On isotropy conditions in second gradient materials

Ingo Münch^{1,*} and Patrizio Neff^{2,**}

¹ Institute for Structural Analysis, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany

In gradient elasticity, isotropy and frame-indifference requirements are sensitive to the homogeneity of the applied rotation field $Q \in SO(3)$. This is in contrast to standard elasticity, where only first gradients of the deformation are under consideration. We use a diffeomorphism to show the effect of inhomogeneous coordinate transformation to the form-invariance requirement of elastic energy. From a classical geometric rigidity result follows that the appearance of a right-local SO(3)-invariance condition is not the general condition for isotropy. The correct statement for isotropy in second gradient elasticity should be a right-global SO(3)-invariance condition.

Copyright line will be provided by the publisher

1 Global versus local rotational invariance for isotropy

In hyperelasticity, the difference between form-invariance under compatible transformations of the reference configuration with rigid rotations \overline{Q} (isotropy) and right-invariance under inhomogeneous rotation fields $Q=Q(x)\in \mathrm{SO}(3)$ becomes visible only in higher gradient elasticity. To see this, consider coordinates $x\in\mathbb{R}^3$ transformed to $\xi\in\mathbb{R}^3$ via the diffeomorphism $\zeta:B\subset\mathbb{R}^3\mapsto\mathbb{R}^3$

$$x = \zeta(\xi), \qquad \xi = \zeta^{-1}(x), \qquad x = \zeta(\zeta^{-1}(x)), \tag{1}$$

see also [1,2]. Connected to the coordinate transformation (1) we consider the deformation expressed in these new coordinates via setting

$$\varphi^{\flat}(\xi) := \varphi(\zeta(\xi)), \qquad \varphi^{\flat}(\zeta^{-1}(x)) = \varphi(x).$$
 (2)

Let the elastic energy of the body $B \subset \mathbb{R}^3$ depend on first and second gradients of the deformation $\varphi(x)$. We say that the elastic energy is **form-invariant** with respect to the (referential) coordinate transformation ζ if and only if

$$\int_{X} W\left(\operatorname{Grad}_{x}[\varphi(x)], \operatorname{GRAD}_{x}[\operatorname{Grad}_{x}[\varphi(x)]]\right) dx = \int_{X} W\left(\operatorname{Grad}_{\xi}[\varphi^{\flat}(\xi)], \operatorname{GRAD}_{\xi}[\operatorname{Grad}_{\xi}[\varphi^{\flat}(\xi)]]\right) d\xi. \quad (3)$$

$$x \in B$$

For the first and second derivative with respect to x we obtain from eq.(1)

$$\mathbb{1} = \operatorname{Grad}_{\xi}[\zeta(\zeta^{-1}(x))] \operatorname{Grad}_{x}[\zeta^{-1}(x)] \quad \Leftrightarrow \quad \operatorname{Grad}_{x}[\zeta^{-1}(x)] = (\operatorname{Grad}_{\xi}[\zeta(\xi)])^{-1}, \tag{4}$$

and

$$\operatorname{Grad}_{\boldsymbol{\xi}}[\zeta(\zeta^{-1}(x))]\operatorname{GRAD}_{x}[\operatorname{Grad}_{x}[\zeta^{-1}(x)]] = -\operatorname{GRAD}_{\boldsymbol{\xi}}[\operatorname{Grad}_{\boldsymbol{\xi}}[\zeta(\boldsymbol{\xi})]]\operatorname{Grad}_{x}[\zeta^{-1}(x)]\operatorname{Grad}_{x}[\zeta^{-1}(x)], \quad (5)$$

yielding

$$\operatorname{GRAD}_{x}[\operatorname{Grad}_{x}[\zeta^{-1}(x)]] = -(\operatorname{Grad}_{\xi}[\zeta(\xi)])^{-1}\operatorname{GRAD}_{\xi}[\operatorname{Grad}_{\xi}[\zeta(\xi)]](\operatorname{Grad}_{\xi}[\zeta(\xi)])^{-1}(\operatorname{Grad}_{\xi}[\zeta(\xi)])^{-1}$$
(6)

Thus, (3) is **form-invariant** with respect to the (referential) coordinate transformation ζ if and only if

FIRST PROPERTY WITH RESPECT to the (referential) coordinate transformation
$$\zeta$$
 if and only if
$$\int W \left(\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)] \left(\operatorname{Grad}_{\xi} [\zeta(\xi)] \right)^{-1}, \operatorname{GRAD}_{\xi} [\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)]] \left(\operatorname{Grad}_{\xi} [\zeta(\xi)] \right)^{-1} \left(\operatorname{Grad}_{\xi} [\zeta(\xi)] \right)^{-1} \right) \\
= \operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)] \left(\operatorname{Grad}_{\xi} [\zeta(\xi)] \right)^{-1} \operatorname{GRAD}_{\xi} [\operatorname{Grad}_{\xi} [\zeta(\xi)]] \left(\operatorname{Grad}_{\xi} [\zeta(\xi)] \right)^{-1} \left(\operatorname{Grad}_{\xi} [\zeta(\xi)] \right)^{-1} \right) \\
= \int W \left(\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)], \operatorname{GRAD}_{\xi} [\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)]] \right) d\xi . \tag{7}$$

Head of Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Str. 9, 45127 Essen, Germany

^{*} Corresponding author: e-mail ingo.muench@kit.edu, phone +49 721 6084 2289, fax +49 721 6084 6015

^{**} e-mail patrizio.neff@uni-due.de

Equality (7) can be specified to

$$\det(\operatorname{Grad}_{\xi}[\zeta(\xi)]) = 1, \quad \operatorname{Grad}_{\xi}[\zeta(\xi)] \in \mathcal{G} \subseteq \operatorname{SO}(3) \qquad \forall \, \xi \in \zeta^{-1}(B) \,, \tag{8}$$

where \mathcal{G} is the symmetry group of the material. We set $(\operatorname{Grad}_{\xi}[\zeta(\xi)])^{-1} = Q(\xi)$ and obtain as first concise form-invariance statement for material symmetry

$$\int_{\xi} W \left(\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)] Q(\xi), \operatorname{GRAD}_{\xi} [\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)]] Q(\xi) Q(\xi) \right)
+ \operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)] Q(\xi) \operatorname{GRAD}_{\xi} [Q^{T}(\xi)] Q(\xi) Q(\xi) \right) 1 d\xi
= \int_{\xi} W \left(\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)], \operatorname{GRAD}_{\xi} [\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)]] \right) d\xi \quad \forall Q(\xi) \in \mathcal{G}, \tag{9}$$

$$\xi \in \zeta^{-1}(B)$$

which we will call **right-local SO(3)-invariance** since the rotations in eq.(9) are allowed to be inhomogeneous. However, requiring that

$$(\operatorname{Grad}_{\xi}[\zeta(\xi)])^{-1} = Q^{T}(\xi) \in \operatorname{SO}(3) \quad \Leftrightarrow \quad \operatorname{Grad}_{\xi}[\zeta(\xi)] = Q(\xi) \in \operatorname{SO}(3)$$

$$(10)$$

means, by a classical geometric rigidity result, see e.g. [3], that

$$\operatorname{Grad}_{\xi}[\zeta(\xi)] = Q(\xi) \in \operatorname{SO}(3) \quad \Rightarrow \quad Q(\xi) = \overline{Q} = \operatorname{const.} \quad \text{and} \quad \zeta(\xi) = \overline{Q}\,\xi + \overline{b}\,,$$
 (11)

and therefore $\operatorname{GRAD}_{\xi}[\operatorname{Grad}_{\xi}[\zeta(\xi)]]=0$. Assuming furthermore that B is a ball of homogeneous material, we have $\zeta^{-1}(B)=B$, and the correct statement for isotropy, in our view, is then

$$\int_{\xi \in B} W \left(\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)] \overline{Q}^{T}, \operatorname{GRAD}_{\xi} [\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)]] \overline{Q}^{T} \overline{Q}^{T} \right) d\xi$$

$$= \int_{\xi \in B} W \left(\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)], \operatorname{GRAD}_{\xi} [\operatorname{Grad}_{\xi} [\varphi^{\flat}(\xi)]] \right) d\xi \quad \forall \overline{Q} \in \operatorname{SO}(3). \tag{12}$$

We denominate the latter condition as **right-global SO(3)-invariance**, which, for us, is **isotropy**. We appreciate that the right-local SO(3)-invariance condition (9) is much to restrictive in that arbitrary, inhomogeneous rotation fields are allowed instead of only constant rotations \overline{Q} . The reader should carefully note that we started by using a coordinate transformation $x = \zeta(\xi)$ and therefore we require in the end that $\zeta(\xi) = \overline{Q}\,\xi + \overline{b}$. There is no other coordinate transformation ζ such that $\operatorname{Grad}_{\mathcal{E}}[\zeta(\xi)] = Q(\xi) \in \operatorname{SO}(3)$ everywhere, provided a minimum level of smoothness is assumed.

In the local theory the above discussion cannot distinguish between constant or non-constant rotations, since the gradient of the rotation $Q(\xi)$ is not involved. The latter might explain why one may be inclined to allow non-constant rotation fields in (9), which is forbidden for higher gradient materials [4].

References

- [1] P. Neff: Remarks on invariant modelling in finite strain gradient plasticity. Technische Mechanik 28(1), 13-21, (2008)
- [2] B. Svendsen, P. Neff, A. Menzel: On constitutive and configurational aspects of models for gradient continua with microstructure. Z. Angew. Math. Mech. 89(8), 687-697, (2009)
- [3] P. Neff, I. Münch: Curl bounds Grad on SO(3). ESAIM: Control, Optimisation and Calculus of Variations 1(14), 148-159 (2008)
- [4] I. Münch, P. Neff: Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy, submitted, arXiv:1603.06153