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On isotropy conditions in second gradient materials
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In gradient elasticity, isotropy and frame-indifference requirements are sensitive to the homogeneity of the applied rotation
field @ € SO(3). This is in contrast to standard elasticity, where only first gradients of the deformation are under consid-
eration. We use a diffeomorphism to show the effect of inhomogeneous coordinate transformation to the form-invariance
requirement of elastic energy. From a classical geometric rigidity result follows that the appearance of a right-local SO(3)-
invariance condition is not the general condition for isotropy. The correct statement for isotropy in second gradient elasticity
should be a right-global SO(3)-invariance condition.
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1 Global versus local rotational invariance for isotropy

In hyperelasticity, the difference between form-invariance under compatible transformations of the reference configuration
with rigid rotations @ (isotropy) and right-invariance under inhomogeneous rotation fields @ = Q(z) € SO(3) becomes visi-
ble only in higher gradient elasticity. To see this, consider coordinates x € R? transformed to ¢ € R? via the diffeomorphism
(: BCR}—R?

z=(¢), €£=('2), z=(("M), M
see also [1,2]. Connected to the coordinate transformation (1) we consider the deformation expressed in these new coordinates
via setting

6 =wCE), (T @) =pl2). )

Let the elastic energy of the body B C R? depend on first and second gradients of the deformation ¢(x). We say that the
elastic energy is form-invariant with respect to the (referential) coordinate transformation ¢ if and only if

/ W (Grad,[p(z)], GRAD, [Grad,[¢(z)]]) dz = / W<Grad§[<pb(§)], GRADg[Gradg[gab(f)]]) de. (3)

zeB £e¢(B)
For the first and second derivative with respect to = we obtain from eq.(1)

1= Gradg[¢(¢™'(2))] Grad:[(T!(z)] & Grady[¢™"(2)] = (Grad¢[¢(O)) ™, )
and

Gradg[((¢™" (2))] GRAD,[Grads[( ™ (2)]] = ~GRAD¢[Grad¢[¢(€)]] Grad,[( ™ (2)] Grads[¢H ()], (5)
yielding

GRAD,[Grad, (! (2)] = —(Grad[((£)]) " GRAD[Grad[¢(€)]] (Grade [((€)]) ™ (Gradg[C(©)) ™! (6)
Thus, (3) is form-invariant with respect to the (referential) coordinate transformation ¢ if and only if
/ W(Gradg [¢*(€)] (Gradg[((€))) !, GRAD[Grade[¢”(€)]] (Gradg[¢(£)])~ (Gradg[¢(€)]) ™
§£e¢ (B
— Gradg[¢"(€)] (Cradg[C(€)]) ! GRAD[Grade[¢(€)]) (Gradg [¢(€)]) ™" (Gradg [c(&)})*)
det(Grade[¢(€)]) d¢
= [w(cndgdP @l GRADGragl'@]) as. )
£e¢(B)
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Equality (7) can be specified to
det(Grad[C(§)]) =1, Gradg[¢(6)] € 9 CSO(B)  VEe(T!(B), ®)

where G is the symmetry group of the material. We set (Grad ¢ [C()])~! = Q(&) and obtain as first concise form-invariance

statement for material symmetry
| ((Gradle @101, GRAD [Gradcl (€] Q) Q(6)
£e¢(B)
- Gradg (€] Q) GRADE QT (O] Q(O) Q(€)) 1 ¢

— [ w(cnagle @), craD(CrdclP (@) d VOO €6, ©
£e(H(B)

which we will call right-local SO(3)-invariance since the rotations in eq.(9) are allowed to be inhomogeneous. However,
requiring that

(Gradg[C(€)) ™ = QT(€) €S0(3) & Gradg[¢(§)] = Q(€) €80(3) (10)
means, by a classical geometric rigidity result, see e.g. [3], that

Grade[¢(€)] = Q(§) €S0(3) = Q&) =Q=const. and ((§) =QE¢+b, (an
and therefore GRAD[Grad¢[((€)]] = 0. Assuming furthermore that B is a ball of homogeneous material, we have

¢! (B) = B, and the correct statement for isotropy, in our view, is then

[ w(Grag? ©1@", GrAD (Gl (©1@" Q") ag
¢EeB

= / W<Grad§[gpb(§)], GRADg[Gradg[gab({)]]) d¢ VYQ € S0(3). (12)
£eB

We denominate the latter condition as right-global SO(3)-invariance, which, for us, is isotropy. We appreciate that the
right-local SO(3)-invariance condition (9) is much to restrictive in that arbitrary, inhomogeneous rotation fields are allowed
instead of only constant rotations (. The reader should carefully note that we started by using a coordinate transformation
x = (&) and therefore we require in the end that (&) = Q& + b. There is no other coordinate transformation ¢ such that
Gradg [€(©)] = Q&) € SO(3) everywhere, provided a minimum level of smoothness is assumed.

In the local theory the above discussion cannot distinguish between constant or non-constant rotations, since the gradient
of the rotation Q(€) is not involved. The latter might explain why one may be inclined to allow non-constant rotation fields in
(9), which is forbidden for higher gradient materials [4].
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