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Abstract We consider the two logarithmic strain measures ωiso = ‖devn logU‖
and ωvol = |tr(logU)|, which are isotropic invariants of the Hencky strain tensor
logU = log(FT F), and show that they can be uniquely characterized by purely ge-
ometric methods based on the geodesic distance on the general linear group GL(n).
Here, F is the deformation gradient, U =

√
FT F is the right Biot-stretch tensor,

log denotes the principal matrix logarithm, ‖ .‖ is the Frobenius matrix norm, tr
is the trace operator and devn X = X − 1

n tr(X) ·1 is the n-dimensional deviator of
X ∈ Rn×n. This characterization identifies the Hencky (or true) strain tensor as the
natural nonlinear extension of the linear (infinitesimal) strain tensor ε = sym∇u,
which is the symmetric part of the displacement gradient ∇u, and reveals a close
geometric relation between the classical quadratic isotropic energy potential in lin-
ear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy.
Our deduction involves a new fundamental logarithmic minimization property of
the orthogonal polar factor R, where F = RU is the polar decomposition of F .
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1 Strain and strain measures in nonlinear elasticity

The concept of strain is of fundamental importance in elasticity theory. In linearized
elasticity, one assumes that the Cauchy stress tensor σ is a linear function of the
symmetric infinitesimal strain tensor

ε = sym∇u = sym(∇ϕ−1) = sym(F−1) ,

where ϕ : Ω → Rn is the deformation of an elastic body with a given reference
configuration Ω ⊂ Rn, ϕ(x) = x + u(x) with the displacement u, F = ∇ϕ is the
deformation gradient, sym∇u = 1

2 (∇u+(∇u)T ) is the symmetric part of the dis-
placement gradient ∇u and 1 ∈ GL+(n) is the identity tensor in the group of invert-
ible tensors with positive determinant. In geometrically nonlinear elasticity models,
it is no longer necessary to postulate a linear connection between some stress and
some strain. However, nonlinear strain tensors are often used in order to simplify
the stress response function, and many constitutive laws are expressed in terms of
linear relations between certain strains and stresses [2, 3, 6].

There are different definitions of what exactly the term “strain” encompasses:
while Truesdell and Toupin [42, p. 268] consider “any uniquely invertible isotropic
second order tensor function of [the right Cauchy-Green deformation tensor C =
FT F]” to be a strain tensor, it is commonly assumed [20, p. 230] (cf. [21, 22, 5, 36])
that a (material or Lagrangian1) strain takes the form of a primary matrix function of
the right Biot-stretch tensor U =

√
FT F of the deformation gradient F ∈ GL+(n),

i.e. an isotropic tensor function E : Sym+(n)→ Sym(n) from the set of positive
definite tensors to the set of symmetric tensors of the form

E(U) =
n

∑
i=1

e(λi) · ei⊗ ei for U =
n

∑
i=1

λi · ei⊗ ei (1)

with a scale function e : (0,∞)→ R, where ⊗ denotes the tensor product, λi are the
eigenvalues and ei are the corresponding eigenvectors of U .

The general idea underlying these definitions is clear: strain is a measure of de-
formation (i.e. the change in form and size) of a body with respect to a chosen (ar-
bitrary) reference configuration. Furthermore, the strain of the deformation gradient
F ∈ GL+(n) should correspond only to the non-rotational part of F . In particular,
the strain must vanish if and only if F is a pure rotation, i.e. if and only if F ∈ SO(n),
where SO(n) = {Q ∈ GL(n) |QT Q = 1, detQ = 1} denotes the special orthogonal
group. This ensures that the only strain-free deformations are rigid body movements
[33].

In contrast to strain or strain tensor, we use the term strain measure to refer to a
nonnegative real-valued function ω : GL+(n)→ [0,∞) depending on the deforma-
tion gradient which vanishes if and only if F is a pure rotation, i.e. ω(F) = 0 if and
only if F ∈ SO(n).

1 Similarly, a spatial or Eulerian strain tensor Ê(V ) depends on the left Biot-stretch tensor V =√
FFT (cf. [14]).
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In the following we consider the question of what strain measures are appropri-
ate for the theory of nonlinear isotropic elasticity. Since, by our definition, a strain
measure attains zero if and only if F ∈ SO(n), a simple geometric approach is to
consider a distance function on the group GL+(n) of admissible deformation gra-
dients, i.e. a function dist : GL+(n)×GL+(n)→ [0,∞) with dist(A,B) = dist(B,A)
which satisfies the triangle inequality and vanishes if and only if its arguments are
identical. Such a distance function induces a “natural” strain measure on GL+(n) by
means of the distance to the special orthogonal group SO(n):

ω(F) := dist(F,SO(n)) := inf
Q∈SO(n)

dist(F,Q) . (2)

In this way, the search for an appropriate strain measure reduces to the task of find-
ing a natural, intrinsic distance function on GL+(n).

2 Euclidean strain measures

2.1 The Euclidean strain measure in linear isotropic elasticity

An approach similar to the definition of strain measures via distance functions on
GL+(n), as stated in equation (2), can be employed in linearized elasticity theory:
let ϕ(x) = x+ u(x) with the displacement u. Then the infinitesimal strain measure
may be obtained by taking the distance of the displacement gradient ∇u ∈ Rn×n to
the set of linearized rotations so(n) = {A ∈ Rn×n : AT = −A}, which is the vector
space of skew symmetric matrices. An obvious choice for a distance measure on the
linear space Rn×n ∼= Rn2

of n×n-matrices is the Euclidean distance induced by the
canonical Frobenius norm

‖X‖=
√

tr(XT X) =

√
n

∑
i, j=1

X2
i j .

We use the more general weighted norm defined by

‖X‖2
µ,µc,κ = µ ‖devn symX‖2 +µc ‖skewX‖2 +

κ
2
[tr(X)]2 , µ,µc,κ > 0 , (3)

which separately weights the deviatoric (or trace free) symmetric part devn symX =
symX − 1

n tr(symX) ·1, the spherical part 1
n tr(X) ·1, and the skew symmetric part

skewX = 1
2 (X −XT ) of X ; note that ‖X‖µ,µc,κ = ‖X‖ for µ = µc = 1,κ = 2

n , and
that ‖ .‖µ,µc,κ is induced by the inner product

〈X ,Y 〉µ,µc,κ = µ 〈devn symX ,devn symY 〉+µc 〈skewX ,skewY 〉+ κ
2 tr(X) tr(Y )

(4)
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on Rn×n, where 〈X ,Y 〉= tr(XTY ) denotes the canonical inner product. In fact, every
isotropic inner product on Rn×n, i.e. every inner product 〈·, ·〉iso with

〈QT X Q, QTY Q〉iso = 〈X ,Y 〉iso

for all X ,Y ∈ Rn×n and all Q ∈ O(n), is of the form (4), cf. [11]. The suggestive
choice of variables µ and κ , which represent the shear modulus and the bulk modu-
lus, respectively, will prove to be justified later on. The remaining parameter µc will
be called the spin modulus.

Of course, the element of best approximation in so(n) to ∇u with respect to the
weighted Euclidean distance distEuclid,µ,µc,κ(X ,Y ) = ‖X−Y‖µ,µc,κ is given by the
associated orthogonal projection of ∇u to so(n).Since so(n) and the space Sym(n)
of symmetric matrices are orthogonal with respect to 〈·, ·〉µ,µc,κ , this projection is
given by the continuum rotation, i.e. the skew symmetric part skew∇u = 1

2 (∇u−
(∇u)T ) of ∇u, the axial vector of which is curlu. Thus the distance is

distEuclid,µ,µc,κ(∇u,so(n)) : = inf
A∈so(n)

‖∇u−A‖µ,µc,κ

= ‖∇u− skew∇u‖µ,µc,κ = ‖sym∇u‖µ,µc,κ . (5)

We therefore find

dist2Euclid,µ,µc,κ(∇u,so(n)) = ‖sym∇u‖2
µ,µc,κ

= µ ‖devn sym∇u‖2 +
κ
2
[tr(sym∇u)]2

= µ ‖devn ε‖2 +
κ
2
[tr(ε)]2 =Wlin(∇u)

for the linear strain tensor ε = sym∇u, which is the quadratic isotropic elastic en-
ergy.

2.2 The Euclidean strain measure in nonlinear isotropic elasticity

In order to obtain a strain measure in the geometrically nonlinear case, we must
compute the distance

dist(∇ϕ,SO(n)) = dist(F,SO(n)) = inf
Q∈SO(n)

dist(F,Q)

of the deformation gradient F = ∇ϕ ∈ GL+(n) to the actual set of pure rotations
SO(n)⊂GL+(n). It is therefore necessary to choose a distance function on GL+(n);
an obvious choice is the restriction of the Euclidean distance on Rn×n to GL+(n). For
the canonical Frobenius norm ‖ .‖, the Euclidean distance between F,P ∈ GL+(n)
is

distEuclid(F,P) = ‖F−P‖=
√

tr[(F−P)T (F−P)] .
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Now let Q ∈ SO(n). Since ‖ .‖ is orthogonally invariant, i.e. ‖Q̂X‖= ‖XQ̂‖= ‖X‖
for all X ∈ Rn×n, Q̂ ∈ O(n), we find

distEuclid(F,Q) = ‖F−Q‖= ‖QT (F−Q)‖= ‖QT F−1‖ . (6)

Thus the computation of the strain measure induced by the Euclidean distance on
GL+(n) reduces to the matrix nearness problem [19]

distEuclid(F,SO(n)) = inf
Q∈SO(n)

‖F−Q‖= min
Q∈SO(n)

‖QT F−1‖ .

By a well-known optimality result discovered by Giuseppe Grioli [15] (cf. [32, 16,
27, 9]), also called “Grioli’s Theorem” by Truesdell and Toupin [42, p. 290], this
minimum is attained for the orthogonal polar factor R.

Theorem 1 (Grioli’s Theorem [15, 32, 42]). Let F ∈ GL+(n). Then

min
Q∈SO(n)

‖QT F−1‖= ‖RT F−1‖= ‖
√

FT F−1‖= ‖U−1‖ ,

where F = RU is the polar decomposition of F with R = polar(F) ∈ SO(n) and
U =

√
FT F ∈ Sym+(n). The minimum is uniquely attained at the orthogonal polar

factor R.

Thus for nonlinear elasticity, the restriction of the Euclidean distance to GL+(n)
yields the strain measure

distEuclid(F,SO(n)) = ‖U−1‖ .

In analogy to the linear case, we obtain

dist2Euclid(F,SO(n)) = ‖U−1‖2 = ‖E1/2‖2 , (7)

where E1/2 = U −1 is the Biot strain tensor. Note the similarity between this ex-
pression and the Saint-Venant-Kirchhoff energy [24]

‖E1‖2
µ,µc,κ = µ ‖dev3 E1‖2 +

κ
2
[tr(E1)]

2 , (8)

where E1 =
1
2 (C−1) = 1

2 (U
2−1) is the Green-Lagrangian strain.

However, the resulting strain measure ω(U) = distEuclid(F,SO(n)) = ‖U − 1‖
does not truly seem appropriate for finite elasticity theory: for U → 0 we find ‖U−
1‖ → ‖1‖ =√n < ∞, thus singular deformations do not necessarily correspond to
an infinite measure ω . Furthermore, the above computations are not compatible with
the weighted norm introduced in Section 2.1: in general [31, 12, 13],

min
Q∈SO(n)

‖F−Q‖2
µ,µc,κ 6= min

Q∈SO(n)
‖QT F−1‖2

µ,µc,κ 6= ‖
√

FT F−1‖2
µ,µc,κ , (9)
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thus the Euclidean distance of F to SO(n) with respect to ‖ .‖µ,µc,κ does not equal

‖
√

FT F−1‖µ,µc,κ in general. In these cases, the element of best approximation is
not the orthogonal polar factor R = polar(F).

We also observe that the Euclidean distance is not an intrinsic distance measure
on GL+(n): in general, A−B /∈GL+(n) for A,B ∈GL+(n), hence the term ‖A−B‖
depends on the underlying linear structure of Rn×n.

Most importantly, because GL+(n) is not convex, the straight line {A+ t (B−
A) | t ∈ [0,1]} connecting A and B is not necessarily contained in GL+(n), which
shows that the characterization of the Euclidean distance as the length of a shortest
connecting curve is also not possible in a way intrinsic to GL+(n), as the intuitive
sketches in Figures 1 and 2 indicate.

SO(n)

1

R = polar(F)

GL+(n)

F

dist2euclid(F,SO(n))

= ‖U−1‖2 = ‖
√

FTF−1‖2

Fig. 1: The Euclidean distance as an extrinsic measure on GL+(n); note that the representation of
the manifold GL+(n) as a sphere only serves to demonstrate the necessity of an intrinsic distance
measure and does not reflect the actual topological properties of GL+(n).

These issues amply demonstrate that the Euclidean distance can only be regarded
as an extrinsic distance measure on the general linear group. We therefore need to
expand our view to allow for a more appropriate, truly intrinsic distance measure on
GL+(n).

3 The Riemannian strain measure in nonlinear isotropic
elasticity

3.1 GL+(n) as a Riemannian manifold

In order to find an intrinsic distance function on GL+(n) that alleviates the draw-
backs of the Euclidean distance, we endow GL(n) with a Riemannian metric g,
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which is defined by an inner product gA : TA GL(n)×TA GL(n)→ R on each tan-
gent space TA GL(n), A ∈ GL(n). Then the length of a sufficiently smooth curve

γ : [0,1]→ GL(n) is given by L(γ) =
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt, where γ̇(t) = d

dt γ(t),
and the geodesic distance (cf. Figure 2) between A,B ∈GL+(n) is defined as the in-
fimum over the lengths of all (twice continuously differentiable) curves connecting
A to B:

distgeod(A,B) = inf{L(γ) |γ ∈C2([0,1];GL+(n)), γ(0) = A, γ(1) = B} .

Our search for an appropriate strain measure is thereby reduced to the task of finding

AGL+(n) B
dist2euclid(A,B) = ‖A−B‖2

dist2geod(A,B)

Fig. 2: The geodesic (intrinsic) distance compared to the Euclidean (extrinsic) distance.

an appropriate Riemannian metric on GL(n). Although it might appear as an obvious
choice, the metric ǧ with

ǧA(X ,Y ) := 〈X ,Y 〉 for all A ∈ GL+(n), X ,Y ∈ Rn×n (10)

provides no improvement over the already discussed Euclidean distance on GL+(n):
since the length of a curve γ with respect to ǧ is its classical (Euclidean) length,
the shortest connecting curves with respect to ǧ are straight lines of the form t 7→
A+ t(B−A) with A,B ∈ GL+(n). Locally, the geodesic distance induced by ǧ is
therefore equal to the Euclidean distance, and thus many of the shortcomings of the
Euclidean distance apply to the geodesic distance induced by ǧ as well.

In order to find a more viable Riemannian metric g on GL(n), we consider the
mechanical interpretation of the induced geodesic distance distgeod: while our focus
lies on the strain measure induced by g, that is the geodesic distance of the deforma-
tion gradient F to the special orthogonal group SO(n), the distance distgeod(F1,F2)
between two deformation gradients F1,F2 can also be motivated directly as a mea-
sure of difference between two linear (or homogeneous) deformations F1,F2 of the
same body Ω . More generally, we can define a difference measure between two
inhomogeneous deformations ϕ1,ϕ2 : Ω ⊂ Rn→ Rn via

dist(ϕ1,ϕ2) :=
∫

Ω
distgeod(∇ϕ1(x),∇ϕ2(x))dx (11)

under suitable regularity conditions for ϕ1,ϕ2 (e.g. if ϕ1,ϕ2 are sufficiently smooth
with det∇ϕi > 0 up to the boundary).

In order to find an appropriate Riemannian metric g on GL(n), we must discuss
the required properties of this “difference measure”. First, the requirements of ob-
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jectivity (left-invariance) and isotropy (right-invariance) suggest that the metric g
should be bi-O(n)-invariant, i.e. satisfy

gQA(QX ,QY ) = gA(X ,Y )︸ ︷︷ ︸
objectivity

isotropy︷ ︸︸ ︷
= gAQ(XQ,Y Q) (12)

for all Q ∈ O(n), A ∈ GL(n) and X ,Y ∈ TA GL(n), to ensure that distgeod(A,B) =
distgeod(QA,QB) = distgeod(AQ,BQ).

However, these requirements do not sufficiently determine a specific Riemannian
metric. For example, (12) is satisfied by the metric ǧ defined in (10) as well as by
the metric ˇ̌g with ˇ̌gA(X ,Y ) = 〈AT X ,AT Y 〉. In order to rule out unsuitable metrics,
we need to impose further restrictions on g. If we consider the distance measure
dist(ϕ1,ϕ2) between two deformations ϕ1,ϕ2 introduced in (11), a number of fur-
ther invariances can be motivated: if we require that the distance is not changed by
the superposition of a homogeneous deformation, i.e. that

dist(B ·ϕ1,B ·ϕ2) = dist(ϕ1,ϕ2)

for all constant B ∈ GL(n), then g must be left-GL(n)-invariant, i.e.

gBA(BX ,BY ) = gA(X ,Y ) (13)

for all A,B ∈ GL(n) and X ,Y ∈ TA GL(n).
It can easily be shown [26] that a Riemannian metric g is left-GL(n)-invariant as

well as right-O(n)-invariant if and only if g is of the form

gA(X ,Y ) = 〈A−1X ,A−1Y 〉µ,µc,κ , (14)

where 〈·, ·〉µ,µc,κ is the fixed inner product on the tangent space gl(n) = T1 GL(n) =
Rn×n at the identity with

〈X ,Y 〉µ,µc,κ = µ 〈devn symX ,devn symY 〉+µc〈skewX ,skewY 〉+ κ
2 tr(X) tr(Y )

for constant positive parameters µ,µc,κ > 0, and where 〈X ,Y 〉 = tr(XTY ) denotes
the canonical inner product on gl(n) = Rn×n. In the following, we will always as-
sume that GL(n) is endowed with a Riemannian metric of the form (14) unless
indicated otherwise.

In order to find the geodesic distance

distgeod(F,SO(n)) = inf
Q∈SO(n)

distgeod(F,Q)

of F ∈ GL+(n) to SO(n), we need to consider the geodesic curves on GL+(n). It
has been shown [26, 28, 17, 1] that every geodesic on GL+(n) with respect to the
left-GL(n)-invariant Riemannian metric (14) is of the form
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γξ
F (t) = F exp(t(symξ − µc

µ skewξ )) exp(t(1+ µc
µ )skewξ ) (15)

with F ∈ GL+(n) and some ξ ∈ gl(n), where exp denotes the matrix exponential.
Since the geodesic curves are defined globally, GL+(n) is geodesically complete
with respect to the metric g. We can therefore apply the Hopf-Rinow theorem [23,
26] to find that for all F,P ∈ GL+(n) there exists a length minimizing geodesic γξ

F

connecting F and P. Without loss of generality, we can assume that γξ
F is defined on

the interval [0,1]. Then the end points of γξ
F are

γξ
F (0) = F and P = γξ

F (1) = F exp(symξ − µc
µ skewξ ) exp((1+ µc

µ )skewξ ) ,

and the length of the geodesic γξ
F starting in F with initial tangent F ξ ∈ TF GL+(n)

(cf. (15) and Figure 3) is given by [26]

L(γξ
F ) = ‖ξ‖µ,µc,κ .

The geodesic distance between F and P can therefore be characterized as

distgeod(F,P) = min{‖ξ‖µ,µc,κ | ξ ∈ gl(n) : γξ
F (1) = P} ,

that is the minimum of ‖ξ‖µ,µc,κ over all ξ ∈ gl(n) which connect F and P, i.e.
satisfy

exp(symξ − µc
µ skewξ ) exp((1+ µc

µ )skewξ ) = F−1P . (16)

Although some numerical computations have been employed [43] to approxi-
mate the geodesic distance in the special case of the canonical left-GL(n)-invariant
metric, i.e. for µ = µc = 1, κ = 2

n , there is no known closed-form solution to the
highly nonlinear system (16) in terms of ξ for given F,P ∈ GL+(n) and thus no
known method of directly computing distgeod(F,P) in the general case exists. How-
ever, this parametrization of the geodesic curves will still allow us to obtain a lower
bound on the distance of F to SO(n).

3.2 The geodesic distance to SO(n)

Having defined the geodesic distance on GL+(n), we can now consider the geodesic
strain measure, i.e. the geodesic distance of the deformation gradient F to SO(n):

distgeod(F,SO(n)) = inf
Q∈SO(n)

distgeod(F,Q) . (17)

Now, let F = RU denote the polar decomposition of F with U ∈ Sym+(n) and
R ∈ SO(n). In order to establish a simple upper bound on the geodesic distance
distgeod(F,SO(n)), we construct a particular curve γR connecting F to its orthogonal
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factor R ∈ SO(n) and compute its length L(γR). For

γR(t) := R exp((1− t) logU) ,

where logU ∈ Sym(n) is the principal matrix logarithm of U , we find

γR(0) = R exp(logU) = RU = F and γR(1) = R exp(0) = R ∈ SO(n) .

It is easy to confirm that γR is in fact a geodesic as given in (15) with ξ = logU ∈
Sym(n), thus the length of γR is given by L(γR) = ‖logU‖µ,µc,κ . We can thereby
establish the upper bound

dist2geod(F,SO(n)) = inf
Q∈SO(n)

dist2geod(F,Q)≤ dist2geod(F,R) (18)

≤ L2(γR) = ‖logU‖2
µ,µc,κ = µ ‖devn logU‖2 +

κ
2
[tr(logU)]2

(19)

for the geodesic distance of F to SO(n).
Our task in the remainder of this section is to show that the right hand side of

inequality (19) is also a lower bound for the (squared) geodesic strain measure, i.e.
that, altogether,

dist2geod(F,SO(n)) = µ ‖devn logU‖2 +
κ
2
[tr(logU)]2 .

However, while the orthogonal polar factor R is the element of best approxima-
tion in the Euclidean case (for µ = µc = 1, κ = 2

n ) due to Grioli’s Theorem, it is not
clear whether R is indeed the element in SO(n) with the shortest geodesic distance
to F (and thus whether equality holds in (18)). Furthermore, it is not even immedi-
ately obvious that the geodesic distance between F and R is actually given by the
right hand side of (19), since a shorter connecting geodesic might exist (and hence
inequality might hold in (19)).

Nonetheless, the following fundamental logarithmic minimization property of
the orthogonal polar factor, combined with the computations in Section 3.1, allows
us to show that (19) is indeed also a lower bound for distgeod(F,SO(n)).

Proposition 2. Let F = R
√

FT F be the polar decomposition of F ∈ GL+(n) with
R ∈ SO(n) and let ‖ .‖ denote the Frobenius norm on Rn×n. Then

inf
Q∈SO(n)

‖symLog(QT F)‖= ‖symlog(RT F)‖= ‖log
√

FT F‖ ,

where

inf
Q∈SO(n)

‖symLog(QT F)‖ := inf
Q∈SO(n)

inf{‖symX‖ | X ∈ Rn×n , exp(X) = QT F}

is defined as the infimum of ‖sym .‖ over “all real matrix logarithms” of QT F.
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Proposition 2, which can be seen as the natural logarithmic analogue of Grioli’s
Theorem (cf. Section 2.2), was first shown for dimensions n = 2,3 by Neff et al.
[35] using the so-called sum-of-squared-logarithms inequality [7, 37, 10, 8]. A gen-
eralization to all unitarily invariant norms and complex logarithms for arbitrary di-
mension was given by Lankeit, Neff and Nakatsukasa [25]. We also require the fol-
lowing corollary involving the weighted Frobenius norm, which is not orthogonally
invariant.

Corollary 3. Let

‖X‖2
µ,µc,κ = µ ‖devn symX‖2 +µc ‖skewX‖2 +

κ
2
[tr(X)]2 , µ,µc,κ > 0 ,

for all X ∈ Rn×n, where ‖ .‖ is the Frobenius matrix norm. Then

inf
Q∈SO(n)

‖symLog(QT F)‖µ,µc,κ = ‖log
√

FT F‖µ,µc,κ .

We are now ready to prove our main result.

Theorem 4. Let g be the left-GL(n)-invariant, right-O(n)-invariant Rieman-
nian metric on GL(n) defined by

gA(X ,Y ) = 〈A−1X ,A−1Y 〉µ,µc,κ , µ,µc,κ > 0 ,

for A ∈ GL(n) and X ,Y ∈ Rn×n, where

〈X ,Y 〉µ,µc,κ = µ 〈devn symX ,devn symY 〉+µc〈skewX ,skewY 〉+ κ
2 tr(X) tr(Y ) .

(20)
Then for all F ∈GL+(n), the geodesic distance of F to the special orthogonal
group SO(n) induced by g is given by

dist2geod(F,SO(n)) = µ ‖devn logU‖2 +
κ
2
[tr(logU)]2 , (21)

where log is the principal matrix logarithm, tr(X) =∑n
i=1 Xi,i denotes the trace

and devn X = X− 1
n tr(X) ·1 is the n-dimensional deviatoric part of X ∈Rn×n.

In particular, the geodesic distance does not depend on the spin modulus µc.

Remark 5. It can also be shown [30] that the orthogonal factor R ∈ SO(n) of the
polar decomposition F = RU is the unique element of best approximation in SO(n),
i.e. that for Q ∈ SO(n), distgeod(F,SO(n)) = distgeod(F,Q) if and only if Q = R.

Proof (of Theorem 4). Let F ∈ GL+(n) and Q̂ ∈ SO(n). Then according to our pre-
vious considerations (cf. Section 3.1) there exists ξ ∈ gl(n) with
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exp(symξ − µc
µ skewξ ) exp((1+ µc

µ )skewξ ) = F−1Q̂ (22)

and
‖ξ‖µ,µc,κ = distgeod(F, Q̂) . (23)

In order to find a lower estimate on ‖ξ‖µ,µc,κ (and thus on distgeod(F, Q̂)), we com-
pute

exp(symξ − µc
µ skewξ ) exp((1+ µc

µ )skewξ ) = F−1Q̂

=⇒ exp((1+ µc
µ )skewξ )−1 exp(symξ − µc

µ skewξ )−1 = Q̂T F

=⇒ exp(−symξ + µc
µ skewξ ) = exp((1+ µc

µ )skewξ
︸ ︷︷ ︸

∈so(n)

) Q̂T F .

Since exp(W ) ∈ SO(n) for all skew symmetric W ∈ so(n), we find

F ξ

SO(n)

1

GL+(n)

F

Q̂

dist2geod(F,SO(n))

Fig. 3: The geodesic (intrinsic) distance to SO(n); neither the element Q̂ of best approximation nor
the initial tangent F ξ ∈ TF GL+(n) of the connecting geodesic is known beforehand.

exp(−symξ + µc
µ skewξ

︸ ︷︷ ︸
=:Y

) = QT
ξ F (24)

with Qξ = Q̂ exp(−(1+ µc
µ )skewξ ) ∈ SO(n); note that symY =−symξ . Accord-

ing to (24), Y = −symξ + µc
µ skewξ is “a logarithm”2 of QT

ξ F . The weighted
Frobenius norm of the symmetric part of Y = −symξ + µc

µ skewξ is therefore
bounded below by the infimum of ‖symX‖µ,µc,κ over “all logarithms” X of QT

ξ F :

2 Loosely speaking, we use the term “a logarithm of A ∈ GL+(n)” to denote any (real) solution X
of the matrix equation expX = A.
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‖symξ‖µ,µc,κ = ‖symY‖µ,µc,κ
(24)
≥ inf{‖symX‖µ,µc,κ |X ∈ Rn×n , exp(X) = QT

ξ F}
≥ inf

Q∈SO(n)
inf{‖symX‖µ,µc,κ |X ∈ Rn×n , exp(X) = QT F}

= inf
Q∈SO(n)

‖symLog(QT F)‖µ,µc,κ . (25)

We can now apply Corollary 3 to find

dist2geod(F, Q̂) = ‖ξ‖2
µ,µc,κ = µ ‖devn symξ‖2 +µc ‖skewξ‖2 +

κ
2
[tr(symξ )]2

≥ µ ‖devn symξ‖2 +
κ
2
[tr(symξ )]2 (26)

= ‖symξ‖2
µ,µc,κ

(25)
≥ inf

Q∈SO(n)
‖symLog(QT F)‖2

µ,µc,κ

Corollary 3
= µ ‖log

√
FT F‖2

µ,µc,κ

= µ ‖devn logU‖2 +
κ
2
[tr(logU)]2

for U =
√

FT F . Since this inequality is independent of Q̂ and holds for all Q̂ ∈
SO(n), we obtain the desired lower bound

dist2geod(F,SO(n)) = inf
Q̂∈SO(n)

dist2geod(F, Q̂)≥ µ ‖devn logU‖2 +
κ
2
[tr(logU)]2

on the geodesic distance of F to SO(n). Together with the upper bound already
established in (19), we finally find

dist2geod(F,SO(n)) = dist2geod(F,R) = µ ‖devn logU‖2 +
κ
2
[tr(logU)]2 . ut

According to Theorem 4, the squared geodesic distance between F and SO(n)
with respect to any left-GL(n)-invariant, right-O(n)-invariant Riemannian metric
on GL(n) is the isotropic quadratic Hencky energy

WH(F) = µ ‖devn logU‖2 +
κ
2
[tr(logU)]2 ,

where the parameters µ,κ > 0 represent the shear modulus and the bulk modulus,
respectively. The Hencky energy function was introduced in 1929 by H. Hencky
[18], who derived it from geometrical considerations as well: his deduction was
based on a set of axioms including a law of superposition for the stress response
function [29], an approach previously employed by G. F. Becker [4, 34] in 1893 and
later followed in a more general context by H. Richter [39], cf. [40, 38, 41].
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SO(n)

1

R = polar(F)

GL+(n)

T1GL+(n) = gl(n)∼= Rn×n

T1SO(n) = so(n)

F

∇u

skew∇u

dist2euclid,gl(∇u,so(n))

= µ ||devn sym∇u||2 + κ
2 [tr∇u]2

dist2euclid(F,SO(n))

= ||U−1||2 = ||
√

FTF−1||2

dist2geod(F,SO(n))

= µ ||devn logU ||2 + κ
2 [tr(logU)]2

Fig. 4: The isotropic Hencky energy of F measures the geodesic distance between F and SO(n).
The linear Euclidean strain measure is obtained via linearization of the tangent space gl(n) at 1.
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Physik, vol. III/1. Springer, Heidelberg (1960)

43. Zacur, E., Bossa, M., Olmos, S.: Multivariate tensor-based morphometry with a right-
invariant Riemannian distance on GL+(n). Journal of Mathematical Imaging and Vision
50, 19–31 (2014)

View publication statsView publication stats

https://www.researchgate.net/publication/314867293



