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Abstract

In isotropic finite elasticity, unlike in the linear elastic theory, a homogeneous Cauchy stress
may be induced by non-homogeneous strains. To illustrate this, we identify compatible non-
homogeneous three-dimensional deformations producing a homogeneous Cauchy stress on a cuboid
geometry, and provide an example of an isotropic hyperelastic material, which is not rank-one
convex, and for which the homogeneous stress and the associated non-homogeneous strains on a
domain similar to those analysed are given explicitly.
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1 Introduction

In this paper, we consider the question if, and how, a homogeneous Cauchy stress tensor can be gen-
erated by non-homogeneous finite deformations. Without assuming invertibility of the Cauchy stress
tensor, this question was first addressed in the recent article [14], where compatible non-homogeneous
finite plane deformations with a constant Cauchy stress on a rectangular domain were identified,
and an example of an isotropic strain energy function was provided, such that, for a material de-
scribed by this function and occupying a domain similar to those analysed, the homogeneous stress
and the corresponding non-homogeneous strains could be given explicitly. As the energy function in
this example was not rank-one convex, it could correspond to materials capable of undergoing phase
transitions [2, 3, 7].

In isotropic linear elasticity, a homogeneous stress is induced by a homogeneous strain, provided
that the usual positive-definiteness assumptions on the elastic energy are assumed. In this case, the
linear elastic energy takes the form

Wlin(∇u) = µ ‖dev sym∇u‖2 +
κ

2
[tr (sym∇u)]2 ,

where u : B0 → B is the displacement vector, ε = sym∇u =
[
∇u + (∇u)T

]
/2 is the infinitesimal

strain tensor, tr(ε) = ε11 + ε22 + ε33 is the trace of the strain tensor, and

dev ε = ε− 1

3
tr(ε)I

is the deviatoric strain, with I the tensor identity. In the above formulation, ‖ · ‖ denotes to Frobenius
norm, hence, for a second order tensor A, ‖A‖2 = A : A = tr(ATA).

The corresponding stress-strain law is

σ = 2µ dev ε+ κ tr(ε) I.

This relation is invertible if and only if the shear modulus satisfies µ > 0, and similarly the bulk
modulus satisfies κ > 0.
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When σ = T is given, ε = sym∇u = σ−1(T) is uniquely determined, and moreover, if sym∇u =
constant = σ−1(T) ∈ Sym(3), where Sym(3) is the set of symmetric matrices, then

∇u(X) = σ−1(T) + A(X), A(X) ∈ so(3), (1.1)

where so(3) is the set of skew-symmetric matrices. This implies

Curl ∇u︸ ︷︷ ︸
=0

= Curl σ−1(T)︸ ︷︷ ︸
=0

+Curl A(x),

hence Curl A(X) = 0, and therefore A(X) = A = constant [19].
Thus, a constant stress tensor σ = T implies the following representation for the displacement

field

u(X) =
[
σ−1(T) + A

]
X + b, (1.2)

where A ∈ so(3) is arbitrary and b ∈ R3 is an arbitrary constant translation. Hence, the homogeneous
displacement is uniquely determined, up to infinitesimal rigid body rotations and translations, from
the constant stress field σ = T.

In nonlinear elasticity, for a homogeneous isotropic hyperelastic body under finite strain deforma-
tion, the Cauchy stress tensor can be represented as follows

σ(B) = β0 I + β1 B + β−1 B−1, (1.3)

where B = FFT is the left Cauchy-Green tensor, with the tensor F = ∇ϕ representing the deformation
gradient, and the coefficients:

β0 =
2√
I3

(
I2
∂W

∂I2
+ I3

∂W

∂I3

)
, β1 =

2√
I3

∂W

∂I1
, β−1 = −2

√
I3
∂W

∂I2
(1.4)

are scalar functions of the strain invariants:

I1(B) = tr B, I2(B) =
1

2

[
(tr B)2 − tr B2

]
= tr (Cof B) , I3(B) = det B,

with W (I1, I2, I3) the strain energy density function describing the properties of the isotropic hyper-
elastic material [9, 10,21,23].

When the material is incompressible, the Cauchy stress takes the form

σ(B) = −p I + β1 B + β−1 B−1, (1.5)

where p is an arbitrary hydrostatic pressure.
If invertibility holds in (1.3), then a unique left Cauchy-Green tensor B ∈ Sym+(3) can be found

that satisfies (see [6, 8, 12,15–17,21])

∇ϕ (∇ϕ)T = B = σ−1(T). (1.6)

This implies

ϕ(X) =
(
V R

)
X + b =

[√
σ−1(T) R

]
X + b, (1.7)

where R ∈ SO(3) is an arbitrary constant rotation, b ∈ R3 is an arbitrary constant translation, and

V is the left principal stretch tensor satisfying V
2

= B, and is uniquely determined from the given
stress σ = T [6, p. 55].

In this study, we extend the approach developed in [14] to further obtain a homogeneous Cauchy
stress generated by non-homogeneous three-dimensional finite deformations. In Section 2, we show
that the isotropic hyperelastic material characterised by the strain energy function introduced in the
context of finite plane deformations can also undergo a homogeneous Cauchy stress that is produced
by non-homogeneous three-dimensional deformations. In Section 3, we construct examples of such
deformations on a cuboid domain, where the deformations are continuous and homogeneous in two
different parts of the domain, which can only be separated by a plane interface, and the homogeneous
deformations corresponding to the two phases are rank-one connected.
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2 Hyperelastic material under homogeneous stress induced by
different deformations

In [14], the following strain energy function, which is not rank-one convex, was introduced

W =
µ

2

(
I
−1/3
3 I1 − 3

)
+
µ̃

4
(I1 − 3)2 +

κ

2

(
I
1/2
3 − 1

)2
=
µ

2

∥∥∥∥∥ F

(det F)1/3

∥∥∥∥∥
2

− 3

+
µ̃

4

(
‖F‖2 − 3

)2
+
κ

2
(det F− 1)2 ,

(2.1)

where µ > 0 is the infinitesimal shear modulus, κ > 0 is the infinitesimal bulk modulus, and µ̃ > 0 is
a positive constant independent of the deformation, and ‖ · ‖ is the Frobenius norm.

For a material described by the strain energy function (2.1), finite plane elastic deformations were
found, such that the corresponding Cauchy stress tensor could be expressed equivalently in terms of

two different homogeneous left Cauchy-Green tensors B = FFT and B̂ = F̂F̂
T

, and such that some
part of the deformed body was under the strain B while another part was under the strain B̂.

In general, when a Cauchy stress (1.3) can be expressed equivalently in terms of two different

homogeneous deformation tensors B = FFT and B̂ = F̂F̂
T

, for geometric compatibility, there must
exist two non-zero vectors a and n, such that the Hadamard jump condition is satisfied as follows [4,5]:

F̂− F = a⊗ n, (2.2)

where n is the normal vector to the interface between the two phases corresponding to the deformation
gradients F and F̂. Equivalently, F and F̂ must be rank-one connected, i.e.

rank
(
F− F̂

)
= 1. (2.3)

As shown in [18], it is not possible to find a rank-one convex elastic energy, such that the Cauchy
stress σ is not injective and there exists a homogeneous state with deformation gradient F, such that
σ(F) = σ(F + a⊗ n), with a and n as given in (2.2).

For the material model (2.1), differentiating with respect to the strain invariants gives:

∂W

∂I1
=

µ

2
I
−1/3
3 +

µ̃

2
(I1 − 3) ,

∂W

∂I2
= 0,

∂W

∂I3
= −µ

6
I1I
−4/3
3 +

κ

2
I
−1/2
3

(
I
1/2
3 − 1

)
.

Hence the material parameters (1.4) take the form:

β0 = −µ
3
I1I
−5/6
3 + κ

(
I
1/2
3 − 1

)
, β1 = µI

−5/6
3 + µ̃I

−1/2
3 (I1 − 3) , β−1 = 0. (2.4)

Here, we consider the following two homogeneous deformations with deformation gradients, re-
spectively,

F =

 k sa 0
0 a 0
0 0 1/a

 , F̂ =

 k −sa 0
0 a 0
0 0 1/a

 , (2.5)

where k > 0, a > 0, and s > 0 are positive constants.
For the two deformation gradients given by (2.5), the rank-one connectivity condition (2.3) is

satisfied, and is equivalent to(
F11 − F̂11

)(
F22 − F̂22

)
=

(
F12 − F̂12

)(
F21 − F̂21

)
. (2.6)
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Note that, when a = 1, (2.5) correspond to the finite plane deformations analysed in [14].
The associated left Cauchy-Green tensors are, respectively,

B = FFT =

 k2 + s2a2 sa2 0
sa2 a2 0
0 0 1/a2

 , B̂ = F̂F̂
T

=

 k2 + s2a2 −sa2 0
−sa2 a2 0

0 0 1/a2

 , (2.7)

and, since s 6= 0, it follows that F 6= F̂ and B 6= B̂.
By (1.3) and (2.4), the corresponding Cauchy stresses take the form

σ(B) = β0 I + β1 B, σ(B̂) = β0 I + β1 B̂. (2.8)

Writing the components of the Cauchy stress described by (2.8) in the two equivalent forms σ(B) =
σ(B̂) leads to the following simultaneous equations:

β0 + β1 B11 = β0 + β1 B̂11, (2.9)

β0 + β1 B22 = β0 + β1 B̂22, (2.10)

β0 + β1 B33 = β0 + β1 B̂33, (2.11)

β1 B12 = β1 B̂12, (2.12)

β1 B13 = β1 B̂13, (2.13)

β1 B23 = β1 B̂23. (2.14)

Since, for both tensors B and B̂ in (2.7), the corresponding invariants are I1 = k2+s2a2+a2+1/a2

and I3 = k2, by (2.4),

β0 = −µ
3
k−5/3

(
k2 + s2a2 + a2 +

1

a2

)
+ κ (k − 1) ,

β1 = µk−5/3 + µ̃k−1
(
k2 + s2a2 + a2 +

1

a2
− 3

)
.

In this case, it can be verified that, if

µ

3µ̃
<

(
3− a2 − 1/a2

4

)4/3

and 0 < s <
1

a

√
3− 4

(
µ

3µ̃

)3/4

− a2 − 1

a2
,

then there exists k0 ∈ (0, 1), such that, for k = k0,

β0 = −µ
3
k
−5/3
0

(
k20 + s2a2 + a2 +

1

a2

)
− κ (1− k0) < 0, β1 = 0,

and, therefore, the equations (2.6) and (2.9)-(2.14) are satisfied simultaneously, with the common
Cauchy stress tensor

σ(B) = σ(B̂) = β0I. (2.15)

As in the case of finite plane deformations described in [14], when k → 1, a → 1, and s → 0,
corresponding to the linear elastic limit, in (2.7), k2 + s2a2 + a2 + 1/a2 − 3 is arbitrarily small, and
β1 = µk−5/3 + µ̃k−1

(
k2 + s2a2 + a2 + 1/a2 − 3

)
→ µ 6= 0. Hence, if β1 = 0 and s is close to zero, then

k and a cannot be simultaneously close to one, i.e. the two rank-one connected deformation gradients
(2.5) do not correspond to infinitesimal deformations.

If different k1, k2 ∈ (0, 1) exist, such that β1 = 0 with the same s > 0 and a > 0, then two different
sets of deformation gradients

F =

 k1 sa 0
0 a 0
0 0 1/a

 and F̂ =

 k1 −sa 0
0 a 0
0 0 1/a

 ,
4



satisfy (2.3) and produce the same Cauchy stress

σ = β0 I =

[
−µ

3
k
−5/3
1

(
k21 + s2a2 + a2 +

1

a2

)
− κ (1− k1)

]
I,

and,

F =

 k2 sa 0
0 a 0
0 0 1/a

 and F̂ =

 k2 −sa 0
0 a 0
0 0 1/a

 ,
are rank-one connected and produce the Cauchy stress

σ = β0 I =

[
−µ

3
k
−5/3
2

(
k22 + s2a2 + a2 +

1

a2

)
− κ (1− k2)

]
I.

Next, we show that, an elastic body made from a material described by the strain energy function
(2.1) and occupying a particular three-dimensional domain can undergo a constant Cauchy stress
(2.15), with some part of the body deforming under the strain B while another part deforms under
the strain B̂, where B and B̂ are given by (2.7).

3 Homogeneous stress induced by non-homogeneous deformations

We consider a continuous material body that occupies a compact three-dimensional domain Ω ∈ R3,
such that the interior of the body is an open, bounded, connected set Ω ⊂ R3, and its boundary
Γ = ∂Ω = Ω \ Ω is Lipschitz continuous (in particular, we assume that a unit normal vector n exists
almost everywhere on Γ). The body is subject to a finite elastic deformation defined by the one-to-one,
orientation preserving transformation

ϕ : Ω→ R3,

such that J = det (∇ϕ) > 0 on Ω and ϕ is injective on Ω. The injectivity condition on Ω guar-
antees that interpenetration of the matter is avoided. However, since self-contact is permitted, this
transformation does not need to be injective on Ω̄.

We denote by x = ϕ(X) the spatial point corresponding to the place occupied by the particle X
in the deformation ϕ. For the deformed body, the equilibrium state in the presence of a dead load is
described in terms of the Cauchy stress by the Eulerian field equation

− div σ(x) = f(x), x ∈ ϕ(Ω). (3.1)

The governing equation (3.1) is completed by a constitutive law for σ, depending on material proper-
ties, and supplemented by boundary conditions.

Since the domain occupied by the body after deformation is generally unknown, we rewrite the
above equilibrium problem as an equivalent problem in the reference configuration where the inde-
pendent variables are X ∈ Ω. The corresponding Lagrangian equation of nonlinear elastostatics takes
the form

−Div S1(X) = f(X), X ∈ Ω, (3.2)

where S1 = σ Cof F is the first Piola-Kirchhoff stress tensor, F = ∇ϕ is the gradient of the deformation
ϕ(X) = x, such that J = det F > 0, and f(X) = J f(x).

For a homogeneous compressible hyperelastic material described by the strain energy function
W (F), the first Piola-Kirchhoff stress tensor is equal to

S1(F) =
∂W (F)

∂F
, (3.3)

and the associated Cauchy stress tensor takes the form σ = J−1S1F
T = S1 (CofF)−1.
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3.1 The boundary value problem

The general boundary value problem (BVP) is to find the displacement u(X) = ϕ(X) − X, for all
X ∈ Ω, such that the equilibrium equation (3.2) is satisfied subject to the following conditions on the
relatively disjoint, open subsets of the boundary {ΓD,ΓN} ⊂ ∂Ω, such that ∂Ω \ (ΓD ∪ ΓN ) has zero
area [11,13,20]:

• The Dirichlet (displacement) conditions on ΓD

u(X) = uD(X), (3.4)

• The Neumann (traction) conditions on ΓN ,

S1(X)N = gN (X), (3.5)

where N is the outward unit normal vector to ΓN , and gNdA = τda, where τ = σn is the
surface traction measured per unit area of the deformed state.

The existence of a solution to the BVP depends on whether or not there exists a deformation which
minimises, in the local or global sense, the total elastic energy of the body [1, 2, 22]. In particular, if
the Cauchy stress is constant, then the equilibrium equation (3.1) is satisfied.

3.2 Compatible finite deformations

We consider the finite deformation of an elastic cuboid partitioned into uniform right-angled tetrahedra
as shown in Figure 1.

Figure 1: Cuboid ABCDA′B′C ′D′ partitioned into six right-angled tetrahedra: A′ABC, A′C ′BC,
A′B′C ′B, B′C ′BD, B′C ′D′D, C ′BCD.

Assuming that the deformation gradient is homogeneous in every tetrahedron, in a single tetrahe-
dron A′ABC, the displacement field takes the form

u(X) =

 u1(X)
u2(X)
u3(X)

 =

 a11X1 + a12X2 + a13X3 + b1
a21X1 + a22X2 + a23X3 + b2
a31X1 + a32X2 + a33X3 + b3

 , (3.6)

where the 12 undetermined coefficients aij and bi, with i, j = 1, 2, 3, are constants, and the associated
deformation gradient is equal to

F =

 1 + a11 a12 a13
a21 1 + a22 a23
a31 a32 1 + a33

 . (3.7)
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In order to determine the coefficients aij and bi, with i, j = 1, 2, 3, we first evaluate the displacement
(3.6) at the 4 vertices {A,B,C,A′} ∈ R3:

A′ =

 XA′
1

XA′
2

XA′
3

 , A =

 XA
1

XA
2

XA
3

 , B =

 XB
1

XB
2

XB
3

 , C =

 XC
1

XC
2

XC
3

 .
The displacements

{
uA′

,uA,uB,uC
}
∈ R3 at the 4 vertices are, respectively,

uA′
=

 uA
′

1

uA
′

2

uA
′

3

 , uA =

 uA1
uA2
uA3

 , uB =

 uB1
uB2
uB3

 , uC =

 uC1
uC2
uC3

 .
Hence, a system of 12 linear equations can be formed from which the 12 coefficients are expressed

uniquely in terms of the displacements, as follows:

a11 = det


uA

′
1 XA′

2 XA′
3 1

uA1 XA
2 XA

3 1
uB1 XB

2 XB
3 1

uC1 XC
2 XC

3 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

a12 = det


XA′

1 uA
′

1 XA′
3 1

XA
1 uA1 XA

3 1
XB

1 uB1 XB
3 1

XC
1 uC1 XC

3 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

a13 = det


XA′

1 XA′
2 uA

′
1 1

XA
1 XA

2 uA1 1
XB

1 XB
2 uB1 1

XC
1 XC

2 uC1 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

a21 = det


uA

′
2 XA′

2 XA′
3 1

uA2 XA
2 XA

3 1
uB2 XB

2 XB
3 1

uC2 XC
2 XC

3 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

a22 = det


XA′

1 uA
′

2 XA′
3 1

XA
1 uA2 XA

3 1
XB

1 uB2 XB
3 1

XC
1 uC2 XC

3 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

a23 = det


XA′

1 XA′
2 uA

′
2 1

XA
1 XA

2 uA2 1
XB

1 XB
2 uB2 1

XC
1 XC

2 uC2 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

a31 = det


uA

′
3 XA′

2 XA′
3 1

uA3 XA
2 XA

3 1
uB3 XB

2 XB
3 1

uC3 XC
2 XC

3 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

a32 = det


XA′

1 uA
′

3 XA′
3 1

XA
1 uA3 XA

3 1
XB

1 uB3 XB
3 1

XC
1 uC3 XC

3 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

a33 = det


XA′

1 XA′
2 uA

′
3 1

XA
1 XA

2 uA3 1
XB

1 XB
2 uB3 1

XC
1 XC

2 uC3 1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,
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b1 = det


XA′

1 XA′
2 XA′

3 uA
′

1

XA
1 XA

2 XA
3 uA1

XB
1 XB

2 XB
3 uB1

XC
1 XC

2 XC
3 uC1

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

b2 = det


XA′

1 XA′
2 XA′

3 uA
′

2

XA
1 XA

2 XA
3 uA2

XB
1 XB

2 XB
3 uB2

XC
1 XC

2 XC
3 uC2

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

,

b3 = det


XA′

1 XA′
2 XA′

1 uA
′

3

XA
1 XA

2 XA
1 uA3

XB
1 XB

2 XB
1 uB3

XC
1 XC

2 XC
1 uC3

det


XA′

1 XA′
2 XA′

3 1
XA

1 XA
2 XA

3 1
XB

1 XB
2 XB

3 1
XC

1 XC
2 XC

3 1


−1

.

First, we demonstrate that it is possible for an elastic body occupying a cuboid domain to deform
such that the deformation gradient is equal to F on some part of the body and to F̂ 6= F on another
part.

For every tetrahedron, there are 12 unknown coefficients of the form aij and bi, with i, j = 1, 2, 3,
hence 12m2 such coefficients for the entire domain, which can be determined uniquely in terms of the
displacements as discussed above.

It remains to find the equations from which the displacements are computed. Given the continuity
of the displacement fields at the (m + 1)3 vertices, there are 3 displacement components ui, with
i = 1, 2, 3, for every vertex, i.e. 3(m + 1)3 displacement components in total. After the boundary
conditions are imposed, 6(m− 1)2 + 12(m− 1) + 8 systems of 3 algebraic equations each, i.e. 18(m−
1)2 +36(m−1)+24 algebraic equations in total are provided at the vertices situated on the boundary.
This leaves 3(m+1)3−18(m−1)2−36(m−1)−24 = 3(m−1)3 displacement components, corresponding
to the interior vertices, for which additional information is needed. This information may come, for
example, from the condition that, on each tetrahedron which does not have a vertex on the boundary,
the determinant of the deformation gradient is equal to some given positive constant d, which is
always valid for incompressible materials where d = 1, and which can generate the required remaining
equations.

Hence, the displacement fields, which are continuous at the vertices, and the corresponding de-
formation gradients, which may differ from one tetrahedron to another, can be uniquely determined
from the boundary conditions and the constraint that the determinant of the deformation gradient
is a given constant. In this case, the rank-one connectivity of the deformation gradients would mean
additional constraints on the solution, and must be taken into account a priori, i.e. when imposing
the boundary conditions.

Note that, even though the displacements are continuous at each vertex, the deformation gradient,
and hence the left Cauchy-Green tensor, may differ from one tetrahedron to another. Indeed, on a
different right-angled tetrahedron A′C ′BC, the displacement field takes the form

û(X) =

 û1(X)
û2(X)
û3(X)

 =

 â11X1 + â12X2 + â13X3 + b̂1
â21X1 + â22X2 + â23X3 + b̂2
â31X1 + â32X2 + â33X3 + b̂3

 , (3.8)

and the coefficients âij and b̂i, with i, j = 1, 2, 3, can be uniquely computed from the displacements{
ûA′

, ûC′
, ûB, ûC

}
∈ R3 at the 4 vertices {A′, C ′, B,C} ∈ R3, respectively. The corresponding defor-

mation gradient is

F̂ =

 1 + â11 â12 â13
â21 1 + â22 â23
â31 â23 1 + â33

 . (3.9)

Given that the displacements are continuous at the vertices A′, B, C which are common to both
tetrahedra A′ABC and A′C ′BC, i.e. uA′

= ûA′
, uB = ûB, uC = ûC , the following 3 systems of 3
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algebraic equations each are obtained:

a11X
A′
1 + a12X

A′
2 + a13X

A′
3 + b1 = â11X

A′
1 + â12X

A′
2 + â13X

A′
2 + b̂1,

a21X
A′
1 + a22X

A′
2 + a23X

A′
3 + b2 = â21X

A′
1 + â22X

A′
2 + â23X

A′
3 + b̂2,

a31X
A′
1 + a32X

A′
2 + a33X

A′
3 + b3 = â31X

A′
1 + â32X

A′
2 + â33X

A′
3 + b̂3,

a11X
B
1 + a12X

B
2 + a13X

B
3 + b1 = â11X

B
1 + â12X

B
2 + â13X

B
2 + b̂1,

a21X
B
1 + a22X

B
2 + a23X

B
3 + b2 = â21X

B
1 + â22X

B
2 + â23X

B
3 + b̂2,

a31X
B
1 + a32X

B
2 + a33X

B
3 + b3 = â31X

B
1 + â32X

B
2 + â33X

B
3 + b̂3,

a11X
C
1 + a12X

C
2 + a13X

C
3 + b1 = â11X

C
1 + â12X

C
2 + â13X

C
2 + b̂1,

a21X
C
1 + a22X

C
2 + a23X

C
3 + b2 = â21X

C
1 + â22X

C
2 + â23X

C
3 + b̂2,

a31X
C
1 + a32X

C
2 + a33X

C
3 + b3 = â31X

C
1 + â32X

C
2 + â33X

C
3 + b̂3,

from which the 6 free coefficients bi and b̂i, with i = 1, 2, 3, as well as the 3 coefficients â3j , with
j = 1, 2, 3, can be expressed in terms of the remaining coefficients aij and âij . Hence, the deformation

gradient F in A′ABC may differ from the deformation gradient F̂ in A′C ′BC.

Figure 2: Examples of cuboids partitioned into right-angled tetrahedra, showing the rank-one con-
nected deformation gradients F and F̂ in two parts of the body, which can only be separated by a
plane surface.

Next, we show that, for a cuboid domain partitioned into right-angled tetrahedra, if the deforma-
tion is continuous throughout the domain and the deformations gradient is equal to F on one set of
tetrahedra and to F̂ on the remaining set, then the common faces between the two sets must lie in
the same plane.

Assuming that there are 4 common vertices [X
(k)
1 , X

(k)
2 ]T , with k = 1, 2, 3, 4, which are not co-

planar, at each of these vertices, the displacements are continuous, i.e. the following 12 identities hold
simultaneously:

a11X
(k)
1 + a12X

(k)
2 + a13X

(k)
3 + b1 = â11X

(k)
1 + â12X

(k)
2 + â13X

(k)
3 + b̂1,

a21X
(k)
1 + a22X

(k)
2 + a23X

(k)
3 + b2 = â21X

(k)
1 + â22X

(k)
2 + â23X

(k)
3 + b̂2,

a31X
(k)
1 + a32X

(k)
2 + a33X

(k)
3 + b3 = â31X

(k)
1 + â32X

(k)
2 + â33X

(k)
3 + b̂3,

with k = 1, 2, 3, 4, which implies aij = âij and bi = b̂i, with i, j = 1, 2, 3, i.e. F = F̂.
Thus, if the deformation is continuous throughout the deforming body, and the deformation gra-

dient is F on one set of right-angled tetrahedra and F̂ on the remaining set, then a plane surface must
separate the two sets (see Figure 2). Consequently, there are no layers of the domain where these sets
can alternate.
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4 Conclusion

As established in [14], for finite elastic deformations, a homogeneous Cauchy stress is not always
induced by homogeneous strains. Here, we showed that the isotropic hyperelastic material described
by the strain energy function introduced by [14] in the context of finite plane deformations could further
undergo a homogeneous Cauchy stress generated by three-dimensional non-homogeneous deformations,
and identified examples of such deformations on a cuboid geometry. Since the energy function in
our example is not rank-one convex, it may correspond to materials capable of undergoing phase
transitions.
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