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On a viscoplastic approximation in finite plasticity

We are concerned with a phenomenological model of isotropic finite elasto-plasticity valid for small elastic strains
applied to polycrystalline material. We prove a local in time existence and uniqueness result. To the best of our
knowledge this is the first rigorous result concerning classical solutions in geometric nonlinear finite visco-plasticity.

1. Formulation of the problem

Let Ω ⊂ IR3 be a bounded region with smooth boundary ∂Ω . In the nonlinear theory of elasto-visco-plasticity at
large deformation gradients it is often assumed that the deformation gradient F = ∇u splits multiplicatively into
an elastic and plastic part

∇u(x) = F (x) = Fe(x) · Fp(x), Fe, Fp ∈ GL(3, IR) (1)

where Fe, Fp are explicitly understood to be incompatible configurations. In the quasi-static visco-plastic setting
without body forces we are led to study the following system of coupled partial differential and evolution equations
for the deformation u : [0, T ]× Ω �→ IR3, the plastic variable Fp : [0, T ] × Ω �→ SL(3, IR) and the elastic rotation
Re : [0, T ]×Ω �→ SO(3)

0 = div DF [W (Fe, Re)] = div S1(Fe, Re)

W (Fe, Re) =
µ

4
‖F T

e ·Re +RT
e · Fe − 211‖2 +

λ

8
tr(FT

e · Re + RT
e · Fe − 211)2

Fe = ∇u · F−1
p

S1(Fe, Re) = Re

[
µ(F T

e Re + RT
e Fe − 211) + λ tr(FT

e Re − 11)
]
F−T

p

u|∂Ω(t, x) = g(t, x), x ∈ ∂Ω (2)
d

dt

[
F−1

p

]
(t) = −F−1

p (t) · ∂χ(ΣM )

ΣM = F T
e ·DFeW (Fe, Re)

= F T
e Re

[
µ(F T

e Re +RT
e Fe − 211) + λ tr(FT

e Re − 11) · 11]
F−1

p (0) = F−1
p0

, detFp0 = 1, Fp0 ∈ SL(3)
d

dt
Re(t) = ν+ · skew (B) · Re(t)

B = Bexact or Bapprox.

Bexact = FeR
T
e
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[
µ(2 · 11− FeR

T
e ) + 2λ [3− 〈FeR

T
e , 11〉]] · FeR

T
e

ν+ = ν+(Fe, Re) ∈ IR
Re(0) = R0

e, R0
e ∈ SO(3)

with a nonlinear flow potential χ : M3×3 �→ IR that governs the visco-plastic evolution and which is motivated
through the principle of maximal dissipation relevant for the thermodynamical consistency of the model. Here ΣM

denotes the so called Mandel stress tensor and S1 is the first Piola-Kirchhoff stress. The term ν+ := ν+(Fe, Re)
represents a scalar valued penalty function introducing viscosity. F−1

p0
and R0

e are the initial conditions for the plastic
variable and elastic rotation part, respectively. For consistency one should put R0

e = R · polar(F−1
p0

) with R any
rigid rotation describing a prerotated intermediate configuration. The Lamé constants µ, λ of the polycrystalline
material under consideration are assumed to be non-negative throughout with µ > 0.
In the limit ν+ → ∞ the model (2) approaches formally the problem
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0 = divDF [W∞(Fe)]

W∞(Fe) = µ ‖Ue − 11‖2 +
λ

2
tr(Ue − 11)2 (3)

d

dt

[
F−1

p

]
(t) = −F−1

p (t) · ∂χ(ΣM,∞)

ΣM,∞ = Ue ·DUeW (Ue) = Ue [2µ(Ue − 11) + λ tr(Ue − 11) · 11]

with Ue = (F T
e Fe)

1
2 and Ue − 11 the elastic Biot strain tensor. The system (3) is an exact model for small elastic

strains and finite plastic deformations. For a detailed account on the properties of the model (2) we refer the
interested reader to the original paper.

We can prove the following result

T h e o r em 1. Suppose for the displacement boundary data g ∈ C1(IR, H5,2(Ω, IR3)). Then there exists a
time t1 > 0 such that the initial boundary value problem (2) in a viscous form admits a unique solution

(u, Fp, Re) ∈ C([0, t1], H5,2(Ω, IR3))× C1([0, t1], H4,2(Ω, SL(3, IR)), H4,2(Ω, SO(3))). (4)

Idea of the proof: at frozen variables (Fp, Re) the above (elastic) equilibrium system proves to be a linear, second
order, strictly Legendre-Hadamard elliptic boundary value problem with nonconstant coefficients. This system has
variational structure in the sense that the equilibrium part of (2) is formally equivalent to the minimization problem

∀ t ∈ [0, T ] : I(u(t), F−1
p (t), Re(t)) �→ min, u(t) ∈ g(t) +H1,2

◦

I(u, F−1
p , Re) =

∫
Ω

W (∇u · F−1
p , Re) dx (5)

W (Fe, Re) =
µ

4
‖F T

e · Re +RT
e · Fe − 211‖2 +

λ

8
tr(FT

e · Re +RT
e · Fe − 211)2.

The main task in proving that (2) is well posed consists of showing uniform estimates for solutions of elliptic systems
whose coefficients are time dependent and do not induce a pointwise positive bilinear form. This problem does
not arise in infinitesimal elasto-viscoplasticity since there the elasticity tensor is assumed to be a constant positive
definite fourth order tensor. We are first concerned with the static situation where (Fp, Re) are assumed to be known.
We prove the existence, uniqueness and regularity of solutions to the related (elastic) boundary value problem. In
addition we elucidate in which manner these solutions depend on (Fp, Re). These investigations rely heavily on a
theorem recently proved by the author extending Korns first inequality to nonconstant coefficients.

The conceptual idea to treat the evolution problem is straightforward: we write the ordinary differential
equation in the following form

d

dt
A(t) = h(∇xu(A), A) · A (6)

where A = (F−T
p , Re) and u = u(A) is the solution of the (elastic) elliptic boundary value problem at given A. It

remains to show that the right hand side as a function of A is locally Lipschitz in some properly defined Banach
space allowing to apply the well known local existence and uniqueness theorem.
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