator Γn on
Lq
Curl(Ω,M

3)

Γn : v ∈ Lq
Curl(Ω,M

3) 7→
(
W 1−1/q∗,q∗(∂Ω,M3)

)∗

with
Γnv = v × n

∣
∣
∂Ω

if v ∈ C1(Ω̄,M3),

where X∗ denotes the dual of a Banach space X . Next,

Lq
Curl,0(Ω,M

3) = {w ∈ Lq
Curl(Ω,M

3) | Γn(w) = 0}.

Let us define spaces V q(Ω,M3) and Xq(Ω,M3) by

V q(Ω,M3) = {v ∈ Lq(Ω,M3) | div v,Curl v ∈ Lq(Ω,M3),Γnv = 0},

Xq(Ω,M3) = {v ∈ Lq(Ω,M3) | div v,Curl v ∈ Lq(Ω,M3),Γ0v = 0},

which are Banach spaces with respect to the norm

‖v‖V q (‖v‖Xq) = ‖v‖q + ‖Curl v‖q + ‖ div v‖q.

According to [30, Theorem 2]4 the spaces V q(Ω,M3) and Xq(Ω,M3) are con-
tinuously imbedded into W 1,q(Ω,M3). We define V q

σ (Ω,M
3) and Xq

σ(Ω,M
3)

by
V q
σ (Ω,R

3) := {v ∈ V q(Ω,R3) | div v = 0},

4This theorem has to be applied to each row of a function with values in M3 to obtain the
desired result.
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Xq
σ(Ω,R

3) := {v ∈ Xq(Ω,R3) | div v = 0},

and denote by V q
har(Ω,R

3) and Xq
har(Ω,R

3) the Lq-spaces of harmonic functions
on Ω as

V q
har(Ω,R

3) := {v ∈ V q
σ (Ω,R

3) | Curl v = 0},

Xq
har(Ω,R

3) := {v ∈ Xq
σ(Ω,R

3) | Curl v = 0},

Then the spaces V q
har(Ω,R

3) and Xq
har(Ω,R

3) for every fixed q, 1 < q < ∞,
coincides with the spaces Vhar(Ω,R

3) and Xhar(Ω,R
3) given by

Vhar(Ω,R
3) = {v ∈ C∞(Ω̄,R3) | div v = 0,Curl v = 0 with v · n = 0 on ∂Ω},

Xhar(Ω,R
3) = {v ∈ C∞(Ω̄,R3) | div v = 0,Curl v = 0 with v × n = 0 on ∂Ω},

respectively (see [30, Theorem 2.1(1)]). The spaces Vhar(Ω,R
3) andXhar(Ω,R

3)
are finite dimensional vector spaces ([30, Theorem 1]).

We also define the space Zq
Curl(Ω,M

3) by

Zq
Curl(Ω,M

3) = {v ∈ Lq
Curl,0(Ω,M

3) | CurlCurl v ∈ Lq(Ω,M3)},

which is a Banach space with respect to the norm

‖v‖Zq

Curl
= ‖v‖q,Curl + ‖CurlCurl v‖q.

The spaceWm,q
per (Y,Rk) denotes the Banach space of Y -periodic functions in

Wm,q
loc (Rk,Rk) equipped with the Wm,q(Y,Rk)-norm.
For functions v defined on Ω × [0,∞) we denote by v(t) the mapping x 7→

v(x, t), which is defined on Ω. The space Lq(0, Te;X) denotes the Banach space
of all Bochner-measurable functions u : [0, Te) → X such that t 7→ ‖u(t)‖qX is
integrable on [0, Te). Finally, we frequently use the spacesWm,q(0, Te;X), which
consist of Bochner measurable functions having q-integrable weak derivatives up
to order m.

2 Maximal monotone operators

In this section we recall some basics about monotone and maximal monotone
operators. For more details see [8, 28, 48], for example.

Let V be a reflexive Banach space with the norm ‖ · ‖, V ∗ be its dual space
with the norm ‖ · ‖∗. The brackets 〈·, ·〉 denotes the dual pairing between V and
V ∗. Under V we shall always mean a reflexive Banach space throughout this
section. For a multivalued mapping A : V → 2V

∗

the sets

D(A) = {v ∈ V | Av 6= ∅}

and
GrA = {[v, v∗] ∈ V × V ∗ | v ∈ D(A), v∗ ∈ Av}

are called the effective domain and the graph of A, respectively.

Definition 2.1. A mapping A : V → 2V
∗

is called monotone if and only if the
inequality holds

〈v∗ − u∗, v − u〉 ≥ 0 ∀ [v, v∗], [u, u∗] ∈ GrA.
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A monotone mapping A : V → 2V
∗

is called maximal monotone iff the
inequality

〈v∗ − u∗, v − u〉 ≥ 0 ∀ [u, u∗] ∈ GrA

implies [v, v∗] ∈ GrA.
A mapping A : V → 2V

∗

is called generalized pseudomonotone iff the set Av
is closed, convex and bounded for all v ∈ D(A) and for every pair of sequences
{vn} and {v∗n} such that v∗n ∈ Avn, vn ⇀ v0, v

∗
n ⇀ v∗0 ∈ V ∗ and

lim sup
n→∞

〈v∗n, vn − v0〉 ≤ 0,

we have that [v0, v
∗
0 ] ∈ GrA and 〈v∗n, vn〉 → 〈v∗0 , v0〉.

A mapping A : V → 2V
∗

is called strongly coercive iff either D(A) is bounded
or D(A) is unbounded and the condition

〈v∗, v − w〉

‖v‖
→ +∞ as ‖v‖ → ∞, [v, v∗] ∈ GrA,

is satisfied for each w ∈ D(A).

It is well known ([48, p. 105]) that if A is a maximal monotone operator,
then for any v ∈ D(A) the image Av is a closed convex subset of V ∗ and the
graph GrA is demi-closed.5 A maximal monotone operator is also generalized
pseudomonotone (see [8, 28, 48]).

Remark 2.2. We recall that the subdifferential of a lower semi-continuous and
convex function is maximal monotone (see [49, Theorem 2.25]).

Definition 2.3. The duality mapping J : V → 2V
∗

is defined by

J(v) = {v∗ ∈ V ∗ | 〈v∗, v〉 = ‖v‖2 = ‖v∗‖2∗ }

for all v ∈ V .

Without loss of generality (due to Asplund’s theorem) we can assume that
both V and V ∗ are strictly convex, i.e. that the unit ball in the corresponding
space is strictly convex. In virtue of [8, Theorem II.1.2], the equation

J(vλ − v) + λAvλ ∋ 0

has a solution vλ ∈ D(A) for every v ∈ V and λ > 0 if A is maximal monotone.
The solution is unique (see [8, p. 41]).

Definition 2.4. Setting

vλ = jAλ v and Aλv = −λ−1J(vλ − v)

we define two single valued operators: the Yosida approximation Aλ : V → V ∗

and the resolvent jAλ : V → D(A) with D(Aλ) = D(jAλ ) = V .

By the definition, one immediately sees that Aλv ∈ A
(
jAλ v

)
. For the main

properties of the Yosida approximation we refer to [8, 28, 48] and mention
only that both are continuous operators and that Aλ is bounded and maximal
monotone.

5A set A ∈ V × V ∗ is demi-closed if vn converges strongly to v0 in V and v∗n converges
weakly to v∗

0
in V ∗ (or vn converges weakly to v0 in V and v∗n converges strongly to v∗

0
in

V ∗) and [vn, v∗n] ∈ GrA, then [v, v∗] ∈ GrA
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Convergence of maximal monotone graphs In the presentation of the
next subsections we follow the work [16], where the reader can also find the
proofs of the results mentioned here.

The derivation of the homogenized equations for the initial boundary value
problem (5) - (10) is based on the notion of the convergence of the graphs of
maximal monotone operators.

According to Brezis [10] and Attouch [7], the convergence of the graphs of
maximal monotone operators is defined as follows.

Definition 2.5. Let An, A : V → 2V
∗

be maximal monotone operators. The
sequence An converges to A as n → ∞, (An

 A), if for every [v, v∗] ∈ GrA
there exists a sequence [vn, v

∗
n] ∈ GrAn such that [vn, v

∗
n] → [v, v∗] strongly in

V × V ∗ as n→ ∞.

Obviously, if An and A are everywhere defined, continuous and monotone,
then the pointwise convergence, i.e. if for every v ∈ V , An(v) → A(v), implies
the convergence of the graphs. The converse is true in finite-dimensional spaces.

The next theorem is the main mathematical tool in the derivation of the
homogenized equations for the problem (5) - (10).

Theorem 2.6. Let An, A : V → 2V
∗

be maximal monotone operators, and
let [vn, v

∗
n] ∈ GrAn and [v, v∗] ∈ V × V ∗. If, as n → ∞, An

 A, vn ⇀ v0,
v∗n ⇀ v∗0 ∈ V ∗ and

lim sup
n→∞

〈v∗n, vn〉 ≤ 〈v∗0 , v0〉 , (13)

then [v0, v
∗
0 ] ∈ GrA and

lim inf
n→∞

〈v∗n, vn〉 = 〈v∗0 , v0〉 .

Proof. See [16, Theorem 2.8].

The convergence of the graphs of multi-valued maximal monotone operators
can be equivalently stated in term of the pointwise convergence of the corre-
sponding single-valued Yosida approximations and resolvents as the following
result shows.

Theorem 2.7. Let An, A : V → 2V
∗

be maximal monotone operators and
λ > 0. The following statements are equivalent:

(a) An
 A as n→ ∞;

(b) for every v ∈ V , jA
n

λ v → jAλ v as n→ ∞;

(c) for every v ∈ V , An
λv → Aλv as n→ ∞;

(d) An
λ  Aλ as n→ ∞.

Moreover, the convergences jA
n

λ v → jAλ v and An
λv → Aλv are uniform on

strongly compact subsets of V .

Proof. See [16, Theorem 2.9].
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Measurability of multi-valued mappings. In this subsection we present
briefly some facts about measurable multi-valued mappings. We assume that V ,
and hence V ∗, is separable and denote the set of maximal monotone operators
from V to V ∗ byM(V ×V ∗). Further, let (S,Σ(S), µ) be a σ−finite µ−complete
measurable space.

Definition 2.8. A function A : S → M(V × V ∗) is measurable iff for every
open set U ∈ V × V ∗ (respectively closed set, Borel set, open ball, closed ball),

{x ∈ S | A(x) ∩ U 6= ∅}

is measurable in S.

The next result states that the notion of measurability for maximal monotone
mappins can be equivalently defined in terms of the measurability for appropri-
ate single-valued mappings.

Proposition 2.9. Let A : S → M(V × V ∗), let λ > 0 and let E be dense in V .
The following are equivalent:

(a) A is measurable;

(b) for every v ∈ E, x 7→ j
A(x)
λ v is measurable;

(c) v ∈ E, x 7→ Aλ(x)v is measurable.

Proof. See [16, Proposition 2.11].

For further reading on measurable multi-valued mappings we refer the reader
to [11, 28, 47].

Canonical extensions of maximal monotone operators. Given a map-
ping A : S → M(V × V ∗), one can define a monotone graph from Lp(S, V ) to
Lq(S, V ∗), where 1/p+ 1/q = 1, as follows:

Definition 2.10. Let A : S → M(V × V ∗), the canonical extension of A from
Lp(S, V ) to Lq(S, V ∗), where 1/p+ 1/q = 1, is defined by:

GrA = {[v, v∗] ∈ Lp(S, V )×Lq(S, V ∗) | [v(x), v∗(x)] ∈ GrA(x) for a.e. x ∈ S}.

Monotonicity of A defined in Definition 2.10 is obvious, while its maximality
follows from the next proposition.

Proposition 2.11. Let A : S → M(V × V ∗) be measurable. If GrA 6= ∅, then
A is maximal monotone.

Proof. See [16, Proposition 2.13].

We have to point out here that the maximality of A(x) for almost every
x ∈ S does not imply the maximality of A as the latter can be empty ([16]):
S = (0, 1), and GrA(x) = {[v, v∗] ∈ R× R | v∗ = x−1/q}.

For given mappings A,An : S → M(V × V ∗) and their canonical extensions
A,An, one can ask whether the pointwise convergence An(x)  A(x) implies
the convergence of the graphs of the corresponding canonical extensions An



A. The answer is given by the next theorem.
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Theorem 2.12. Let A,An : S → M(V × V ∗) be measurable. Assume

(a) for almost every x ∈ S, An(x)  A(x) as n→ ∞,

(b) A and An are maximal monotone,

(c) there exists [αn, βn] ∈ GrAn and [α, β] ∈ Lp(S, V ) × Lq(S, V ∗) such that
[α, β] → [α, β] strongly in Lp(S, V )× Lq(S, V ∗) as n→ ∞,

then An
 A.

Proof. See [16, Proposition 2.16].

We note that assumption (c) in Theorem 2.12 can not be dropped in virtue
of Remark 2.16 in [16].

3 The periodic unfolding

The derivation of the homogenized problem for (5) - (10) is based on the periodic
unfolding operator method introduced by Cioranescu, Damlamian and Griso
[12]. For the reader unfamiliar with this method we recall here some properties
of this operator. The proofs of all results mentioned here as well as examples
of applications of the method can be found in [12, 13, 15] and in the literature
cited there.

Let Ω ⊂ R
3 be an open set and Y = [0, 1)3. Let (e1, e2, e3) denote the

standard basis in R3. For z ∈ R3, [z]Y denotes a linear combination
∑3

j=1 djej
with {d1, d2, d3} ∈ Z such that z − [z]Y belongs to Y , and set

{z}Y := z − [z]Y ∈ Y v ∈ R
3.

Then, for each x ∈ R3, one has

x = η

([
x

η

]

Y

+ y

)

.

We use the following notations:

Ξη = {ξ ∈ Z
k | η(ξ + Y ) ⊂ Ω}, Ω̂η = int







⋃

ξ∈Ξη

(
ηξ + ηY

)






, Λη = Ω \ Ω̂η.

The set Ω̂η is the largest union of η(ξ + Y ) cells (ξ ∈ Z3) included in Ω, while
Λη is the subset of Ω containing the parts from η(ξ + Y ) cells intersecting the
boundary ∂Ω.

Definition 3.1. Let Y be a reference cell, η be a positive number and a map
v : Ω → Rk. The unfolding operator Tη(v) : Ω× Y → Rk is defined by

Tη(v) :=

{

v
(

η
[
x
η

]

Y
+ ηy

)

, a.e. (x, y) ∈ Ω̂η × Y,

0, a.e. (x, y) ∈ Λη × Y.

The next results are straightforward from Definition 3.1.
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Proposition 3.2. For q ∈ [1,∞[, the operator Tη is linear and continuous from
Lq(Ω,Rk) to Lq(Ω× Y,Rk). For every φ in L1(Ω,Rk) one has

(a) 1
|Y |

∫

Ω×Y Tη(φ)(x, y)dxdy =
∫

Ω̂η
φ(x)dx,

(b) 1
|Y |

∫

Ω×Y
|Tη(φ)(x, y)|dxdy ≤

∫

Ω
|φ(x)|dx,

(c)
∣
∣
∣

∫

Ω̂η
φ(x)dx − 1

|Y |

∫

Ω×Y Tη(φ)(x, y)dxdy
∣
∣
∣ ≤

∫

Λη
|φ(x)|dx,

(d) ‖Tη(φ)‖p,Ω×Y = |Y |1/p‖φIΩ̂η
‖q ≤ |Y |1/p‖φ‖q.

Proof. See [13, Proposition 2.5].

Obviously, if φη ∈ L1(Ω,Rk) satisfies

∫

Λη

|φη(x)|dx → 0, (14)

then ∫

Ω

φη(x)dx −
1

|Y |

∫

Ω×Y

Tη(φη)(x, y)dxdy → 0.

If a sequence φη satisfies (14), we shall write

∫

Ω

φη(x)dx
Tη

≃
1

|Y |

∫

Ω×Y

Tη(φη)(x, y)dxdy.

Proposition 3.3. Let q belong to [1,∞[.

(a) For any v ∈ Lq(Ω,Rk), Tη(v) → v strongly in Lq(Ω× Y,Rk),

(b) Let vη be a bounded sequence in Lq(Ω,Rk) such that vη → v strongly in
Lq(Ω,Rk), then

Tη(vη) → v, strongly in Lq(Ω× Y,Rk).

(c) For every relatively weakly compact sequence vη in Lq(Ω,Rk), the corre-
sponding Tη(vη) is relatively weakly compact in Lq(Ω × Y,Rk). Further-
more, if

Tη(vη)⇀ v̂ in Lq(Ω× Y,Rk),

then

vη ⇀
1

|Y |

∫

Y

v̂dy in Lq(Ω,Rk).

Proof. See [13, Proposition 2.9].

We note that the strong/weak convergence of Tη(vη) does not imply, unless
Λη has the measure 0 for every η, the strong/weak convergence of vη, since the
information concerning the behavior of vη on Λη is missing.

Next results present some properties of the restriction of the unfolding op-
erator to the space W 1,q(Ω,Rk).
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Proposition 3.4. Let q belong to ]1,∞[.

(a) Suppose that vη ∈ W 1,q(Ω,Rk) is bounded in Lq(Ω,Rk) and satisfies

η‖∇vη‖q ≤ C.

Then, there exists a subsequence and v̂ ∈ Lp(Ω,W 1,q
per(Y,R

k)) such that

Tη(vη)⇀ v̂ in Lq(Ω,W 1,q
per(Y,R

k)),

Tη(∇vη)⇀ ∇y v̂ in Lq(Ω× Y,Rk).

(b) Let vη converge weakly in W 1,q(Ω,Rk) to v. Then

Tη(vη)⇀ v in Lq(Ω,W 1,q
per(Y,R

k)).

Proof. See [13, Corollary 3.2, Corollary 3.3].

Proposition 3.5. Let q belong to ]1,∞[. Let vη converge weakly in W 1,q(Ω,Rk)
to some v. Then, up to a subsequence, there exists some v̂ ∈ Lq(Ω,W 1,q

per(Y,R
k))

such that
Tη(∇vη)⇀ ∇v +∇y v̂ in Lq(Ω× Y,Rk).

Proof. See [13, Theorem 3.5, (i)].

The last proposition can be generalized to Wm,q(Ω,Rk)-spaces with m ≥ 1.

Proposition 3.6. Let q belong to ]1,∞[ and m ≥ 1. Let vη converge weakly
in Wm,q(Ω,Rk) to some v. Then, up to a subsequence, there exists some v̂ ∈
Lq(Ω,Wm,q

per (Y,Rk)) such that

Tη(D
lvη)⇀ Dlv in Lq(Ω,Wm−l,q(Y,Rk)) for |l| ≤ m− 1,

Tη(D
lvη)⇀ Dlv +Dl

y v̂ in Lq(Ω× Y,Rk) for |l| = m

Proof. See [13, Theorem 3.6].

We note that the periodic unfolding method described above is an alternative
to the two-scale convergence method introduced in [46] and further developed
in [6]. More precisely, the two-scale convergence of a bounded sequence vη in
Lp(Ω,Rk) is equivalent to the weak convergence of the corresponding unfolded
sequence Tη(vη) in Lp(Ω× Y,Rk) (see [13, Proposition 2.14]).

For a multi-valued function h ∈ M(Ω,Rk, α,m)6 we define the unfolding
operator as follows.

Definition 3.7. Let Y be a periodicity cell, η be a positive number and a map

h ∈ M(Ω,Rk, p, α,m). The unfolding operator Tη(h) : Ω × Y × Rk → 2R
k

is
defined by

Tη(h)(x, y, v) :=

{

h
(

η
[
x
η

]

Y
+ ηy, v

)

, a.e. (x, y) ∈ Ω̂η × Y, v ∈ Rk,

|v|p−2v, a.e. (x, y) ∈ Λη × Y, v ∈ Rk.

6The class of functions h ∈ M(Ω,Rk, α,m) is defined in Definition 5.1.
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Obviously, by its definition the unfolding operator of a multi-valued function
from M(Ω,Rk, α,m) belongs to the set M(Ω× Y,Rk, α,m).

We note that the periodic unfolding method described above is an alternative
to the two-scale convergence method introduced in [46] and further developed
in [6]. More precisely, the two-scale convergence of a bounded sequence vη in
Lp(Ω,Rk) is equivalent to the weak convergence of the corresponding unfolded
sequence Tη(vη) in Lp(Ω× Y,Rk) (see [13, Proposition 2.14]).

Homogenization of the linear elasticity problem. In this section we ap-
ply the periodic unfolding method to the homogenization of linear elasticity
systems7 with periodically highly oscillating coefficients (see [14] for properties
of periodically oscillating functions). We show the strong convergence of the
unfolded sequence of the gradients of the solutions of linear elasticity problem
(see Theorem 3.8 below). The proof of the mentioned result applied to an ellip-
tic partial differential equation is performed in [13] and can be carried over to
linear elasticity systems without significant modifications. Therefore, we sketch
here only the proof in [13] adopted to our needs.

In linear elasticity theory it is well known (see [55, Theorem 4.2]) that a
Dirichlet boundary value problem formed by the equations

− divx ση(x) = b̂(x), x ∈ Ω, (15)

ση(x) = C[x/η](sym (∇xuη(x))− ε̂η(x)), x ∈ Ω, (16)

uη(x) = 0, x ∈ ∂Ω, (17)

to given b̂ ∈ H−1(Ω,R3) and ε̂η ∈ L2(Ω,S3) has a unique weak solution
(uη, ση) ∈ H1

0 (Ω,R
3)× L2(Ω,S3). We require that ε̂η converges to ε̂0 strongly

in L2(Ω,S3) as η → 0. The following result holds.

Theorem 3.8. There exist u0 ∈ H1
0 (Ω,R

3), σ0 ∈ L2(Ω × Y,S3) and u1 ∈
L2(Ω, H1

per(Y,R
3)) such that

uη ⇀ u0 in H1
0 (Ω,R

3), (18)

Tη(uη)⇀ u0 in L2(Ω, H1
per(Y,R

3)), (19)

Tη(∇uη)⇀ ∇u0 +∇yu1 in L2(Ω× Y,R3), (20)

Tη(ση)⇀ σ0 in L2(Ω× Y,S3), (21)

and (u0, σ0, u1) is the unique solution of the homogenized system:

− divy σ0(x, y) = 0, (22)

σ0(x, y) = C[y]
(
sym(∇u0(x) +∇yu1(x, y)) − ε̂0(x)

)
, (23)

y 7→ u1(x, y), Y − periodic, (24)

− divx

∫

Y

σ0(x, y)dy = b̂(x), (25)

u0(x) = 0, x ∈ ∂Ω. (26)

7A survey on other applications of the method can be found in [13].
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Moreover, the following convergences hold

lim
η→0

∫

Ω

C [·/η] sym(∇xuη) sym(∇xuη)dx

=

∫

Ω×Y

C[y] sym
(
∇u0 +∇yu1

)
sym

(
∇u0 +∇yu1

)
dxdy, (27)

lim
η→0

∫

Λη

| sym(∇xuη)|
2dx = 0, (28)

and

Tη(∇uη) → ∇u0 +∇yu1 in L2(Ω× Y,R3), (29)

Tη(ση) → σ0 in L2(Ω× Y,S3). (30)

Proof. See [43, Theorem 4.1].

4 Unfolding the CurlCurl-operator

Our method is based on the Helmholtz-Weyl decomposition for vector fields in
general Lq-spaces over a domain Ω. It turns out (see [30, Theorem 2.1(2)]) that
the following theorem holds.

Theorem 4.1. Let 1 < q <∞. Every v ∈ Lq(Ω,R3) can be uniquely decompose
as

v = h+Curlw +∇z, (31)

where h ∈ Xq
har(Ω,R

3), w ∈ V q
σ (Ω,R

3) and z ∈ W 1,q(Ω,R3), and the triple
(h,w, z) satisfies the inequality

‖h‖q + ‖w‖1,q,Ω + ‖z‖1,q,Ω ≤ C‖v‖q, (32)

where C is a constant depending on Ω and q. If there is another triple of
functions (h̃, w̃, z̃) such that v can be written in the form

v = h̃+Curl w̃ +∇z̃,

with h̃ ∈ Xq
har(Ω,R

3), w̃ ∈ V q
σ (Ω,R

3) and z̃ ∈ W 1,q(Ω,R3), then it holds

h = h̃, Curlw = Curl w̃, ∇z = ∇z̃.

Remark 4.2. If L denotes the dimension of Vhar(Ω,R
3), i.e. dimVhar(Ω,R

3) =
L, and {φ1, ..., φ2} is a basis of Vhar(Ω,R3), then it holds V q(Ω,R3) ⊂W 1,q(Ω,R3)
with the estimate

‖v‖q + ‖∇v‖q ≤ C(‖Curl v‖q + ‖ div v‖q +
L∑

i=1

|(v, φi)|)

for all v ∈ V q(Ω,R3), where C = C(Ω, q) ([30, Theorem 2.4(2)]). The proof

of the inequality (33) with
∑L

i=1 |(v, φi)| replaced by ‖v‖q is performed in [30,
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Lemma 4.5] (for q = 2 it can be found in [18, Theorem VII.6.1]). If we assume
that the boundary ∂Ω has L + 1 smooth connected components Γ0,Γ1, ...,ΓL

such that Γ1, ...,ΓL lie inside Γ0 with Γi ∩ Γj = ∅ for i 6= j and

∂Ω = ∪L
i=0Γi,

then it holds ([30, Appendix A])

dimVhar(Ω,R
3) = L.

If the function v in (31) is more regular, then the function w can be chosen
from a better space as the next theorem shows.

Theorem 4.3. Let 1 < q < ∞. Assume that decomposition (31) holds. If,
additionally v ∈ Zq

Curl(Ω,R
3), then w in (31) can be chosen from W 3,q(Ω,R3)∩

V q
σ (Ω,R

3) satisfying the estimate

‖w‖3,q,Ω ≤ C(‖Curl v‖1,q,Ω + ‖v‖q), (33)

where C is a constant depending on Ω and q.

Proof. For v ∈ Lq
Curl(Ω,R

3) this result is proved in [29]. For v ∈ Zq
Curl(Ω,R

3)
the proof runs the same lines. We repeat them.

As it is shown in [30, Lemma 4.2(2)], we can choose the function w ∈
V q
σ (Ω,R

3) satisfying the equation

(Curlw,Curlψ)Ω = (v,Curlψ)Ω, for all ψ ∈ V q∗

σ (Ω,R3) (34)

with the estimate

‖w‖1,q,Ω ≤ C‖v‖q, (35)

where C depends only on Ω and q. Since divw = 0 in Ω and v ∈ Zq
Curl(Ω,R

3),
it follows from (34) that −∆w = Curl v in the sense of distributions, and we
may regard w as a weak solution of the following boundary value problem

−∆w = Curl v, in Ω, (36)

divw = 0, on ∂Ω, (37)

w · n = 0, on ∂Ω. (38)

Since Curl v ∈W 1,q(Ω,R3), it follows from [30, Lemma 4.3(1)] and the classical
theory of Agmon, Douglas and Nirenberg [1] that the solution w of the homo-
geneous boundary value problem (36) belongs to W 3,q(Ω,R3) and the estimate

‖w‖3,q,Ω ≤ C(‖Curl v‖1,q,Ω + ‖w‖q), (39)

is valid with the constant C dependent of Ω and q. Due to (35), the estimate
(39) implies (33). This completes the proof.

Now we can state the main result of this section.
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Theorem 4.4. Let 1 < q <∞. Suppose that sequence vη is weakly compact in
Zq
Curl(Ω,R

3). Then there exist

v ∈ Zq
Curl(Ω,R

3), v0 ∈ Lq(Ω× Y,R3) and

v1 ∈ Lq(Ω,W 2,q
per(Y,R

3)) with divy v1 = 0,

such that

vη ⇀ v in Zq
Curl(Ω,R

3), (40)

Tη(vη)⇀ v0 in Lq(Ω× Y,R3), (41)

Tη(Curl vη)⇀ Curl v in Lq(Ω,W 1,q
per(Y,R

3)), (42)

Tη(Curl Curl vη)⇀ CurlCurl v +Curly Curly v1, in L
q(Ω× Y,R3).(43)

Moreover, v(x) =
∫

Y
v0(x, y)dy.

Proof. Convergence (41) and the last statement of the theorem follow from
Proposition 3.3(c). Convergence (40) is obvious. Next, we prove convergences
(42) and (43). According to Theorem 4.1, there exist hη ∈ Xq

har(Ω,R
3), wη ∈

V q
σ (Ω,R

3) and zη ∈ W 1,q(Ω,R3) satisfying the inequality

‖hη‖q + ‖wη‖1,q,Ω + ‖zη‖1,q,Ω ≤ C‖vη‖q (44)

with the constant C independent of η, and such that

vη = hη +Curlwη +∇zη. (45)

Moreover, due to Theorem 4.3, wη in (45) enjoys the inequality

‖wη‖3,q,Ω ≤ C(‖Curl vη‖1,q,Ω + ‖vη‖q) (46)

with the constant C independent of η. Therefore, the weak compactness of vη in
Zq
Curl(Ω,R

3) and (46) imply that wη is weakly compact in W 3,q(Ω,R3). Thus,
in virtue of Proposition 3.6 we conclude that there exist

w ∈ W 3,q(Ω,R3) and w1 ∈ Lq(Ω,W 3,q
per(Y,R

3))

such that

Tη(D
lwη)⇀ Dlw in Lq(Ω,W 3−l,q(Y,Rk)) for |l| ≤ 2,

Tη(D
lwη)⇀ Dlw +Dl

yw1 in Lq(Ω× Y,Rk) for |l| = 3.

Since Curl vη = Curlwη and Curl v = Curlw, we get that

Tη(Curl vη)⇀ Curl v in Lq(Ω,W 1,q
per(Y,R

3)),

Tη(Curl Curl vη)⇀ CurlCurl v +Curly Curly v1, in L
q(Ω× Y,R3).

The proof of Theorem 4.4 is complete.
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5 Homogenized system of equations

Main result. First, we define a class of maximal monotone functions we deal
with in this work.

Definition 5.1. For m ∈ L1(Ω,R), α ∈ R+ and q > 1, M(Ω,Rk, q, α,m) is the

set of multi-valued functions h : Ω× Rk → 2R
k

with the following properties

• v 7→ h(x, v) is maximal monotone for almost all x ∈ Ω,

• the mapping x 7→ jλ(x, v) : Ω → Rk is measurable for all λ > 0, where
jλ(x, v) is the inverse of v 7→ v + λh(x, v),

• for a.e. x ∈ Ω and every v∗ ∈ h(x, v)

α

(
|v|q

q
+

|v∗|q
∗

q∗

)

≤ (v, v∗) +m(x), (47)

where 1/q + 1/q∗ = 1.

Remark 5.2. We note that the condition (47) is equivalent to the following two
inequalities

|v∗|q
∗

≤ m1(x) + α1|v|
q, (48)

(v, v∗) ≥ m2(x) + α2|v|
q, (49)

for a.e. x ∈ Ω and every v∗ ∈ h(x, v) and with suitable functions m1,m2 ∈
L1(Ω,R) and numbers α1, α2 ∈ R+.

Remark 5.3. Visco-plasticity is typically included in the former conditions by
choosing the function g to be in Norton-Hoff form, i.e.

g(Σ) = [|Σ| − σy]
r
+

Σ

|Σ|
, Σ ∈ M3 ,

where σy is the flow stress and r is some parameter together with [x]+ :=
max(x, 0). If g : M3 7→ S3 then the flow is called irrotational (no plastic spin).

The main properties of the class M(Ω,Rk, q, α,m) are collected in the fol-
lowing proposition.

Proposition 5.4. Let H be a canonical extension of a function h : Rk → 2R
k

,
which belongs to M(Ω,Rk, q, α,m). Then H is maximal monotone, surjective
and D(H) = Lp(Ω,Rk).

Proof. See Corollary 2.15 in [16].

Next, we define the notion of strong solutions for the initial boundary value
problem (5) - (10).

Definition 5.5. (Strong solutions) A function (uη, ση, pη) such that

(uη, ση) ∈ H1(0, Te;H
1
0 (Ω,R

3)× L2(Ω,S3)), Σlin
η ∈ Lq(ΩTe

,M3),

pη ∈ H1(0, Te;L
2
Curl(Ω,M

3)) ∩ L2(0, Te;Z
2
Curl(Ω,M

3))

is called a strong solution of the initial boundary value problem (5) - (10), if for
every t ∈ [0, Te] the function (uη(t), ση(t)) is a weak solution of the boundary

value problem (15) - (17) with ε̂p = sym pη(t) and b̂ = b(t), the evolution
inclusion (7) and the initial condition (8) are satisfied pointwise.
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Next, we state the existence result (see [45]).

Theorem 5.6. Suppose that 1 < q∗ ≤ 2 ≤ q < ∞. Assume that Ω ⊂ R3 is a
sliceable domain with a C1-boundary, C ∈ L∞(Ω,S3) and C1 ∈ L∞(Ω,R). Let
the functions b ∈ W 1,q(0, Te;L

q(Ω,R3)) be given and g ∈ M(Ω,M3, q, α,m).
Suppose that for a.e. x ∈ Ω the relations

p(0)(x) = 0 and 0 ∈ g(x/η, σ(0)(x)) (50)

hold, where the function σ(0) ∈ L2(Ω,S3) is determined by equations (15) - (17)

for ε̂p = 0 and b̂ = b(0). Then there exists a solution (uη, ση, pη) of the initial
boundary value problem (5) - (10).

Now we can formulate the main result of this work.

Theorem 5.7. Suppose that all assumptions of Theorem 5.6 are fulfilled. Then
there exists

u0 ∈ H1(0, Te;H
1
0 (Ω,R

3)), u1 ∈ H1(0, Te;L
2(Ω, H1

per(Y,R
3))),

σ0 ∈ L∞(0, Te;L
2(Ω× Y,S3)), p0 ∈ H1(0, Te;L

2(Ω× Y,M3)),

p ∈ H1(0, Te;L
2(Ω,M3)) ∩ L2(0, Te;Z

2
Curl(Ω,M

3)),

p1 ∈ L2(0, Te;L
2(Ω,W 2,q∗

per (Y,M3))) with divy p1 = 0,

and
σ ∈ L∞(0, Te;L

2(Ω,S3)),

such that

uη ⇀ u0 in H1(0, Te;H
1
0 (Ω,R

3)), (51)

pη ⇀ p in H1(0, Te;L
2(Ω,M3)) ∩ L2(0, Te;Z

2
Curl(Ω,M

3)), (52)

Tη(∇uη)⇀ ∇u0 +∇yu1 in H1(0, Te;L
2(Ω× Y,R3)), (53)

ση
∗
⇀ σ0 in L∞(0, Te;L

2(Ω,S3)), (54)

Tη(ση)
∗
⇀ σ0 in L∞(0, Te;L

2(Ω× Y,S3)), (55)

Tη(pη)⇀ p0 in L2(0, Te;L
2(Ω× Y,M3)), (56)

Tη(∂tpη)⇀ ∂tp0 in L2(0, Te;L
2(Ω× Y,M3)), (57)

and

Tη(Curl pη)⇀ Curl p in L2(0, Te;L
2(Ω, H1

per(Y,M
3))), (58)

Tη(dev sym pη)⇀ dev sym p0 in L2(ΩTe
× Y,M3), (59)

Tη(CurlCurl pη)⇀ p̃ in L2(ΩTe
× Y,M3), (60)

Tη(Σ
lin
η )⇀ Σlin

0 in Lq(ΩTe
× Y,M3), (61)

where

p̃ := CurlCurl p+Curly Curly p1,

Σlin
0 := σ0 − C1[y] dev sym p0 − C2p̃,
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and (u0, u1, σ, σ0, p, p0, p1) is a solution of the following system of equations:

− divx σ(x, t) = b(x, t), (62)

−divyσ0(x, y, t) = 0, (63)

σ0(x, y, t) = C[y](sym(∇xu0(x, t) +∇yu1(x, y, t)− p0(x, y, t))),(64)

∂tp0(x, y, t) ∈ g(y,Σlin
0 (x, y, t)), (65)

which holds for (x, y, t) ∈ Ω×R3× [0, Te], and the initial condition and boundary
condition

p(x, 0) = p(0)(x), x ∈ Ω, (66)

p(x, t)× n(x) = 0, (x, t) ∈ ∂Ω× [0, Te), (67)

u0(x, t) = 0, (x, t) ∈ ∂Ω× [0, Te). , (68)

The functions σ and p are related to σ0 and p0 in the following ways

σ(x, t) =

∫

Y

σ0(x, y, t)dy, p(x, t) =

∫

Y

p0(x, y, t)dy.

The proof of Theorem 5.7 is divided into two parts. In the next lemma we
derive the uniform estimates for (uη, ση, pη) and then, based on these estimates,
we show the convergence result.

5.1 Uniform estimates

First, we show that the sequence of solutions (uη, ση, pη) is weakly compact.

Lemma 5.8. Let all assumptions of Theorem 5.7 be satisfied. Then the sequence
of solutions (uη, ση) is weakly compact in H1(0, Te;H

1
0 (Ω,R

3)×L2(Ω,S3)) and
pη is weakly compact in H1(0, Te;L

2(Ω,M3)) ∩ L2(0, Te, Z
2
Curl(Ω,M

3)).

Proof. To prove the lemma we recall the basic steps in the proof of the existence
result (Theorem 5.6). For more details the reader is referred to [45]. The time-
discretized problem for (5) - (10) is introduced as follows:
Let us fix any m ∈ N and set

h :=
Te
2m

, p0η,m := 0 bnm :=
1

h

∫ nh

(n−1)h

b(s)ds ∈ Lq(Ω,R3), n = 1, ..., 2m.

Then we are looking for functions unη,m ∈ H1(Ω,R3), σn
η,m ∈ L2(Ω,S3) and

pnη,m ∈ Z2
Curl(Ω,M

3) with pnη,m(x) ∈ sl(3) for a.e. x ∈ Ω and

Σlin
n,m := σn

η,m−C1[x/η] dev sym pnη,m−
1

m
pnη,m−C2 Curl Curl p

n
η,m ∈ Lq(Ω,M3)

solving the following problem

− divx σ
n
η,m(x) = bnm(x), (69)

σn
η,m(x) = C[x/η](sym(∇xu

n
η,m(x)− pnη,m(x))) (70)

pnη,m(x) − pn−1
η,m (x)

h
∈ g

(
x/η,Σlin

n,m(x)
)
, (71)
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together with the boundary conditions

pnη,m(x) × n(x) = 0, x ∈ ∂Ω, (72)

unη,m(x) = 0, x ∈ ∂Ω . (73)

Such functions (unη,m, σ
n
η,m, p

n
η,m) exist and satisfy the following estimate

1

2

(

‖B1/2σl
η,m‖22 + α1‖ dev sym plη,m‖22 +

1

m
‖plη,m‖22 + C2‖Curl p

l
η,m‖22

)

+hĈ

l∑

n=1

(

∥
∥Σlin

n,m

∥
∥
q

q
+
∥
∥
∥
pnη,m − pn−1

η,m

h

∥
∥
∥

q∗

q∗

)

≤ C(0) +

∫

Ω

m(x)dx (74)

+hC̃
l∑

n=1

(

‖bnm‖qq + ‖(bnm − bn−1
m )/h‖22

)

for any fixed l ∈ [1, 2m], where (here B := C−1)

2C(0) := ‖B1/2σ(0)‖22

and C̃, Ĉ are some positive constants independent of η (see [45] for details). To
proceed further we introduce the Rothe approximation functions.

Rothe approximation functions: For any family {ξnm}n=0,...,2m of functions
in a reflexive Banach space X , we define the piecewise affine interpolant ξm ∈
C([0, Te], X) by

ξm(t) :=

(
t

h
− (n− 1)

)

ξnm +

(

n−
t

h

)

ξn−1
m for (n− 1)h ≤ t ≤ nh (75)

and the piecewise constant interpolant ξ̄m ∈ L∞(0, Te;X) by

ξ̄m(t) := ξnm for (n− 1)h < t ≤ nh, n = 1, ..., 2m, and ξ̄m(0) := ξ0m. (76)

For the further analysis we recall the following property of ξ̄m and ξm:

‖ξm‖Lq(0,Te;X) ≤ ‖ξ̄m‖Lq(−h,Te;X) ≤
(

h‖ξ0m‖qX + ‖ξ̄m‖qLq(0,Te;X)

)1/q

, (77)

where ξ̄m is formally extended to t ≤ 0 by ξ0m and 1 ≤ q ≤ ∞ (see [51]).

Now, from (74) we get immediately that

C̄‖σ̄η,m(t)‖2Ω + α1‖ dev sym p̄η,m(t)‖22 +
1

m
‖p̄η,m(t)‖22 + C2‖Curl p̄η,m(t)‖22

+2Ĉ
(

‖∂tpη,m‖q
∗

q∗,Ω×(0,Te)
+ ‖Σ̄lin

m ‖qq,Ω×(0,Te)

)

(78)

≤ 2C(0) + 2‖m‖1,Ω + 2C̃‖b‖qW 1,q(0,Te;Lq(Ω,S3)),

where C̄ is some other constant independent of η. In [45] it is shown that the
Rothe approximation functions (uη,m, ση,m, pη,m) and (ūη,m, σ̄η,m, p̄η,m) con-
verge to the same limit (uη, ση, pη). Due to the lower semi-continuity of the
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norm and (78) this convergence is uniform with respect to η. Therefore, esti-
mate (78) provides that

{ση}η is uniformly bounded in L∞(0, Te;L
2(Ω,S3)), (79)

{dev sym pη}η is uniformly bounded in L∞(0, Te;L
2(Ω,M3)), (80)

{Curl pη}η is uniformly bounded in L∞(0, Te;L
2(Ω,M3)), (81)

{pη}η is uniformly bounded in W 1,q∗(0, Te;L
q∗(Ω,M3)), (82)

{Σlin
η }η is uniformly bounded in Lq(ΩTe

,M3). (83)

Furthermore, from estimates (4), (79) - (83) we obtain easily that

{uη}η is uniformly bounded in L2(0, Te;H
1
0 (Ω,R

3)), (84)

{pη}η is uniformly bounded in L2(0, Te;Z
2
Curl(Ω,M

3)). (85)

Additional regularity of discrete solutions. In order to get the additional
a’priori estimates, we extend the function b to t < 0 by setting b(t) = b(0). The
extended function b is in the space W 1,p(−2h, Te;W

−1,p(Ω,R3)). Then, we set
b0m = b−1

m := b(0). Let us further set

p−1
η,m := p0η,m − hGη(Σ

lin
0,m),

where Gη : Lp(Ω,M3) → 2L
q(Ω,sl(3)) denotes the canonical extensions of g(x/η, ·) :

M3 → 2sl(3). The assumption (50) implies that p−1
η,m = 0. Next, we define func-

tions (u−1
η,m, σ

−1
η,m) and (u0η,m, σ

0
η,m) as solutions of the linear elasticity problem

(15) - (17) to the data b̂ = b−1
m , γ̂ = 0, ε̂p = 0 and b̂ = b0m, γ̂ = 0, ε̂p = 0,

respectively. Obviously, the following estimate holds

{∥
∥
∥
∥
∥

u0η,m − u−1
η,m

h

∥
∥
∥
∥
∥
2

,

∥
∥
∥
∥
∥

σ0
η,m − σ−1

η,m

h

∥
∥
∥
∥
∥
2

}

≤ C, (86)

where C is some positive constant independent of m and η. Taking now the
incremental ratio of (71) for n = 1, ..., 2m, we obtain8

rt pnη,m − rt pn−1
η,m = Gη(Σ

lin
n,m)− Gη(Σ

lin
(n−1),m).

Let us now multiply the last identity by −(Σlin
n,m−Σlin

(n−1),m)/h. Then using the
monotonicity of Gη we obtain that

1

m

(

rt pnη,m − rt pn−1
η,m , rt p

n
η,m

)

Ω
+
(
rt pnη,m − rt pn−1

η,m , C1 dev sym(rt pnη,m)
)

Ω

+
(
rt pnη,m − rt pn−1

η,m , C2 CurlCurl(rt p
n
η,m)

)

Ω
≤
(
rt pnη,m − rt pn−1

η,m , rtσ
n
η,m

)

Ω
.

With (69) and (70) the previus inequality can be rewritten as follows

1

m

(

rt pnη,m − rt pn−1
η,m , rt p

n
η,m

)

Ω
+
(
rt pnη,m − rt pn−1

η,m , C1 dev sym(rt pnη,m)
)

Ω

8For sake of simplicity we use the following notation rtφn
m := (φn

m − φn−1
m )/h, where

φ0
m, φ1

m, ..., φ2m
m is any family of functions.
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+
(
rt pnη,m − rt pn−1

η,m , C2 Curl Curl(rt p
n
η,m)

)

Ω
+
(
rtσn

η,m − rtσn−1
η,m ,C−1 rtσn

η,m

)

Ω

≤
(
rtunη,m − rtun−1

η,m , rt b
n
m

)

Ω
.

As in the proof of (74), multiplying the last inequality by h and summing with
respect to n from 1 to l for any fixed l ∈ [1, 2m] we get the estimate

h

m
‖ rt plη,m‖22 + hα1‖ dev sym rt plη,m‖22 + h‖B1/2 rtσl

η,m‖22 + hC2‖Curl rt p
l
η,m‖22

≤ 2hC(0) + 2h

l∑

n=1

(
rtunη,m − rtun−1

η,m , rt b
n
m

)

Ω
, (87)

where now C(0) denotes

2C(0) := ‖B1/2 rtσ0
η,m‖22.

We note that (86) yields the uniform boundness of C(0) with respect to m. Now,
using Young’s inequality with ǫ > 0 in (87) and then summing the resulting
inequality for l = 1, ..., 2m we derive the inequality

1

m
‖∂tpm‖22,ΩTe

+ α1 ‖dev sym (∂tpm)‖22,ΩTe
+ C2 ‖Curl (∂tpm)‖22,ΩTe

(88)

+C ‖∂tσm‖22,ΩTe
≤ Cε‖∂tbm‖22,ΩTe

+ 2ε‖∂tum‖22,ΩTe
,

where Cε is some positive constant independent of m and η. Using now inequal-
ity (4), the condition ∂tpm(x, t) ∈ sl(3) for a.e. (x, t) ∈ ΩTe

, and the ellipticity
theory of linear systems we obtain that

1

m
‖∂tpm‖22,ΩTe

+ Cǫ(Ω) ‖∂tpm‖22,ΩTe
+ C ‖∂tσm‖22,ΩTe

≤ Cε‖∂tbm‖22,ΩTe
, (89)

where Cε(Ω) is some further positive constant independent of m and η. Since
bm is uniformly bounded in W 1,q(ΩTe

,S3), estimates (88) and (89) imply

{dev sym∂tpη}η is uniformly bounded in L2(0, Te;L
2(Ω,M3)), (90)

{∂tση}η is uniformly bounded in L2(0, Te;L
2(Ω,M3)), (91)

{Curl∂tpη}η is uniformly bounded in L2(0, Te;L
2(Ω,M3)), (92)

{pη}η is uniformly bounded in H1(0, Te;L
2
Curl(Ω,M

3)). (93)

The proof of the lemma is complete.

5.2 Proof of Theorem 5.7

Now, we can prove Theorem 5.7.

Proof. Due to Lemma 5.8, we have that the sequence of solutions (uη, ση) is
weakly compact in H1(0, Te;H

1
0 (Ω,R

3) × L2(Ω,S3)) and the sequence pη is
weakly compact in H1(0, Te;L

2(Ω,M3)) ∩ L2(0, Te;Z
2
Curl(Ω,M

3)). Thus, by
Proposition 3.3, Proposition 3.5 and Theorem 4.4, the uniform estimates (79)
- (93) yield that there exist functions u0, u1, σ, σ0, p, p0 and p1 with the
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prescribed regularities in Theorem 5.6 such that the convergences in (51) - (61)
hold. Note that (53) - (56) give the equation (64), i.e

σ0(x, y, t) = C[y]
(
sym(∇xu0(x, t) +∇yu1(x, y, t)− p0(x, y, t))

)
, a.e. (94)

By Proposition 3.3, the weak-star limit σ of ση in L∞(0, Te;L
2(Ω,S3)) and

the weak limit p of pη in L2(0, Te;L
2(Ω,M3)) are related to σ0 and p0 in the

following ways

σ(x, t) =

∫

Y

σ0(x, y, t)dy, p(x, t) =

∫

Y

p0(x, y, t)dy.

Now, as in [17], we consider any φ ∈ C∞
0 (Ω,R3). Then, by the weak convergence

of ση, the passage to the weak limit in (5) yields

∫

Ω

(σ(x, t),∇φ(x))dx =

∫

Ω

(b(x, t), φ(x))dx, (95)

i.e divx σ = b in the sense of distributions. Next, define φη(x) = ηφ(x)ψ(x/η),
where φ ∈ C∞

0 (Ω,R3) and ψ ∈ C∞
per(Y,R

3). Then, one obtains that

φη ⇀ 0, in H1
0 (Ω,R

3), and Tη(∇φη) → φ∇yψ, in L2(Ω, H1
per(Y,R

3)).

Therefore, since φη has a compact support,

∫

Ω×Y

(Tη(ση(t)), Tη(∇φη))dxdy
Tη

≃

∫

Ω

(b(t), φη)dx. (96)

The passage to the limit in (96) leads to

∫

Ω×Y

(σ0(x, y, t), φ(x)∇yψ(y))dxdy = 0.

Thus, in virtue of the arbitrariness of φ, one can conclude that

∫

Ω×Y

(σ0(x, y, t),∇yψ(y))dxdy = 0. (97)

i.e divy σ0(x, ·, t) = 0 in the sense of distributions.

Next, let Tη(Gη) : Lp(Ω × Y,RN ) → 2L
q(Ω×Y,RN ) and G : Lp(Ω,RN ) →

2L
q(Ω,RN ) denote the canonical extensions of Tη(gη)(x, y) : RN → 2R

N

and

g(y) : RN → 2R
N

, respectively. Here, g(y) is the pointwise limit graph of the
convergent sequence of graphs Tη(gη)(x, y). The existence of the limit graph for

Tη(gη)(x, y) guaranteed by Theorem 2.7. Indeed, the resolvent j
Tη(gη)
λ converges

pointwise to the resolvent jgλ, what follows from the periodicity of the mapping

y → g(y, z) : Y → 2R
N

and the simple computations:

j
Tη(gη)
λ (x, y, z) = Tη(j

gη
λ )(x, y, z) = jgλ(y, z),

for a.e. (x, y) ∈ Ω× Y and every z ∈ RN . Thus, by Theorem 2.7 we get that

Tη(gη)(x, y)  g(y) (98)
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holds for a.e. (x, y) ∈ Ω × Y . Since gη ∈ M(Ω,RN , p, α,m), by Defini-
tion 3.7 of the unfolding operator for a multi-valued function it follows that
Tη(gη) ∈ M(Ω × Y,RN , p, α,m). Therefore, due to this and convergence (98),
by Propositon 5.4(b) we obtain that

Tη(Gη)  G. (99)

To prove that the limit functions (σ0, p0) satisfy (65), we apply Theorem 2.6.
Since the graph convergence is already established, we show that condition (13)
is fulfilled. Using equations (5) and (6), we successfully compute that

1

|Y |

∫

Ω×Y

(Tη(∂tpη(t)), Tη(Σ
lin
η (t)))dxdy

=
1

|Y |

∫

Ω×Y

(
Tη
(
∂t(ε(∇uη(t))− C

−1ση(t))
)
, Tη(ση(t))

)
dxdy

+
1

|Y |

∫

Ω×Y

(
Tη(∂tpη(t)), Tη(Σ

lin
sh,η(t) + Σlin

curl,η(t))
)
dxdy

=

∫

Ω

(b(t), ∂tuη(t))dx −

∫

Λη

(b(t), ∂tuη(t))dx

−
1

|Y |

∫

Ω×Y

(
Tη(∂tC

−1ση(t))), Tη(ση(t))
)
dxdy

−
1

|Y |

∫

Ω×Y

(
C1Tη(∂t dev sym pη(t)), Tη(dev sym pη(t))

)
dxdy

−
1

|Y |

∫

Ω×Y

(
C2Tη(∂t Curl pη(t)), Tη(Curl pη(t))

)
dxdy.

Integrating the last identity over (0, t) and using the integration-by-parts for-
mula we get that

1

|Y |

∫ t

0

(Tη(∂tpη(t)), Tη(Σ
lin
η (t)))Ω×Y dt (100)

=

∫ t

0

(b(t), ∂tuη(t))Ωdt−

∫ t

0

(b(t), ∂tuη(t))Λη
dt

−
1

2
‖Tη(B

1/2ση(t))‖
2
2,Ω×Y +

1

2
‖Tη(B

1/2ση(0))‖
2
2,Ω×Y

−
1

2
‖C

1/2
1 Tη(dev sym pη(t))‖

2
2,Ω×Y −

1

2
‖C

1/2
2 Tη(Curl pη(t))‖

2
2,Ω×Y ,

where B = C−1. Due to the uniform boundness of {∂tuη} in L2(0, Te;H
1
0 (Ω,R

3)),
we easily obtain that

lim
η→0

∫ t

0

(b(t), ∂tuη(t))Λη
dt = 0.

Moreover, since ση(0) solves the linear elasticity problem (15) - (17) with ε̂η = 0

and b̂ = b(t), by Theorem 3.8, we can conclude that Tη(B1/2ση(0)) converges to
B1/2σ0(0) strongly in L2(Ω× Y,S3). Thus, by the lower semi-continuity of the
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norm the passing to the limit in (100) yields

lim sup
n→∞

1

|Y |

∫ t

0

(Tη(∂tpη(t)), Tη(Σ
lin
η (t)))Ω×Y dt

≤

∫ t

0

(b(t), ∂tu0(t))Ωdt−
1

2
‖B1/2σ0(t)‖

2
2,Ω×Y +

1

2
‖B1/2σ0(0)‖

2
2,Ω×Y

−
1

2
‖C1 dev sym p0(t)‖

2
2,Ω×Y −

1

2
‖C2 Curl p0(t)‖

2
2,Ω×Y ,

or

lim sup
n→∞

1

|Y |

∫ t

0

(Tη(∂tpη(t)), Tη(Σ
lin
η (t)))Ω×Y dt

≤

∫ t

0

(b(t), ∂tu0(t))Ωdt−
1

|Y |

∫ t

0

(
∂tC

−1σ0(t), σ0(t)
)

Ω×Y
dt (101)

−
1

|Y |

∫ t

0

(
∂t dev sym p0(t), C1 dev sym p0(t)

)

Ω×Y
dt

−
1

|Y |

∫ t

0

(
∂t Curl p0(t), C2 Curl p0(t)

)

Ω×Y
dt

We note that (95) and (97) imply
∫

Ω

(b(t), ∂tu0(t))dx =
1

|Y |

∫

Ω×Y

(
σ0(t), ∂tε(∇u0(t) +∇yu1(t))

)
dxdy. (102)

And, since for almost all (x, y, t) ∈ Ω× Y × (0, Te) one has
(
∂t dev sym p0(x, y, t), C1[y] dev sym p0(x, y, t)

)
=
(
∂tp0(x, y, t), C1[y] dev sym p0(x, y, t)

)
,

and that for almost all t ∈ (0, Te)
(
∂t Curl p0(t), C2 Curl p0(t)

)

Ω×Y
=
(
∂tp0(t), C2 Curl Curl p0(t)

)

Ω×Y
,

the relations (101) and (102) together with (94) yield

lim sup
n→∞

1

|Y |

∫ t

0

(Tη(∂tpη(t)), Tη(Σ
lin
η (t)))Ω×Y dt

≤
1

|Y |

∫ t

0

(
∂tp0(t),Σ

lin
0 (t)

)

Ω×Y
dt. (103)

In virtue of convergence (99) and inequality (103), Theorem 2.6 yields that

[Σlin
0 (x, y, t), ∂tp0(x, y, t)] ∈ Grg(y)

or, equivalently, that

∂tp0(x, y, t) ∈ g(y,Σlin
0 (x, y, t)).

The initial and boundary conditions (66) - (68) for the limit functions u0 and
p are easily obtained from the weak compactness of uη and pη in the spaces
H1(0, Te;H

1
0 (Ω,R

3)) and H1(0, Te;L
2(Ω,M3)) ∩ L2(0, Te;Z

2
Curl(Ω,M

3)), re-
spectively. Therefore, summarizing everything done above, we conclude that
the functions (u0, u1, σ, σ0, p, p0, p1) satisfy the homogenized initial-boundary
value problem formed by the equations/inequalities (62) - (68).
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