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Abstract

In this paper we set up the full two-dimensional plane wave solution for scattering from an interface
separating a classical Cauchy medium from a relaxed micromorphic medium. Both media are as-
sumed to be isotropic and semi-infinite to ease the semi-analytical implementation of the associated
boundary value problem.

Generalized macroscopic boundary conditions are presented (continuity of macroscopic displace-
ment, continuity of generalized tractions and, eventually, additional conditions involving purely
microstructural constraints), which allow for the effective description of the scattering properties of
an interface between a homogeneous solid and a mechanical metamaterial. The associated “gener-
alized energy flux” is introduced so as to quantify the energy which is transmitted at the interface
via a simple scalar, macroscopic quantity.

Two cases are considered in which the left homogeneous medium is “stiffer” and “softer” than
the right metamaterial and the transmission coefficient is obtained as a function of the frequency and
of the direction of propagation of the incident wave. We show that the contrast of the macroscopic
stiffnesses of the two media, together with the type of boundary conditions, strongly influence
the onset of Stoneley (or evanescent) waves at the interface. This allows for the tailoring of the
scattering properties of the interface at both low and high frequencies, ranging from zones of
complete transmission to zones of zero transmission well beyond the band-gap region.
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1. Introduction

Recent years have seen the rapid development of acoustic metamaterials whose mechanical prop-
erties allow exotic material behaviors such as band-gaps (20; 41; 44), cloaking (8; 6; 29; 40), focusing
(11; 15; 38), wave-guiding (16; 39) etc. If the bulk behavior of these metamaterials has gathered the
attention of the scientific community via the application of discrete modeling (such as Bloch-Floquet
analysis or homogenization techniques (10; 35; 42; 19)) or, more recently, of enriched continuum
models (4; 12; 21; 22; 23; 24; 25; 26; 27; 28; 30; 31; 32), the study of the reflective/refractive prop-
erties at the boundary of such metamaterials is far from being well understood. Rare examples
of the study of scattering phenomena at metamaterials boundaries in the framework of classical
homogenization approaches can be found in (5; 7; 36; 42; 43).

On the other hand, good knowledge of the reflective and transmittive properties of such interfaces
could be a key point for the conception of metamaterial systems, which would completely transform
the idea we currently have about reflection and transmission of elastic waves at the interface between
two solids. It is for this reason that many authors convey their research towards what they call
“metasurfaces” (18; 17; 45), i.e. relatively thin layers of metamaterials whose microstructure is able
to interact with the incident wave-front in such a way that the resulting reflection/transmission
patterns exhibit exotic properties, such as total reflection or total transmission, conversion of a
bulk incident wave in interface waves, etc.

Notwithstanding the paramount importance these metasurfaces may have for technological ad-
vancements in the field of noise absorption or stealth, they show limitations in the sense that they
work for relatively small frequency ranges, for which the wavelength of the incident wave is com-
parable to the thickness of the metasurface itself. This restricts the range of applicability of such
devices, above all for what concerns low frequencies which would result in very thick metasurfaces.

In this paper, we choose a different approach for modeling the reflective and diffractive properties
of an interface which separates a bulk homogeneous material from a bulk metamaterial. This
interface does not itself contain any internal structure, but its refractive properties can be modulated
by suitably tailoring the bulk properties of the two adjacent media and, in particular, their relative
macroscopic stiffness. The homogeneous material is modeled via a classical linear-elastic Cauchy
model, while the metamaterial is described by the linear relaxed micromorphic model, an enriched
continuum model which already proved its effectiveness in the description of the bulk behavior of
certain metamaterials (21; 22; 23).

We explicitly point out that the relaxed micromorphic model is not obtained via a direct upscal-
ing approach based, for example, on classical or numerical dynamical homogenization (9; 35; 42).
The theoretical framework is set up directly at the macroscopic scale and the homogenized behavior
can be mapped back onto specific metamaterials’ microstructures via an inverse fitting procedure
of the dispersion curves, e.g. on Bloch-Floquet diagrams. If it cannot be expected that the relaxed
micromorphic model reproduces point by point the dispersive behavior of real metamaterials, it
can, to a very good extent, qualitatively and quantitatively reproduce the averaged properties of
such materials, including the metamaterial’s dispersion, band-gap and macroscopic scattering.

Concerning the study of metamaterial’s boundaries, the relaxed micromorphic model is a pow-
erful tool, which provides coherent macroscopic boundary conditions allowing the study of realistic
interface problems.

Previous studies of the authors have provided the foundation of the theoretical basis for the
definition of isotropic and anisotropic relaxed micromorphic media, including well-posedness results
(13; 31; 30; 33). They have also explored the bulk behavior of such media, starting a comparison
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with real metamaterials (23; 22; 27) and have attempted some academic studies of 1D refractive
problems at relaxed micromorphic interfaces (22; 28). In the present paper, for the first time, we
propose a complete 2D framework for the study of the refractive properties of relaxed micromorphic
interfaces. Potentially, this provides powerful tools for advancing towards the validation of the model
on real metastructures, in which it is certain that the scattering properties do not only depend on
the frequency, but also on the angle of incidence. In this paper, we do not target any specific
microstructure, since the proposed results are general and are uniquely driven by the contrast of
macroscopic stiffness of the two media on the two sides of the interface. Nevertheless, we point out
that the true efficacy of the model lies in the ability of providing boundary conditions (continuity of
macroscopic displacement and of “generalized” tractions), which are pertinent at the macroscopic
scale.

We are able to clearly show that when the homogeneous material is “stiffer” than the consid-
ered metamaterial, zones of very high (sometimes total) transmission can be found at both low and
high frequencies. More precisely, we find that high-frequency total transmission is discriminated
by a critical angle, beyond which total transmission gradually shifts towards total reflection. En-
gineering systems of this type could be fruitfully exploited for the conception of wave filters, for
non-destructive evaluation or for selective cloaking.

On the other hand, we show that when the homogeneous material is “softer” than the metama-
terial, broadband total reflection can be achieved for almost all frequencies and angles of incidence.
This could be of paramount importance for the conception of wave screens that are able to isolate
regions from noise and/or vibration. We are also able to show that such total reflection phenomena
are related to the onset of classical Stoneley interface waves1 at low frequencies (37) and of new
microstructure-related interface waves at higher frequencies.

We underline again the fact that no precise microstructure is targeted in this paper, since the
presented results could be re-adjusted for any specific metamaterial without changing the overall
results. This is due to the fact that the properties we unveil here only depend on the “relative
stiffnesses” of the considered media and not on the absolute stiffness of the metamaterial itself.

1.1. Notation

Let R3×3 be the set of all real 3× 3 second order tensors (matrices) which we denote by capital
letters. A simple and a double contraction between tensors of any suitable order is denoted by ·
and : respectively, while the scalar product of such tensors by 〈·, ·〉. The Einstein sum convention is
implied throughout this text unless otherwise specified. The standard Euclidean scalar product on
R3×3 is given by 〈X,Y 〉 = tr(X ·Y T ) and consequently the Frobenius tensor norm is ‖X‖2 = 〈X,X〉.
The identity tensor on R3×3 will be denoted by 1; then, tr(X) = 〈X,1〉.

We denote by BL a bounded domain in R3, by ∂BL its regular boundary and by Σ any material
surface embedded in BL. The outward unit normal to ∂BL will be denoted by ν as will the outward
unit normal to a surface Σ embedded in BL. Given a field a defined on the surface Σ, we define
the jump of a through the surface Σ as:

[[a]] = a+ − a−, [a]− := lim
x∈B−

L \Σ
x→Σ

[a], with [a]+ := lim
x∈B+

L\Σ
x→Σ

[a], (1.1)

1Interface waves propagating at the interface between an elastic solid and air are called Rayleigh waves, after
Lord Rayleigh, who was the first to show their existence (34). Interface waves propagating at the surface between
two solids are called Stoneley waves after R. Stoneley who first showed their existence (37).
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with B−L , B
+
L being the two subdomains which result from splitting BL by the surface Σ.

Classical gradient (∇) and divergence (Div) operators are used throughout the paper. Moreover,
we introduce the Curl operator of the matrix P as (CurlP )ij = εjmnPin,m, where εjmn denotes the
classical Levi-Civita tensor.

2. Governing equations and energy flux

The equations of motion for a classical, isotropic Cauchy continuum read (see (2)):2

ρ u,tt = Div σ, with σ = 2µ sym∇u+ λ tr(sym∇u)1. (2.1)

The equations of motion for an isotropic relaxed micromorphic continuum are (13; 26; 27; 31):3

ρ utt = Div σ̃, η Ptt = σ̃ − s− Curlm, (2.2)

where

σ̃ = 2µe sym(∇u− P ) + λe tr(∇u− P )1+ 2µc skew(∇u− P ),

s = 2µmicro symP + λmicro (trP ) 1, m = µeL
2
c CurlP. (2.3)

2.1. Conservation of total energy and energy flux

The mechanical system we are considering is conservative and, therefore, the energy must be
conserved in the sense that the following differential form of a continuity equation must hold:

E,t + divH = 0, (2.4)

where E is the total energy of the system and H is the energy flux vector. In the case of a classical
isotropic Cauchy medium, we have (see (2) for more details):

E,t = Div(σ · u,t) ⇒ H = −σ · u,t. (2.5)

On the other hand, when considering a relaxed micromorphic continuum, one has that (see (2)):

E,t = Div
(
σ̃T · u,t +

(
mT · P,t

)
: ε
)
⇒ H = −σ̃T · u,t −

(
mT · P,t

)
: ε. (2.6)

2Following classical notation, u(x, t) denotes the macroscopic displacement field, ρ is the macroscopic density and
λ and µ are the Lamé parameters of the Cauchy medium. The tensor σ(x, t) is the classical Cauchy stress tensor.

3In equations (2.2) the basic kinematical fields are the macroscopic displacement u(x, t) and the micro-distortion
tensor P (x, t), which accounts for microstructure-related motions. Moreover, ρ is the macroscopic apparent density
of the considered continuum (it accounts for the average volume distribution of the masses of the base constituents
when a specific microstructure is targeted), λmicro and µmicro are elastic moduli which can be related to the elastic
properties of the unit cell, µc is the Cosserat couple modulus and λe and µe are coefficients which allow the transition
from the micro to the macro scale (see (12) for details). Finally, Lc is an internal length, which can account for
non-local effects, known to be particularly relevant to microstructures showing a strong contrast between the base
materials. Enriching kinematics through the introduction of extra degrees of freedom is at the core of the relaxed
micromorphic model’s ability to predict the behavior of complex metamaterials. These extra degrees of freedom allow
for the description of microstructure-related motions at the level of the unit cell and, when considering a dynamical
setting, this translates to being able to account for the presence of optic curves in the dispersion diagrams (see Fig.
3). The isotropic model presented here is used to present general results about the scattering properties of a relaxed
micromorphic interface and does not target any specific metamaterial microstructure. To actually fit the relaxed
micromorphic model to a real microstructure, we need to generalize it to the general anisotropic case.
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3. Boundary conditions

3.1. Boundary conditions on an interface between two classical Cauchy media

As it is well known (see e.g. (1; 14; 28)), the boundary conditions which can be imposed at an
interface between two Cauchy media are continuity of displacement and of traction:

[[u]] = 0⇒ u− = u+, [[t]] = 0⇒ t− = t+. (3.1)

In equations (3.1), u− is the macroscopic displacement on the “minus” side, u+ is the macroscopic
displacement on the “plus” side and t− and t+ are the surface traction vectors on the “minus” and
on the “plus” side, respectively. We recall that in a Cauchy medium, t = σ · ν, ν being the outward
unit normal to the surface and σ being the Cauchy stress tensor given in (2.1).

3.2. Boundary conditions at a Cauchy/relaxed micromorphic interface

In the framework of continuum modeling, it is essential to provide the boundary conditions
which are intrinsically compatible with the associated bulk equations and which provide the well-
posedness of the resulting boundary value problem. The correct choice of boundary conditions
to be imposed for a specific problem naturally follows when using a variational principle and, for
the case of the relaxed micromorphic model, has been deeply studied in previous theoretical works
(4; 12; 21; 22; 23; 24; 25; 26; 27; 28; 30; 31; 32).

The first jump conditions, which have to be imposed at a Cauchy/relaxed micromorphic interface
are continuity of displacement and of generalized force at the considered interface:

u− = u+ and t = t̃, (3.2)

where the “plus” side is occupied by the relaxed micromorphic medium, t = σ · ν is the surface
traction calculated on the Cauchy side and the traction for the relaxed micromorphic model is given
by t̃ = σ̃ ·ν, σ̃ being given in (2.3). In a relaxed micromorphic continuum, the notion of force has to
be generalized. This is achieved through the introduction of the “enriched” stress tensor σ̃ which
accounts for both macro and microstructure related deformations.

Equations (3.2) must be complemented with an extra jump condition, which discriminates
between what we call “free” and “fixed” microstructure. Both these jump conditions are coherent
with the variational principle which is behind the considered relaxed micromorphic model (see
(13; 21; 28; 27; 23; 31)). In order to define the two types of boundary conditions we are interested
in, we need the concept of double force τ which is the dual quantity of the micro-distortion tensor
P and is defined as (28)

τ = −m · ε · ν, (3.3)

where the involved quantities have been defined in (2.3).

3.2.1. Free microstructure

In this case, the macroscopic displacement is continuous while the microstructure of the medium
is free to move at the interface (22; 28; 21). Leaving the interface free to move means that P is
arbitrary, which, on the other hand, implies the double force τ must vanish. We have then:

[[ui]] = 0, t̃i − ti = 0, τij = 0, i = 1, 2, 3, j = 2, 3. (3.4)

The “free microstructure” boundary conditions are easier to impose than the “fixed microstruc-
ture” ones. This is indeed clear, since it is more convenient to avoid constraining the microstructure
embedded in the unit cell than imposing a vanishing value of the micro-strain at the interface.

5



3.2.2. Fixed microstructure

This is the case in which we impose that the microstructure on the relaxed micromorphic side
does not vibrate at the interface. The boundary conditions in this case are (28)4

[[ui]] = 0, t̃i − ti = 0, Pij = 0, i = 1, 2, 3, j = 2, 3. (3.5)

We explicitly remark that the free microstructure boundary condition (3.4) is the only one
that permits one to obtain an equivalent Cauchy/Cauchy system when considering low frequencies.
Indeed, in this case, since the tensor P is left free, it can adjust itself in order to recover a Cauchy
medium in the low-frequency limit. On the other hand, the boundary condition (3.5) imposes an
artificial value on P along the interface, so that the effect of the microstructure is forced to be present
in the system. It follows that a Cauchy/Cauchy system cannot be recovered as a low-frequency
limit of a Cauchy/relaxed micromorphic one when the boundary condition (3.5) is imposed.

4. Reflection and transmission at an interface between two Cauchy media

We start this section by pointing out that it is a simple summary of well established classical
results. Nevertheless, this summary is essential for the understanding of the present paper, since
it allows us to (i) set up the notation which will be naturally extended when dealing with the
relaxed micromorphic medium, and (ii) clearly present the conceptual steps which must be followed
in order to solve the interface problem. We will follow exactly the same steps when considering a
Cauchy/relaxed micromorphic interface, but the explicit presentation of the intermediate analytical
expressions in that case is prohibitive due to their formal complexity. Hence, this section can be
skipped by the reader who is uniquely interested in the new developments provided by the paper,
but it has to be necessarily addressed by the reader who wants to reproduce the calculations for
the Cauchy/relaxed micromorphic interface presented in the next section.

We assume in the following, that the interface between the two media from which an incident
wave reflects and refracts is the x2 axis (x1 = 0), see Fig. 1.

Incident waves propagate from−∞ in the x1 < 0 half-plane towards the interface, reflected waves
propagate from the interface towards −∞ in the x1 < 0 half-plane and refracted (or, equivalently,
transmitted) waves propagate from the interface towards +∞ in the x1 > 0 half-plane. Since we
consider 2D wave propagation, the incident wave can hit the interface at an arbitrary angle.

As it is classical, we will consider both in-plane (in the (x1x2)− plane) and out-of-plane (along
the x3 direction) motions. Nevertheless, all the considered components of the displacement will
only depend on the x1, x2 space components (plane wave hypothesis). We hence write

u = (u1(x1, x2, t), u2(x1, x2, t), u3(x1, x2, t))
T . (4.1)

We now make a small digression on wave propagation in classical Cauchy media. As pointed out
in the beginning of this section, these results are of course well known (see e.g. (1; 14)), however,
we present them here in detail following our notation, so that we can naturally extend them over
to the relaxed micromorphic model.

4We remark that only the tangent part of the double force in (3.4) or of the micro-distortion tensor in (3.5) must
be assigned (30; 31). This is peculiar of the relaxed micromorphic model and is related to the fact that only CurlP
appears in the energy. In a standard Mindlin-Eringen model, where the whole ∇P appears in the energy, the whole
double force τ (or alternatively the whole tensor P ) must be assigned at the interface. Finally, in an internal variable
model (no derivatives of P in the energy), no conditions on P or τ must be assigned at the interface.
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Medium 1 Medium 2

Figure 1: Generic representation of an interface separating two media at x1 = 0. The figure also schematically
represents the conventions used for incident, reflected and transmitted waves.

4.1. Wave propagation in bulk Cauchy media

We start by re-writing the governing equations (2.1) by using the plane-wave ansatz. Plugging
u as in (4.1) into (2.1) gives:

ρ u1,tt = (2µ+ λ)u1,11 + (µ+ λ)u2,12 + µu1,22

ρ u2,tt = (2µ+ λ)u2,22 + (µ+ λ)u1,12 + µu2,11

}
(4.2)

ρ u3,tt = µ(u3,11 + u3,22). (4.3)

We remark that the first two equations (4.2) are coupled, while the third (4.3) is not.
We now formulate the plane wave ansatz, according to which:

(u1, u2)T = ψ̂ ei(〈x,k〉−ωt) = ψ̂ ei(x1k1+x2k2−ωt), u3 = ψ̂3 e
i(〈x,k〉−ωt) = ψ̂3 e

i(x1k1+x2k2−ωt), (4.4)

where ψ̂ = (ψ̂1, ψ̂2)T is the vector of amplitudes, k = (k1, k2)T is the wave-vector, which fixes the
direction of propagation of the considered wave and x = (x1, x2)T is the position vector. Moreover,

ψ̂3 is a scalar amplitude for the third component of the displacement.
We start by considering the first system of coupled equations and we plug the plane-wave ansatz

(4.4) into (4.2), thus obtaining the system of algebraic equations A · ψ̂= 0, where A is the matrix
of coefficients

A =

(
ω2 − c2Lk2

1 − c2Sk2
2 −c2V k1k2

−c2V k1k2 ω2 − c2Lk2
2 − c2Sk2

1

)
, (4.5)

and where we defined the abbreviations

c2L =
2µ+ λ

ρ
, c2S =

µ

ρ
, c2V = c2L − c2S =

µ+ λ

ρ
. (4.6)
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For A · ψ̂ = 0 to have a non-trivial solution, we impose detA = 0, which implies (see (2))

k1 = ±

√
ω2

c2L
− k2

2 or k1 = ±

√
ω2

c2S
− k2

2, (4.7)

The first or second solution in (4.7) is associated to what we call a longitudinal (L) or in-plane
(SV) shear wave, respectively. The choice of sign for these solutions is related to the direction
of propagation of the considered wave (positive for incident and transmitted waves, negative for
reflected waves).

We will recall later on that, once boundary conditions are imposed at a given interface between
two Cauchy media, the value of the component k2 of the wave-vector k can be considered to be
known. We will see that k2 is always real and positive, which means that, according to (4.7), the
first component k1 of the wave-vector can be either real or purely imaginary, depending on the
values of the frequency and of the material parameters. Two scenarios are then possible:

1. both k1 and k2 are real: According to the wave ansatz (4.4), we have a harmonic wave which
propagates in the direction given by the wave-vector k lying in the (x1x2)− plane.

2. k2 is real and k1 purely imaginary: According to equation (4.4), the wave continues to prop-
agate in the x2 direction (along the interface), but decays with a negative exponential in the
x1 direction (away from the interface). Such a wave is known as a Stoneley wave (37; 3).

Assuming k2 to be known, we now calculate the solution ψ̂ to the equation A · ψ̂ = 0. Using the
first solution of (4.7) in A · ψ̂ = 0 implies (see (2) for details):

ψ̂2 =
cLk2√

ω2 − c2Lk2
2

ψ̂1 ⇒ ψ̂L :=

(
1

cLk2√
ω2−c2Lk22

)
=

(
1
k2
k1

)
, (4.8)

where we denoted by ψ̂L the eigenvector of the matrix A for longitudinal waves.Analogous consid-
erations can be carried out when considering the second solution of (4.7), which when used in the

second equation of A · ψ̂ = 0 implies (see (2) for details):

ψ̂2 =
k2

2c
2
S − ω2

k2cS
√
ω2 − k2

2c
2
S

ψ̂1 ⇒ ψ̂SV :=

(
1

k22c
2
S−ω

2

k2cS
√
ω2−k22c2S

)
=

(
1

−k1k2

)
, (4.9)

where ψ̂SV is the eigenvector of the matrix A for in-plane shear waves.
Finally, replacing the expression for u3 given in (4.4) in (4.3) gives

k1 = ±

√
ω2

c2S
− k2

2. (4.10)

Equations (4.7) and (4.10) give rise to the well-known dispersion curves for Cauchy continua for
in-plane and out-of-plane waves (see Fig. 2).
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(a) (b)

Figure 2: Dispersion diagrams for in-plane (a) and out-of-plane (b) modes in isotropic Cauchy continua. The material
parameters used in these Figures are the ones given in Table 4.
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Plane-wave ansatz: solution for the displacement field in a Cauchy medium

According to equations (4.4) and considering the 2D eigenvectors (4.8) and (4.9), we can finally
write the solution for the displacement field as

(u1, u2)T = uL + uSV = aLψLei(x1k
L
1 +x2k

L
2 −ωt) + aSV ψSV ei(x1k

SV
1 +x2k

SV
2 −ωt) (4.11)

when we consider a longitudinal or an SV wave, or

u3 = uSH = aSHψSHei(x1k
SH
1 +x2k

SH
2 −ωt), (4.12)

when we consider an SH wave. In these formulas aL, aSV , aSH ∈ C are arbitrary constants and,
starting from equations (4.8) and (4.9), we defined the unit vectors

ψL =
1

|ψ̂L|

(
ψ̂L1
ψ̂L2

)
, ψSV =

1

|ψ̂SV |

(
ψ̂SV1

ψ̂SV2

)
. (4.13)

We also explicitly remark that in equations (4.11) and (4.12), kL1 and kL2 are related via the first
equation of (4.7), kSV1 and kSV2 via the second equation of (4.7) and kSH1 and kSH2 via (4.10).

As we already mentioned, k2 will be known when imposing boundary conditions, so the only
unknowns in the solution (4.11) (resp (4.12)) remain the scalar amplitudes aL, aSV (resp. aSH)
which can be computed by imposing boundary conditions.

4.2. Interface between two Cauchy media

We assume that an incident longitudinal wave5 propagates on the “minus” side, hits the interface
at x1 = 0, is subsequently reflected into an L wave and an SV wave and is transmitted into the
second medium on the “plus” side into an L wave and an SV wave as well, according to equations
(4.11). If we send an incident SH wave, equation (4.12) tells us that it will reflect and transmit
only into SH waves.

5The exact same considerations can be carried over when the incident wave is SV transverse.
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4.2.1. Incident longitudinal/SV-transverse wave
According to our previous considerations, and given the linearity of the considered problem, the

solution of the dynamical problem (2.1) on the “minus” side can be written as6

(u−
1 , u

−
2 )T = aL,iψL,iei(〈x,k

L,i〉−ωt)+aL,rψL,rei(〈x,k
L,r〉−ωt)+aSV,rψSV,rei(〈x,k

SV,r〉−ωt) =: uL,i+uL,r+uSV,r.
(4.14)

As for the “plus” side, the solution is

(u+
1 , u

+
2 )T = aL,tψL,tei(〈x,k

L,t〉−ωt) + aSV,tψSV,tei(〈x,k
SV,t〉−ωt) =: uL,t + uSV,t. (4.15)

Now the task is given an incident wave, i.e. knowing aL,i and kL,i, to calculate all the respective
parameters of the “new” waves. Using (4.15) and (4.14) in the first component of the jump condition
(3.1) (which is evaluated at x1 = 0), we get:

aL,iψL,i1 eix2k
L,i
2 + aL,rψL,r1 eix2k

L,r
2 + aSV,rψSV,r1 eix2k

SV,r
2 = aL,tψL,t1 eix2k

L,t
2 + aSV,tψSV,t1 eix2k

SV,t
2 . (4.16)

This must hold for all x2 ∈ R. The exponentials in this expression form a family of linearly
independent functions and, therefore, we can assume that the coefficients aL,i, aL,r, aSV,r, aL,t,
aSV,t are never all zero simultaneously. This means, than in order for (4.16) to hold, we must require
that the exponents of the exponentials are all equal to one another. Canceling out the imaginary
unit i and x2, we deduce the fundamental relation

kL,i2 = kL,r2 = kSV,r2 = kL,t2 = kSV,t2 , (4.17)

which is the well-known Snell’s law for in-plane waves (see (1; 3; 14; 46)).
Using (4.17) we see that the exponentials in (4.16) can be canceled out leaving only

aL,iψL,i1 + aL,rψL,r1 + aSV,rψSV,r1 = aL,tψL,t1 + aSV,tψSV,t1 . (4.18)

Analogously, equating the second components of the displacements in the jump conditions (3.1),
using (4.17) and the fact that this must hold for all x2 ∈ R, gives

aL,iψL,i2 + aL,rψL,r2 + aSV,rψSV,r2 = aL,tψL,t2 + aSV,tψSV,t2 . (4.19)

As for the jump of traction, we remark that the total traction on both sides is F− = tL,i +
tL,r + tSV,r, F+ = tL,t + tSV,t, with the t’s being evaluated at x1 = 0. The tractions are vectors of
the form

t = (t1, t2)
T
, with ti = σijνj , i = 1, 2, j = 1, 2, 3, (4.20)

where ν = (ν1, ν2, ν3)T = (1, 0, 0)T is the normal vector to the interface, i.e. to the x2 axis.
The traction jump condition can now be written component-wise as

σL,i11 + σL,r11 + σSV,r11 = σL,t11 + σSV,t11 , σL,i21 + σL,r21 + σSV,r21 = σL,t21 + σSV,t21 . (4.21)

6With a clear extension of the previously introduced notation, we denote by aL,i, aL,r, aL,t, aSV,r, aSV,t and
ψL,i, ψL,r, ψL,t, ψSV,r, ψSV,t the amplitudes and eigenvectors of longitudinal incident, reflected, transmitted, in-
plane transverse incident, reflected and transmitted waves respectively. Analogously, aSV,i and ψSV,i will denote
the amplitude and eigenvector related to in-plane transverse incident waves.
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Calculating the stresses according to eq. (2.1), where we use the solutions (4.14) and (4.15) for the
displacement and again using (4.17) gives

aL,i
(

(2µ+ λ)ψL,i1 kL,i1 + λψL,i2 kL,i2

)
+ aL,r

(
(2µ+ λ)ψL,r1 kL,r1 + λψL,r2 kL,r2

)
+ aSV,r

(
(2µ+ λ)ψSV,r1 kSV,r1 + λψSV,r2 kSV,r2

)
= aL,t

(
(2µ+ + λ+)ψL,t1 kL,t1 + λ+ψL,t2 kL,t2

)
+ aSV,t

(
(2µ+ + λ+)ψSV,t1 kSV,t1 + λ+ψSV,t2 kSV,t2

)
, (4.22)

and

aL,iµ
(
ψL,i1 kL,i2 + ψL,i2 kL,i1

)
+ aL,rµ

(
ψL,r1 kL,r2 + ψL,r2 kL,r1

)
+ aSV,rµ

(
ψSV,r1 kSV,r2 + ψSV,r2 kSV,r1

)
= aL,tµ+

(
ψL,t1 kL,t2 + ψL,t2 kL,t1

)
+ aSV,tµ+

(
ψSV,t1 kSV,t2 + ψSV,t2 kSV,t1

)
. (4.23)

Thus, equations (4.18), (4.19), (4.22), (4.23) form an algebraic system for the unknown amplitudes
aL,r, aSV,r, aL,t, aSV,t from which we can fully calculate the solution.

4.2.2. Incident SH-transverse wave

In this case, the solution on the “minus” side of the interface is

u−3 = aSH,iψSH,iei(〈x,k
SH,i〉−ωt) + aSH,rψSH,rei(〈x,k

SH,r〉−ωt), (4.24)

and on the “plus” side

u+
3 = aSH,tψSH,tei(〈x,k

SH,t〉−ωt). (4.25)

Following the same reasoning as in section 4.2.1, the continuity of displacement condition now only
involves the u3 component, which is the only non-zero one, and reads (evaluating again at x1 = 0)

aSH,iei(x2k
SH,i
2 ) + aSH,rei(x2k

SH,r
2 ) = aSH,tei(x2k

SH,t
2 ), (4.26)

which, as before, implies the Snell’s law for out-of-plane motions

kSH,i2 = kSH,r2 = kSH,t2 . (4.27)

Using that, we see that the exponentials in (4.26) cancel out leaving only

aSH,i + aSH,r = aSH,t. (4.28)

As for the jump of traction in the case of SH waves, the total traction on both sides is F− =
t3
SH,i + t3

SH,r, F+ = t3
SH,t, with the t3’s being evaluated at x1 = 0 and given by t3i = σ3jνj ,

where ν = (1, 0, 0)T is the vector normal to the interface. The jump of force can now be written as

σSH,i31 + σSH,r31 = σSH,t31 (4.29)

The stresses are calculated again by (2.1) and using the solutions (4.25) and (4.24) for the displace-
ment and together with (4.27) gives

µ
(
aSH,ikSH,i1 + aSH,rkSH,r1

)
= µ+aSH,tkSH,t1 . (4.30)

Equations (4.28) and (4.30) build a system for the unknown amplitudes aSH,r, aSH,t, which we
can solve and fully determine the solution to the reflection-transmission problem.
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4.2.3. Conditions for the onset of Stoneley waves at a Cauchy/Cauchy interface

In this subsection we show how we can find explicit conditions for the onset of Stoneley waves
at Cauchy/Cauchy interfaces. Assume that the incident wave is longitudinal. This means that
its speed is given by c−L =

√
(2µ− + λ−)/ρ− and that the wave vector k can now be written as

k = (k1, k2) = |k|(sin θi,− cos θi), where |k| = ω/c−L and θi is the angle of incidence. As we know,
this incident wave gives rise to a longitudinal and a transverse wave both on the “−” and on the
“+” side. Setting the quantity under the square root in the first equation in (4.7) to be negative
and using the fact that k2 = −|k| cos θi, gives a condition for the appearance of Stoneley waves in
the case of an incident longitudinal wave:

ω2

(c+L)2
− k+

2 < 0⇔ ω2

(c+L)2
− k2

2 < 0⇔ ω2

(c+L)2
< |k|2 cos2 θi

⇔ ω2

(c+L)2
<

ω2

(c−L )2
cos2 θi ⇔ cos2 θi >

(
c−L
c+L

)2

⇔ cos2 θi >
ρ+(2µ− + λ−)

ρ−(2µ+ + λ+)
. (4.31)

To obtain (4.31) we also used the fact that k+
2 = k2, as established by Snell’s law in (4.17).

Similar arguments can be carried out when considering all other possibilities for incident, trans-
mitted and reflected waves, as detailed in Tables 1 and 2.

Incident Wave Transmitted L Transmitted SV Transmitted SH

L cos2 θi >
ρ+(2µ−+λ−)
ρ−(2µ++λ+) cos2 θi >

ρ+(2µ−+λ−)
ρ−µ+ −

SV cos2 θi >
ρ+µ−

ρ−(2µ++λ+) cos2 θi >
ρ+µ−

ρ−µ+ −
SH − − cos2 θi >

ρ+µ−

ρ−µ+

Table 1: Conditions for appearance of transmitted Stoneley waves at a Cauchy/Cauchy interface.

Incident Wave Reflected L Reflected SV
L − −

SV cos2 θi >
µ−

2µ−+λ− −
SH − −

Table 2: Conditions for appearance of reflected Stoneley waves at a Cauchy/Cauchy interface.

The conditions in Tables 1 and 2 establish that the square of the cosine of the angle of incidence
must be greater than a given quantity for Stoneley waves to appear. This means that it is most
likely to observe Stoneley waves when the angle of incidence is smaller than the normal incidence
angle, i.e. for incident waves which are inclined with respect to the surface upon which they hit.
Moreover, if there exists a strong contrast in stiffness between the two sides and the “−” side is
by far stiffer than the “+” side, then Stoneley waves could be observed for angles closer to normal
incidence. On the other hand, if the “−” side is only slightly stiffer than the “+” side, then Stoneley
waves will be observed only for smaller angles (far from normal incidence).
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4.2.4. Determination of the reflection and transmission coefficients

We introduce the normal flux H1, according to (2.5), as:

H1 = −ν · σ · u,t, (4.32)

where ν is the normal to the interface and σ is defined in (2.1). Based on (4.32), we introduce the
time average of the fluxes for incident, reflected and transmitted waves, respectively, as:

J i =
1

T

∫ T

0

Hi
1(x, t)dt, Jr =

1

T

∫ T

0

Hr
1 (x, t)dt, J t =

1

T

∫ T

0

Ht
1(x, t)dt, (4.33)

where Hi
1 = HL,i

1 (or, Hi
1 = HSV,i

1 if we consider an incident SV wave), Hr
1 = HL,r

1 +HSV,r
1 and

Ht
1 = HL,t

1 + HSV,t
1 , T being the period of the wave. Then, the reflection and transmission

coefficients are defined as

R =
Jr

J t
, T =

J t

J i
. (4.34)

These coefficients tell us what part of the average normal flux of the incident wave is reflected and
what part is transmitted; also, since the system is conservative, we must have R+ T = 1.

These coefficients can be rewritten in a form which is more suitable for numerical computations
(see e.g. (2)) by noting that7

1

T

∫ T

0

H1dt =
1

2
Re
([

(2µ+ λ)|ψ1|2k1 + λψ∗1ψ2k2 + µ
(
ψ1ψ

∗
2k2 + |ψ2|2k1

)]
|a|2 ω

)
, (4.35)

and8

1

T

∫ T

0

H1dt =
1

2
Re
(
µk1

∣∣aSH ∣∣2 ω) , (4.36)

for L/SV and SH waves, respectively.

5. Reflective properties of a Cauchy/relaxed micromorphic interface

Closely following what was done for the Cauchy case in section 4.1 for the case of the relaxed
micromorphic medium, we see that the 12 kinematic variables of the relaxed micromorphic medium
decouple again into two in-plane and out-of-plane systems. Making a plane wave ansatz analogous
to (4.4) for the 12 unknown fields and replacing it in equations (2.2), we find

A1 · φ̂ = 0, A2 · χ̂ = 0, (5.1)

7In formula (4.35), ∗ denotes complex conjugation, ψ1 and ψ2 are the two components of the eigenvectors ψL

or ψSV given by (4.13) when considering longitudinal or in-plane shear waves, respectively. Moreover, k2 is the
second component of the wave-vector of the incident wave and k1 is computed using the first or second equation of
(4.7), depending on whether the incident wave is L or SV. Finally, a = aL or a = aSV (see equation (4.11)) is the
amplitude of the considered wave, depending on whether it is L or SV, respectively.

8In formula (4.36), k1 is given by (4.10) (k2 being the second component of the wave-vector of the incident wave)
and aSH is the amplitude of the considered out-of-plane wave (see eq. (4.12)).
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where A1 ∈ C7×7, A2 ∈ C5×5 are the matrices containing the coefficients of the relaxed micromor-
phic model (similar to (4.5), see (2) for a detailed presentation) for the in-plane and the out-of-plane

systems respectively and φ̂ ∈ C7 and χ̂ ∈ C5 are the corresponding amplitude vectors.
We now look for non-trivial solutions of the equations (5.1). To that end, we impose detA1 = 0

and detA2 = 0. Once again, we fix the second component k2 (resp. k̃2) of the wave-vector and

solve these equations with respect to k1 (resp. k̃1).9 The expressions for the solutions of these
equations are quite complex and we do not present them explicitly here. As discussed before, we
find five and four solutions for the in-plane problem and for the out-of-plane problem, respectively:

± k(1)
1 (k2, ω), ±k(2)

1 (k2, ω), ±k(3)
1 (k2, ω), ±k(4)

1 (k2, ω), ±k(5)
1 (k2, ω), (5.2)

± k̃(1)
1 (k̃2, ω), ±k̃(2)

1 (k̃2, ω), ±k̃(3)
1 (k̃2, ω), ±k̃(4)

1 (k̃2, ω). (5.3)

If we plot the functions ω = ω(|k|), with |k| =
√
k2

1 + k2
2, associated to (5.2) and (5.3), we obtain

the in-plane and out-of-plane dispersion curves for the relaxed micromorphic model (see Fig. 3).

(a) (b)

Figure 3: Dispersion diagrams for in-plane (a) and out-of-plane (b) modes in isotropic relaxed micromorphic continua.
The material parameters used in these Figures are the ones given in Table 3.
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Dispersion curves, isotropic out-of-plane
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By directly comparing Figures 3 to 2, the extent to which the relaxed micromorphic model gen-
eralizes the classical Cauchy framework becomes immediately evident. Seven modes are described
for in-plane motion and five (two are superimposed) for out-of-plane. This means that some of the
five (resp. four) solutions in (5.2) (resp. (5.3)) have multiple branches when plotted in the (|k|, ω)
plane. The relaxed micromorphic model is able to capture the main macroscopic characteristics of
complex mechanical metamaterials, including low- and high-frequency dispersion and band-gaps.
It can be automatically verified that, for a wave which propagates in a direction orthogonal to the
Cauchy/relaxed micromorphic interface, a sort of uncoupling exists among the in-plane modes in
Fig. 3(a). Green modes are activated by an SV incident wave, while blue modes are activated by an

9We will show that also in the case of an interface between a Cauchy and a relaxed micromorphic medium, the
component k2 of the wave-vector can be considered to be known when imposing boundary conditions.
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L incident wave. This uncoupling is lost for all other directions of propagation, but we can assume,
making a small error, it still holds for angles close to normal incidence.

We plug the solutions (5.2) (resp. (5.3)) of the characteristic polynomials into the matrix A1

(resp. A2) and calculate for each different k (resp. k̃) the five (resp. four) nullspaces of the matrix.
We find

φ̂(1), φ̂(2), φ̂(3), φ̂(4), φ̂(5), χ̂(1), χ̂(2), χ̂(3), χ̂(4), (5.4)

as solutions to the equations A1 · φ̂ = 0 and A2 · χ̂ = 0, respectively. We normalize these vectors,
thus introducing the normal vectors

φ(i) =
1

|φ̂(i)|
φ̂(i), χ(j) =

1

|χ̂(j)|
χ̂(j), (5.5)

i = 1, . . . 5, j = 1, . . . 4. Finally, we can write the solution to equations (2.2) as

v1 =

5∑
i=1

αiφ
(i)ei(〈x,k

(i)〉−ωt), v2 =
4∑
j=1

βiχ
(j)ei(〈x,k̃

(j)〉−ωt), (5.6)

where αi, βj ∈ C for i = 1, . . . 5, j = 1, . . . , 4 are the unknown amplitudes of the different modes of
propagation and v1 ∈ C7, v2 ∈ C5 collect the 12 kinematical unknowns (see AppendixA and (2) for
details).

We explicitly remark that expressions (5.2) and (5.3) for the first component k1 and k̃1 of the
wave-vectors, can give rise to different scenarios when varying the value of the frequency ω and the
material parameters. As a matter of fact, we briefly remarked before that k2 can be considered to
be known when imposing jump conditions. Indeed, following analogous steps to those performed to
obtain equation (4.17) for the interface between two Cauchy media, we can impose the continuity
of displacements between a Cauchy and a relaxed micromorphic medium. Considering the first
component of the vector equation for the continuity of displacement and using the plane-wave
ansatz, one can find, when imposing a longitudinal incident wave

kL,i2 = kL,r2 = kSV,r2 = k
(1),t
2 = k

(2),t
2 = k

(3),t
2 = k

(4),t
2 = k

(5),t
2 .

Generalized in-plane Snell’s law

(5.7)

On the other hand, when imposing an out-of-plane shear incident wave, the continuity of displace-
ment at the interface gives

kSH,i2 = kSH,r2 = k̃
(1),t
2 = k̃

(2),t
2 = k̃

(3),t
2 = k̃

(4),t
2 .

Generalized out-of-plane Snell’s law

(5.8)

Equations (5.7) and (5.8) tell us that, when fixing the incident wave in the Cauchy medium to

be longitudinal (kL,i2 known), in-plane shear (kSV,i2 known) or out-of-plane shear (kSH,i2 known),
the second components of all the reflected and transmitted wave-vectors are known. They are the
generalized Snell’s law for the case of a Cauchy/relaxed micromorphic interface. As before, this
traces two possible scenarios, given that the value of k2 for the incident wave is always supposed to
be real and positive (propagative wave)
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1. both k1 and k2 (resp. k̃1, k̃2) are real (when computing k1 or k̃1 via (5.2) or (5.3) respectively)
so that one has propagative waves.

2. k2 (resp. k̃2) is real and k1 (resp. k̃1), when computed via (5.2) (resp. (5.3)) is imaginary, so
that one has Stoneley waves propagating only along the interface and decaying away from it.

Depending on the values of the parameters, each of the five in-plane waves, or of the four out-
of-plane waves, can be either propagative or Stoneley. Stoneley waves can appear both for low and
for high-frequency modes.

5.1. Reflection and transmission coefficients at a Cauchy/relaxed micromorphic interface

According to our definition (2.6), the normal component of the energy flux for a relaxed micro-
morphic medium is:

H̃1:= −ν · σ̃T · u,t − ν ·
(
mT · P,t

)
: ε = −ui,tσ̃i1 −mihPij,tεjh1. (5.9)

This expression for the normal flux is the central point of the present paper. Indeed, when
compared to (4.32), we see that it generalizes the classical Cauchy flux for two reasons. First,
the stress σ̃, which acts on the macroscopic velocity u,t, is an “enriched” stress which intrinsically
accounts for the effect of the microstructure on the global deformation of the continuum (see (2.3)).
Second, we observe a completely new term which consists of the hyper-stress m acting on the
micro-strain rate P,t. While the generalized stress σ̃ carries the biggest part of the reflection at the
interface, the hyper-stress m has a non-negligible effect for strongly non-local metamaterials. An
example of such non-local metamaterials is those which exhibit strong contrasts in the stiffnesses of
the base materials. The normal flux (5.9) is the interface counterpart of the bulk energy conservation
(2.6) and, as such, its continuity at the interface is automatically guaranteed as long as the correct
boundary conditions are imposed at the interface. This is indeed true when imposing the jump
conditions (3.4) or (3.5). This means that the normal flux H̃1 can be used to define the transmission
coefficient in such a way that:

(i) it is able to carry information concerning the microstructure-related transmitted energy,

(ii) it is automatically consistent with the associated bulk equations and boundary conditions,

(iii) last, but most importantly, it is directly defined at the macroscopic (homogenized) level.

Consequently, we infer that the normal flux H̃1 is able to carry sophisticated information with the
need of only a finite number of modes for the exact verification of the balance of energy at the
interface. This provides a different approach compared to the classical homogenization methods, in
which the number of modes needed to exactly satisfy surface energy conservation in the framework
of classical elasticity is infinite (36; 42; 43).

The normal flux H̃1 can be rewritten in terms of the in-plane and out-of-plane variables v1 and
v2, respectively as (see AppendixA for the precise definition of the involved quantities):

H̃1
1 = v1

,t · (H11 · v1
,1 +H12 · v1

,2 +H13 · v1) ,

and

H̃2
1 = v2

,t · (H21 · v2
,1 +H22 · v2

,2 +H23 · v2) .
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The reflection and transmission coefficients are defined as:

R =
Jr

J i
, T =

J t

J i
, (5.10)

where

J i =
1

T

∫ T

0

Hi(x, t)dt, Jr =
1

T

∫ T

0

Hr(x, t)dt, J t =
1

T

∫ T

0

Ht(x, t)dt, (5.11)

with Hi = HL/SV,i, Hr = HL,r + HSV,r and H̃t = H̃1
1 for the in-plane case and Hi = HSH,i,

Hr = HSH,r and H̃t = H̃2
1 for the out-of-plane case.

The numerical evaluation of R and T is performed by using simplified expressions which are
shown in AppendixA. Finally, once again we have that R+ T = 1.

In the case of a Cauchy/relaxed micromorphic interface, the dependency of the fluxes on the
frequency ω is maintained, something which is not the case in the Cauchy/Cauchy interface.

6. Results

We start by choosing the values for the parameters of the relaxed micromorphic medium as
shown in Table 3. We explicitly remark that other values of such parameters could be chosen,
which would be more or less close to real metamaterials parameters (12; 21; 22). Nevertheless,
the basic results which we want to show in the present paper are not qualitatively affected by this
choice since they only depend on the relative stiffness of the two media which are considered on the
two sides and not on the absolute values of such stiffnesses.

ρ [kg/m3] η [kg/m] µc [Pa] µe [Pa] µmicro [Pa] λmicro [Pa] λe [Pa] Lc [m]
2000 10−2 2× 109 2× 108 108 108 4× 108 10−2

Table 3: Numerical values of the constitutive parameters chosen for the relaxed micromorphic medium.

We can now use the following exact homogenization formulas, presented in (4; 12), to compute
the equivalent macroscopic coefficients of the Cauchy medium which is approximating the relaxed
micromorphic medium at low frequencies:

µmacro =
µe µmicro

µe + µmicro
, 2µmacro + 3λmacro =

(2µe + 3λe)(2µmicro + 3λmicro)

2(µe + µmicro) + 3(λe + λmicro)
. (6.1)

Using formulas (6.1), we compute the stiffnesses λmacro and µmacro of the Cauchy medium which is
equivalent to the relaxed micromorphic medium of Table 3 in the low-frequency regime, as in the
following Table:

ρ [kg/m3] λmacro [Pa] µmacro [Pa]
2000 8.25397× 107 6.66667× 107

Table 4: Macro parameters of the equivalent Cauchy medium corresponding to the relaxed medium of Table
3 at low frequencies.

At this point, we will consider the two cases in which the Cauchy medium on the “−” side is
stiffer or softer than the equivalent Cauchy medium on the “+” side, as defined in Table 4.
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6.1. Cauchy medium which is “stiffer” than the relaxed micromorphic one

We chose the material parameters of the left Cauchy medium to be those presented in Table 5
and we explicitly remark that these values are greater than those of Table 4, which are relative to
the equivalent Cauchy medium corresponding to the considered relaxed micromorphic one.

ρ [kg/m3] λ [Pa] µ [Pa]
2000 4× 108 2× 108

Table 5: Lamé parameters and mass density of the Cauchy medium on the left side of the considered
Cauchy/relaxed micromorphic interface.

For the chosen values of the constitutive parameters, the critical angles of the incident wave
giving rise to low-frequency Stoneley waves can be calculated using Tables 1 and 2. They are found
to be θL,rcrit = 33π/100 and θL,tcrit = 17π/200 for an incident SV wave. For this choice of parameters,
no critical angles appear for incident L or SH waves.

Figure 4 shows the transmission coefficient for the considered Cauchy/relaxed micromorphic
interface, as a function of the angle of incidence and of the frequency, when the microstructure
is free to move at the interface (P is left arbitrary at the interface). The coloring of this plot
(and of the subsequent ones) is such that the dark blue regions mean zero transmission, while the
gradual change towards red is the increase in transmission (red being total transmission). Before
commenting on the details of the behavior of the transmission coefficient, we recall that the case
of free microstructure boundary condition is the only one which allows us to precisely obtain a
Cauchy/equivalent Cauchy interface in the low-frequency regime, something which is not possible
when imposing the fixed microstructure boundary condition (Pij = 0, i = 2, 3, j = 1, 2, 3) at the
interface. As a matter of fact, it is firmly established that a relaxed micromorphic continuum is
equivalent to a Cauchy continuum with stiffnesses λmacro and µmacro when considering the low-
frequency regime (see (32)), but this is proven only for the bulk medium. When considering an
interface between a Cauchy and a relaxed micromorphic medium, the latter will behave exactly as
an equivalent Cauchy medium at low frequencies only if the micro-distortion tensor P is left free
at the interface. Indeed, this tensor will arrange its values at the interface in order to let the low-
frequency reflective properties of the Cauchy/relaxed micromorphic interface be equivalent to those
of a Cauchy/equivalent Cauchy interface. On the other hand, if we impose the fixed microstructure
boundary conditions, the tangential components of the tensor P are forced to vanish at the interface,
so that the effect of the microstructure is artificially introduced in the response of the material even
for those low frequencies for which the bulk material would tend to behave as an equivalent Cauchy
medium.

Having drawn such preliminary conclusions, we can now comment Figures 4 and 5 in detail. For
the set of numerical values of the parameters given in Table 5 and 4, we established that Stoneley
waves can appear in the low-frequency regime only when imposing the incident wave to be SV.
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Figure 4: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for L (a), SV (b)
and SH (c) incident waves for the case of macro-clamp with free microstructure. The origin coincides with normal incidence
(θi = π/2), while the angle of incidence decreases towards the right until it reaches the value θi = 0, which corresponds to
the limit case where the incidence is parallel to the interface. The band-gap region is highlighted by two dashed horizontal
lines, where, as expected, we observe no transmission. The low-frequency regime is highlighted by the bottom horizontal
dashed line, while the critical angles for the onset of Stoneley waves are denoted by vertical dashed lines. The dark blue zone
shows that no transmission takes place, while the gradual change from dark blue to red shows the increase of transmission,
red being total transmission.
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Figure 5: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for L (a), SV (b)
and SH (c) incident waves for the case of macro-clamp with fixed microstructure.

In particular, the onset of Stoneley waves in the low-frequency regime can be observed in this
case only for longitudinal reflected and transmitted waves when the angles of incidence are beyond
θL,rcrit and θL,tcrit, respectively. This fact can be retrieved in Figure 4(b), in which an increase of the

transmission coefficient can be observed in the low-frequency regime corresponding to θL,rcrit (Stoneley
reflected waves are created, producing a decrease of the reflected normal flux and, due to energy
conservation, a consequent increase of the transmitted normal flux). On the other hand, we can
notice in the same figure a decrease of the transmitted energy in the low-frequency regime beyond the
critical angle θL,tcrit. This is sensible, given that beyond the value of θL,tcrit, transmitted Stoneley waves
are created, which do not contribute to propagative transmitted waves in the relaxed micromorphic
continuum. We can also explicitly remark that such a decrease of transmitted energy beyond θL,tcrit

in the low-frequency regime is much more pronounced than in the corresponding Figures 4(a) and
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Figure 6: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for L (a), SV (b)
and SH (c) incident waves for the case of a Cauchy/Cauchy interface. The parameters of the left Cauchy continuum are
given in Table 5, while the ones of the right Cauchy medium are given in Table 4.

4(c). This means that the creation of transmitted Stoneley waves contributes to a decrease of
the transmitted energy in the low-frequency regime, but a decreasing trend for the transmission
coefficient is observed also for the other cases, when considering angles which are far from normal
incidence. This goes along the common feeling, according to which the more inclined the incident
wave is with respect to the interface, the less transmission one can expect. The same behavior,
even if qualitatively and quantitatively different, can be found in Figure 5(b), in which an increase

of transmission can be observed after θL,rcrit and a decrease after θL,tcrit, also for the case of fixed
microstructure boundary conditions.

Direct comparison of Figures 4 and 5 allows us to identify the effect that the chosen type of
boundary conditions has on the transmission properties of the interface. We already remarked that,
at low frequencies, common trends can be identified which are related to critical angles determin-
ing the onset of Stoneley waves at the Cauchy/equivalent Cauchy interface. Nevertheless, some
differences can also be remarked which are entirely related to the choice of boundary conditions.
Surprisingly, the effect of boundary conditions intervenes already for low frequencies, meaning that
the fact of imposing the value of P at the interface introduces a tangible effect of the interface
microstructured properties on the overall behavior of the considered system. In particular, we can
notice that the fact of forcing the tangential part of P to vanish at the interface globally reduces
the low-frequency transmission for angles which are much closer to normal incidence, than for the
case of free microstructure. This means that the fact of considering a microstructure which is not
free to vibrate at the interface, allows for microstructure-related reflections, even if the frequency is
relatively low. Such additional reduction of transmission takes place for incident waves which are
very inclined with respect to the surface (θi ≤ π/4).

For the sake of completeness and in order to immediately visualize the extent to which the
relaxed micromorphic model generalizes the classical setting of linear elasticity, Figure 6 shows the
analogous transmission coefficients for the case of a Cauchy/Cauchy interface. These coefficients
are obtained for a Cauchy medium on the right, which is the low-frequency limit of the relaxed
micromorphic continuum of Fig. 4. It is immediately evident that a reasonable agreement is
observed only with the very low frequency regime of Figures 4 and 5. Given that in Cauchy
elasticity the transmission coefficient does not depend on the frequency, all other effects at higher
frequencies are lost, well before the band-gap region.
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Up to now, we only discussed the transmittive properties of the considered Cauchy/relaxed
micromorphic interface on the low-frequency regime. Some of the features that we discussed on
Stoneley waves can be retrieved by observing Figures 7, 8 and 9 in which the plots of the imaginary
part of the first component of the wave vector k1 are given for each mode of the relaxed micromorphic
medium, for L, SV and SH incident waves respectively.
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W
a
v
e

fr
e
q
u
e
n
c
y

[1
0
6

1
/
s
]

Angle of incidence [rad] Angle of incidence [rad] Angle of incidence [rad] Angle of incidence [rad] Angle of incidence [rad]

Figure 7: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the five modes
of the relaxed micromorphic medium and for the case of an incident L wave. The origin coincides with normal
incidence (θi = π/2), while the angle of incidence decreases towards the right until it reaches the value θi = 0,
which corresponds to the limit case where the incidence is parallel to the interface. The first two modes (a) and (b)
correspond to the L and SV modes for the equivalent Cauchy continuum at low frequencies. The red color in these
plots means that the mode is Stoneley and does not propagate, while blue means that the mode is propagative.
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Figure 8: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the five modes
of the relaxed micromorphic medium and for the case of an incident SV wave.
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Figure 9: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the four modes
of the relaxed micromorphic medium and for the case of an incident SH wave.
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The blue region denotes Im(k1) = 0 (which implies that k1 is real), while Im(k1) is not vanishing
in the red regions. In other words, we can say that for each mode, the red color means that there
are Stoneley waves associated to that mode. The first two modes in Figures 7 and 8 correspond to
L and SV Cauchy-like modes, while the first mode in Figure 9 is the SH Cauchy-like mode in the
low-frequency regime. Since we are considering a relaxed micromorphic medium, three additional
modes with respect to the Cauchy case are present both for the in-plane (Figures 7 and 8) and
for the out-of-plane problem (Fig. 9). For the Cauchy-like modes we can observe that at low
frequencies they are always propagative, except in the case of an incident SV wave, for which
Stoneley longitudinal waves appear beyond θL,tcrit (also Stoneley reflected waves can be observed in
this case, but we do not present the plots of Im(k1) for reflected waves to avoid overburdening.
We can note by inspecting Figures 7, 8 and (Fig. 9 that the presence of Stoneley waves at high
frequencies is much more widespread than at low frequencies for all 5 (resp. 4) modes.

We can observe by direct observation of Figures 7, 8 and 9 that high-frequency critical angles
exist for each mode corresponding to which a transition from Stoneley to propagative waves takes
place. The value of such critical angles depends on the frequency for the medium-frequency regime
and become constant for higher frequencies. The influence of the existence of such high-frequency
critical angles can be directly observed on the patterns of the transmission coefficient in Figures
4 and 5, in which high frequency transmission is observed for angles closer to normal incidence
and no transmission is reported for smaller angles due to the simultaneous presence of Stoneley
waves for all modes. We can call such zones in which transmission is equal to one “extraordinary
transmission regions” (see e.g. (29)). Such extraordinary transmission can be used as a basis for
the conception of innovative systems such as selective cloaking and non-destructive evaluation.

We can finally remark that the influence of the choice of boundary conditions on the high-
frequency behavior of the transmission coefficient is still present, but do not determine drastic
changes on the transmission patterns (see Figures 4 and 5).

6.2. Cauchy medium which is “softer” than the relaxed micromorphic one

In this section we present the reflective properties of a Cauchy/relaxed micromorphic interface
for which we consider that the Cauchy medium on the left is “softer” than the relaxed micromorphic
medium on the right in the same sense as in the previous section. To that end, we choose the material
parameters of the left Cauchy medium to be those presented in Table 6 and we explicitly remark
that these values are smaller than those of Table 4.

ρ [kg/m3] λ [Pa] µ [Pa]
2000 2× 107 0.7× 107

Table 6: Lamé parameters of the “softer” Cauchy medium on the left side of the considered Cauchy/relaxed
micromorphic interface.

With these new parameters we can compute again, following Tables 1 and 2, the critical angles
for the appearance of Stoneley waves at low frequencies. They are found to be θL,tcrit = 37π/100 and

θSV,tcrit = 49π/200 for an incident L wave (no reflected Stoneley mode), θL,rcrit = 7π/20, θL,tcrit = 11π/25

and θSV,tcrit = 39π/100 for an incident SV wave and θSH,tcrit = 39π/100 for an incident SH wave.
Figures 10 and 11 show the transmission coefficient for the softer Cauchy/relaxed micromorphic

interface as a function of the angle of incidence and of frequency for both boundary conditions.
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We see that when the incident wave travels in a soft medium and hits the interface separating this
medium from a stiffer one, many critical angles exist which determine the onset of Stoneley waves
for all types of incident wave at low frequencies. Since many more Stoneley waves are created with
respect to the previous case of section 6.1, we would expect less transmission in the low-frequency
regime than before. This is indeed the case if we inspect Figures 10 and 11: the presence of low-
frequency Stoneley waves induces a wides zero-transmission zone in the low-frequency regime. We
can also detect a certain role of boundary conditions in widening these zero-transmission zones
when considering the fixed microstructure boundary condition (see Figure 11).

Also in this case of a left “softer” Cauchy medium, we plot in Fig. 12 the analogous transmission
coefficient when the right side of the interface is occupied by a Cauchy medium. Again, this Cauchy
medium on the right is the homogenized limit of the considered micromorphic material. By directly
comparing to Fig. 10, we infer that a reasonable agreement can be observed only for very low
frequencies. All other higher frequency effects are lost before the band-gap.

Figures 13, 14 and 15 once again show the imaginary part of the first component of the wave-
vector k1 for each mode of the relaxed micromorphic medium on the right. We see that Stoneley
waves are observed almost everywhere both at low and high frequencies, with the exception of
angles which are very close to normal incidence. Once again, the blue region denotes Im(k1) = 0
(which implies that k1 is real), while Im(k1) is not vanishing in the red regions, which means that
for each mode, the red color denotes that there are Stoneley waves associated to that mode. The
first two modes in Figures 13 and 14 correspond to L and SV Cauchy-like modes, while the first
mode in Figure 15 is the SH Cauchy-like mode in the low-frequency regime.

Since we are considering a relaxed micromorphic medium, three additional modes with respect
to the Cauchy case are present both for the in-plane (Figures 13 and 14) and for the out-of-
plane problem. For this choice of parameters which make the left-side medium “softer” than the
corresponding Cauchy medium on the right, we see that the Cauchy-like modes for all incident
waves become Stoneley after a critical angle (clearly denoted on the plots with a vertical dashed
line). Also Stoneley reflected waves can be observed in this case, but we do not present the plots
of Im(k1) for reflected waves to avoid overburdening.

We see that it is possible to create an almost perfect total screen, which completely reflects
incident waves for almost all angles of incidence and wave frequencies. This extraordinary possibility
can be obtained by simply tailoring the properties of the left Cauchy medium which has to be
chosen to be suitably softer than the right equivalent Cauchy medium. Regions of extraordinary
transmission for very wade ranges of incident angles and wave frequencies can be engineered, opening
the door to exciting applications.

Before concluding the Results section, we point out a last interesting property of the transmission
coefficient obtained by the relaxed micromorphic model. In both cases (see Figures 4, 5, 10, 11) the
band-gap for SV incident waves is more extended than the band-gap for L incident waves for angles
close to normal incidence. This phenomenon is due to the uncoupling of L and SV “activated”
acoustic modes close to normal incidence outlined in Fig. 3. Close to normal incidence, only
the green modes are activated by an incident SV wave, so that the band-gap is widened. This
“uncoupling” effect can often be observed in real metamaterials. An analogous “mode uncoupling”
at higher frequencies is responsible for the wider zero-transmission high-frequency region for SV
incident waves compared to L incident waves.
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Figure 10: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for L (a), SV
(b) and SH (c) incident waves for the case of macro-clamp with free microstructure and for a “softer” Cauchy medium on
the left.
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Figure 11: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for L (a), SV
(b) and SH (c) incident waves for the case of macro-clamp with fixed microstructure and for a “softer” Cauchy medium on
the left.
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Figure 12: Transmission coefficients as a function of the angle of incidence θi and of the wave-frequency ω for L (a), SV
(b) and SH (c) incident waves for the case of a Cauchy/Cauchy interface. The parameters of the left Cauchy continuum are
given in Table 6, while the ones of the right Cauchy medium are given in Table 4.
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Figure 13: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the five modes
of the relaxed micromorphic medium for the case of an incident L wave and a “softer” Cauchy medium on the left.
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Figure 14: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the five modes
of the relaxed micromorphic medium for the case of an incident SV wave and a “softer” Cauchy medium on the left.
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Figure 15: Values of Im(k1) as a function of the angle of incidence θi and of the wave-frequency ω for the four modes
of the relaxed micromorphic medium for the case of an incident SH wave and a “softer” Cauchy medium on the left.

7. Conclusions

In this paper we present the detailed study of the reflective and refractive properties of a two-
dimensional interface separating a classical Cauchy medium from a relaxed micromorphic medium.
Both media are assumed to be semi-infinite.

We show in great detail that critical angles of incidence exist, beyond which classical Stoneley
waves appear at low frequencies. It is shown that these critical angles directly depend on the relative
mechanical properties of the two media. Moreover, we unveil the existence of critical angles which
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give rise to Stoneley waves at higher frequencies. These Stoneley waves are clearly related to the
presence of an underlying microstructure in the metamaterial.

We show that, due to the onset of low and high-frequency Stoneley waves, wide frequency
bounds where total reflection and/or total transmission occur can be engineered. This total reflec-
tion/transmission phenomenon is appealing for applications, in which total screens for elastic waves,
such as cloaks or wave-filters, are desirable. It is clear that the ability of widening the frequency
and incident angle intervals for which total reflection/transmission occur, would be of paramount
importance for conceiving new devices which are more and more performant for wavefront manip-
ulation.

We also clearly show that the simple fact of suitably tailoring the relative stiffnesses of the two
media allows for the possibility of conceiving almost perfect total screens which do not transmit
elastic waves for any kind of incident wave (longitudinal, in-plane and out-of-plane shear) and for
almost all (low and high) frequencies and angles of incidence. Acting on such relative stiffnesses
allows to achieve also the opposite situation, where total transmission occurs for large frequency
bounds before a microstructure-related critical angle. This could be exploited for the conception of
selective cloaks which make objects transparent to waves dependently on the angle of incidence.

Future work will be devoted to the application of the framework presented here in “real-life”
applications, continuing the study of the scattering properties of the interface separating a homo-
geneous medium from a specific metamaterial with known microstructure. To fully succeed in this
plan, we will need to generalize the present isotropic study to the anisotropic setting.
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AppendixA. Kinematical variables and energy flux for the relaxed micromorphic model

We proceed to make the following change of variables which are motivated by the Cartan-Lie decom-
position of the tensor P :

PS =
1

3
(P11 + P22 + P33), PD1 = P11 − PS , PD2 = P22 − PS , P(1γ) =

1

2
(P1γ + Pγ1),

P[1γ] =
1

2
(P1γ − Pγ1), P(23) =

1

2
(P23 + P32), P[23] =

1

2
(P23 − P32), (A.1)

with γ = 2, 3. We can then collect the variables which are coupled as

v1 =
(
u1, u2, P

D
1 , P

D
2 , P

S , P(12), P[12]

)T
, v2 =

(
u3, P(13), P[13], P(23), P[23]

)T
. (A.2)

The expression (2.6) for the energy flux in the relaxed micromorphic model can be rewritten in terms of
the new variables (A.2). The part of the flux involving the in-plane quantity reads:

H̃1
1 = v1,t · (H11 · v1,1 +H12 · v1,2 +H13 · v1),

where

H11 =



−2µe − λe 0 0 0 0 0 0
0 −µe − µc 0 0 0 0 0
0 0 −L2

cµe −L2
cµe L2

cµe 0 0
0 0 −L2

cµe −2L2
cµe 0 0 0

0 0 L2
cµe 0 −2L2

cµe 0 0
0 0 0 0 0 −L2

cµe −L2
cµe

0 0 0 0 0 −L2
cµe −L2

cµe


, (A.3)

H12 =



0 −λe 0 0 0 0 0
µc − µe 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 L2

cµe −L2
cµe

0 0 0 0 0 L2
cµe −L2

cµe
0 0 L2

cµe 0 L2
cµe 0 0

0 0 L2
cµe 0 L2

cµe 0 0


, H13 =



0 0 2µe 0 2µe + 3λe 0 0
0 0 0 0 0 2µe −2µc
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

(A.4)
The expression for the energy flux in the relaxed micromorphic model involving out-of-plane-quantities is

given by:
H̃2

1 = v2,t · (H21 · v2,1 +H22 · v2,2 +H23 · v2),

where

H21 =


−µc − µe 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −L2

cµe L2
cµe

0 0 0 L2
cµe −L2

cµe

 , H22 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 L2

cµe −L2
cµe 0 0

0 −L2
cµe L2

cµe 0 0

 , (A.5)

H23 =


0 2µe −2µc 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (A.6)
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