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In this paper we prove a Korn-type inequality with non-constant coefficients which
arises from applications in elasto-plasticity at large deformations. More precisely, let
2 C R be a bounded Lipschitz domain and let I" C 32 be a smooth part of the
boundary with non-vanishing two-dimensional Lebesgue measure. Define
Hy?(2,1) = {¢ € H"?(2) | ¢, = 0} and let Fp, F, ' € C'(2,GL(3,R)) be given
with det Fp(z) > p* > 0. Moreover, suppose that Rot Fy, € C1(£2, ME*3). Then

It >0 Vo e H*(02,1) : |[Vo- Fy ' (2) + Fy " (@) - Vo 72 0) = ¢ 10l31.2(0):
Clearly, this result generalizes the classical Korn’s first inequality
1,2
3t >0 Vo € HoP(2,1): Vo + V" 120y = ¢ 11615120

which is just our result with F}, = 1l. With slight modifications, we are also able to
treat forms of the type

|Fo(z) - V¢ - G(z) + G(z)T - VT -FE(:)})HP, 1<p< oo

1. Notation

Let £2 C R3 be a bounded domain with smooth Lipschitz boundary 942 and let I" be
a smooth subset of 02 with non-vanishing two-dimensional Lebesgue measure. For
a,b € R3, we let (a,b) denote the scalar product on R®. We denote by M3*3 the set
of real 3x 3 matrices and by skew(M3*3) the skew-symmetric real 3x 3 matrices. The
standard Euclidean scalar product on M3*? is given by (A, B) = tr(A - BT), and
subsequently we have || A]|?2 = (4, A). With Adj A, we denote the matrix of trans-
posed co-factors Cof(A) such that Adj A = det A- A~ = Cof(A)T if A € GL(3,R).
The identity matrix on M3*3 will be denoted by 1, so that tr(A4) = (A, 1). In gen-
eral, we work in the context of nonlinear elasticity. For u € C*(£2,R?), we have
the deformation gradient Vu € C(£2,M>*3). We employ the standard notation of
Sobolev spaces, i.e. L2(£2), HY2(£2), HY*(£2), which we use indifferently for scalar-
valued functions as well as for vector-valued functions. We define

Hy*(2,1) :={¢p € H*(2) | ¢, =0},

where ¢|. = 0 is to be understood in the sense of traces and by C§°(2) we denote
infinitely differentiable functions with compact support in 2.
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2. Introduction

In the nonlinear theory of elasto-viscoplasticity at large deformation gradients, it
is often assumed that the deformation gradient F' = Vu splits multiplicatively into
an elastic and plastic part

Vu(z) = F(x) = Fo(x) - Fp(x), Fe, Fp € GL(3,R), (2.1)

where F,, F}, are explicitly understood to be incompatible configurations, i.e. Fg,
F, # VY for any ¥ : 2 C R® — R3. In our context, we assume that this decompo-
sition is uniquely defined up to a rigid rotation. In addition, one sometimes imposes
the so-called plastic incompressibility constraint, det F},(x) = 1. This multiplicative
split, which has gained more or less permanent status in the literature, is microme-
chanically motivated by the kinematics of single crystals where dislocations move
along fixed slip systems through the crystal lattice. The source for the incom-
patibility are those dislocations that did not completely transverse the crystal and
consequently give rise to an inhomogeneous plastic deformation. Therefore, it seems
reasonable to introduce the deviation of the plastic intermediate configuration Fj,
from compatibility as a kind of plastic dislocation density. This deviation should be
related somehow to the quantity Rot F}, and indeed later on we see the important
role that is played by Rot F}, (see [5,16,19,20,22,30] for more on this subject, and for
applications of this theory in the engineering field look, for example, at [24,28,29]).
The above split contrasts the additive decomposition into elastic and plastic parts,

L(Va+ Vi) = e(a(z)) = ee(a) + £p(2),

where we have set F' = 1 + Va, with @ the displacement vector and where, sub-
sequently, e(u(z)) denotes the infinitesimal strain tensor. This decomposition is
appropriate only for infinitesimal small values of || V@l (see, for example, [2,12,15]
and the references therein). Nevertheless, the additive decomposition can be seen
as a first-order approximation of (2.1).

Generally, one is then led to define an elastic energy

W =W(F.)=W(u-F").

This constitutive relation is subject to material frame indifference, i.e. must remain
invariant under superimposed rigid body motions. Together with isotropy of W for
F, = 1 and the requirement that DW (1) = 0, it can be shown [6, p. 156] that
there exist the so-called Lamé constants p, A > 0 such that

W= W(Fe) = iMHFeTFe — 1)+ %)\tr(FgFe - ]l)2+0(||FeTFe —1?)

near a natural state.

2.1. No elastic rotations

In metal-plasticity one observes that the quantity || F.Y F, — 1| remains pointwise
small. If we incorporate this experimental fact directly into the form of the elastic
energy and disregard elastic rotations, i.e. postulate in addition that ||F, — 1| is
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small, we are led to consider elastic energies of the kind

W =W(u-F, ") =W(F.)
= pll3(FS + Feo) = 1 + xtr(3(FS + Fo) — 1)?
=pll3(Vu-Fyt + Fy 0 vt — 17
+3atr(3(Vu- Fyt+ Fy T vel) - 17
where we have used that F, = 1+ (F,— 1) and eliminated terms that are quadratic

in (F, —1).
If we define the corresponding functional I : Ha®(2,I') x C%(£2, GL(3,R)) — R,

I(u, ) ::/ W(Vu-F; ) dz,
2

and compute the second derivative with respect to u, we see that
DiI(u, Fyt).(6,9)

:/ D*W(Vu-F;").(V¢, Vo) dx
2

- /n%unw-F;l BT VO + 1A u(Ve- B+ BT V') de
> 4ulVo-Fyl+ Fy T Vol l|7: )

Here, D?*W (Vu - Fp_l) is the corresponding elasticity tensor, which is not indepen-
dent of the plastic evolution. Observe, however, that D2 (u, Fp_l).(qb, @) is indepen-
dent of the deformation u itself. In the quasi-static viscoplastic setting without body
forces, we then have to solve the following system of coupled partial differential and
evolution equations for u : [0,T] x 2 — R® and F, : [0,T] x £2 — GL(3,R),

div DW (Vu(t, x) - Fp_l(t,x)) =0, z€/
iF—l
dt

p (t,x) = f(vu(t’x)an_l(t’x))a

(2.2)
ur(t,x) = g(t,z), x €I,

-1 _ -1
Fp (O,,Z') _Fp() ’
with a nonlinear flow function f : M3*3 — M?3*3, which governs the viscoplastic
evolution and is motivated by thermodynamical considerations. Here, g(t, x) rep-
resents the time-dependent inhomogeneous Dirichlet boundary data and F&)l the
initial condition for the plastic evolution. This system is formally equivalent to

Vt € [0,T]: I(u(t), Fy ' () — min, u(t) € g(t) + H (2, ),
%Fp_l(t,x) = f(Vu(t, ), Fp_l(t,x)),

FyN0,m) = Fog

We remark that the above procedure leads to a linear elliptic system in u for fixed F},
with non-constant coefficients, which are determined by F},, which remains valid
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(at least from a modelling point of view) for both large plastic deformations F},
and large deformation gradients Vu. Note, however, that the solution v depends
nonlinearly on Fj,.

In the small strain case, where ¢, ¢}, is used, the corresponding equilibrium equa-
tions form a linear elliptic system in @ for fixed e, with constant coefficients and
the solution depends linear on &y,.

Our main theorem 4.10, in conjunction with the direct methods of the calculus
of variations, then tells us that, for given smooth invertible F},, the static problem

(2.3)

div DW (Vu(t, x) -Fp_l(t,x)) =0, z€/
ur(t,z) = g(t,x), =€l

has a unique solution. We may thus dispose of (2.3) by introducing a solution
operator u = u(F;!). The conceptual idea to treat the evolution problem is then

P
straightforward: we write the ordinary differential equation in the following form:
d _ _ -
SF (1) = F(Vou( ), By 1 2). (2.4)

It remains to show that the right-hand side of (2.4) as a function of Fp_1 is locally
Lipschitz in some appropriate Banach space, allowing us to apply the well-known
local existence and uniqueness theorem.

2.2. The case with elastic rotations

We can adapt the above framework so as to incorporate elastic rotations. Thus
we assume only that || F.L F, — 1| remains small. An application of the polar decom-
position theorem then shows that ||F, — R.|| also has to be small for a uniquely
defined R, € O(3). If we repeat the above procedure with R, instead of 1, we get

W =W(Fe)
= MH%(FE “Re + RE Fo) — ]lH2
T+ IGET - R+ RE - F) — 1)?
= ,uH%(ReTVqu_l + Fp_TVuTRe) — 12
+ IMr(E(RIVuF, ' + Fy TV Re) — 1)2,
where we have used the fact that F, = Re + (Fo — Ro) and eliminated terms that
are quadratic in (F, — Re). Both quantities R. and F}, now induce inhomogeneities.

The second derivative of the corresponding functional at a given rotation R, can
be estimated by

DXI(u, Fy').(6,0) = $pllRS - Vo - Fy '+ Fy U - Vol - Roll2(0)-

In the presence of elastic rotations, the above system of equations (2.2) has to be
complemented by either an evolution equation for R, or some incremental device,
which determines the rotation R, uniquely at every time-step, e.g. we could set
R = polar(F™), where polar(F) denotes the unique rotation associated with
F7 by the polar decomposition theorem.
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If we set out to formulate a linear problem for the deformation u, it seems impos-
sible to use energies of the type W = W (C, C},) together with evolution equations
for C},. Even in the so-called physically linear setting

W(C,Cp) = (D(x) - (C = Cy),C = Cy),

where D denotes a positive-definite fourth-order tensor, and together with the
assumption that C' — C;, remains small, the boundary-value problem for u at given
() will be highly nonlinear. This underlines again the importance of a formulation
where rotations R, are explicitly involved.

The fully nonlinear case, where W = W(F) is only required to be polyconvez, has
been investigated by the author in [25]. There one can find a local-in-time existence
theorem of a suitably regularized coupled viscoplastic problem.

The theory of coercive forms has a long-dating history and we dare not trace its
origins. One refers usually to [18] for a first version of Korn’s inequality. By the
classical Korn’s first inequality, we mean

567 >0 Vo€ HIAQ.D) Vo + Vo™ [y > ¢ 0l3n 0.
and we say that the classical Korn’s second inequality holds if
AT >0 VYoe HoX (R, D) [Vo+ Vo |72 + 101720 = T loln20)

Friedrichs furnished a modern proof [9] of the above inequalities (see [4,9,13,17,27]
for more on this subject). The widespread popularity of Korn’s inequalities may be
explained by their applicability to the linearized systems of elasticity. In this case,
they yield existence, uniqueness and continuous dependence upon data. Recently,
Weck [31] has shown how to circumvent Korn’s second inequality in case of irregular
domains and if only questions of existence are to be settled.

Ciarlet has shown [7,8] how to extend Korn’s inequalities to curvilinear coordi-
nates, which has applications in shell theory. The main contribution of this article
is to extend Korn’s first inequality to non-constant coefficients that cannot be real-
ized as metric of an underlying deformation. We rely on a theorem on coerciveness
of [13], which was subsequently generalized by [4]. This theorem generalizes the
Korn’s second inequality to non-constant coefficients. We then proceed to show
that the nullspace of our form is trivial. A compactness argument then gives the
generalized Korn’s first inequality. As a special case, we recover in different terms
the situation of [7, p. 44].

3. Preliminaries

In the sequel, we need the following operations between M3*3 and the Euclidean
real vector space R?.

DEFINITION 3.1 (Identification of R? and M3*3). We define the following operator

matrix : RY — M3x3;

T ailr aiz2 a3
matrix(a11 ai2 a1z G21 Aaz22 G23 a3l Aa32 a33) = | G21 a22 G23
azy azz2 asg
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DEFINITION 3.2. We define the following operator vec : M3*3 — RY:

ail a2 ais

T

VeC | az1 Q22 a23 =(a11 12 a3 a1 G22 @23 (31 A32 a33) .
asyr az2 ass

Of course, both operations are just the canonical identifications of R? and M?3*3.
We also need the following identification of skew(M?3*3) and R3.

LEMMA 3.3. Let A € M3*3 be skew symmetric, i.e. A = —AT. If A # 0, then
rank(A) = 2. In addition, there is a vector w € R3 such that

0 w1 wo
A= —Ww1 0 w3
—Wy —Ws 0

LEMMA 3.4. Let A € M3*3 be skew symmetric and let B € GL(3,R). If we have
rank(A - B) < 1, then A= 0.

Proof. Ifrank(A-B) < 1, then we can find two linear independent vectors 7,79 € R3
such that (A-B) -7 = (A-B) -7 = 0. But B is invertible and we see that
dim(ker(A)) > 2, which is only possible for A = 0 because of lemma 3.3. ]

COROLLARY 3.5. skew(M?3*3) and R3 can be identified via

G 0 G G
w : R? s skew(M3*3), wl|lG]=1-G 0 ¢
€ -G —¢ 0
and w s bijective onto its range.
Proof. Obvious. O

DEFINITION 3.6 (Rot). We define the operator
Rot : CH(02,M**3) — C(2,M>*?)

such that we take the operator rot : CY(02,R3) — C(£2,R3) row-wise. For example,
let Y € C1(02,M3*3). Then

rOt[Yll(x7yaZ)aY12(x7yaZ)aY13(x7ya Z)]
ROt(Y) = rOt[Y21(x7ya Z)aYQQ(x7yaZ)aY23(x7ya Z)]
rot[Yay (2, y, 2), Yo (2,9, 2), Ya3(x, y, 2)]
LEMMA 3.7. For A € CH(2,M3**3) with A = —AT and B € C1(£2,M?*3), we have

Rot(A - B) = matrix[Lp - vec[V(w ™ (4))]] + A - Rot(B),



On Korn’s first inequality with non-constant coefficients 227

with a linear map L : RY — R?,

0 bas —bog 0 b33 —bss 0 0 0

—bog 0 ba1 —bs33 0 b31 0 0 0

bao —boy 0 b3 —b31 0 0 0 0
0 —b13 b12 0 0 0 0 b33 —b32

Lp = 613 0 —b11 0 0 0 —b33 0 bgl
—blg bll 0 0 0 0 bgg —b31 0
0 0 0 0 —b13 b12 0 —623 bao
0 0 0 613 0 —b11 623 0 —bo1
0 0 0 —blg bll 0 - bgg bgl 0

Moreover, Lg € M*? is bijective if B is bijective with
det(Lp) = 2 - det(B)?
and the map B — Ly € M*? s linear.

Proof. The proof consists of simple, but long and tedious, calculations. Because this
formula is the heart of the argument, we give it anyhow. First of all, we evaluate
the expression Rot(A - B) for all A, B € C(£2,M?3*3). We write

ail a2 a13 a1
A= laa axn axs|=1{a2],
a31 Qg2 ass as

with a;, ¢ = 1,2, 3, the rows of A and

bi1 bz b3
B= by ban b |=(b1 b2 [b3),
b31 b3z b33

with |b;, ¢ = 1,2, 3, the columns of B. Then we have, of course,
(a1, [b1) (@, [b2) (@, |bs)
A-B= (&27|b1) (&27|b2) (6’23|b3) )
(as,|b1) (as,|b2) (as, |b3)

and
rot[(a1,[b1) (@, [b2) (a1, |bs3)]
Rot(A- B) = | rot[(az, [b1) (a2, |b2) (a2, |b3)]
rot[(as, b1) (as,|b2) (as,|b3)]
Oy(ax, |b3) — 0(a1,|b2) —[0x(a1, |bs) — D:(a1, |b1)]
= 8y(&2, |b3) — az(&Q, |b2) _[890(&25 |b3) - az(&Qv |b1)]
Oy(as, |b3) — 0.(as, [b2) —[0x(as, [b3) — 0-(as, |b1)]
Oz(a1, |b2) — 9y(ax, |br)
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(a1, 1b3) + (a1,1b3,) — (ay.,|b2) — (@1, [b2,) 0 O
= | (az,,|b3) + (a2, |b3,) — (az., |b2) — (@2,[b2.) 0 O
(as,,|b3) + (as, |bs,) — (as., |b2) — (a3, [b2.) 0 0
0 —(a,,|bs) — (a1, 1b3,) + (@r.,|b1) + (@1,[b1.) O
+ {0 —(az,,[b3) — (ag, |bs,) + (az.,[b1) + (GQ, b1.) 0
0 —(as,, |b3) — (a3, |b3,) + (as., |b1 (as,[b1,) ©
0 0 (a’ |b2) + (a’ |b2.,) ( 1y ala |b1
+ 10 0 (ag,,|b2) + (a2, [b2,) — (az,, bl (ag,[b1,)
0 0 (a’ |b2) + (a’ |b2rr) (a3y7 bl a3a |b1
(a1,,1b3) = (a1,,1b2) —(a1,,[b3) + (@1.,[b1) (aa,,|b2) — (@1,,[01)
= | (ag,,|b3) = (az.,|b2) —(az,,|b3) + (az.,|b1) (G’era |b2) — (a2ya b1)
(a3, |b3) = (as.,[b2) —(as,,[b3) + (@s.,[b1) (as,,|b2) — (as,,|b1)
(a1, b3, = |b2.) (a1,|b1. — [b3,) (a1, |b2, —|b1,)
+ { (ag, |b3, = Ib2,) (@2, |b1, — |b3,) (@2, |ba, — |b1,)
(as, |bs, — [b2.) (@3, |b1. — |bs,) (a3, b2, — |b1,)
(a1,,[03) — (a1.,|b2) —(a1,, [b3) + (a1.,[b1) (a,,[b2) — (a1,,|b1)
= | (ag,,[b3) = (2., |b2) —(az,,|b3) + (az.,|b1) (GQT, b2) — (@, [b1)
(a3, |b3) = (as.,[b2) —(as,,[b3) + (@s.,[b1) (as,,|b2) — (as,,|b1)
ay
+{az2|- (|bsy —|ba. b1 — b3, |ba, — |bly)
as
(a1,,1b3) = (a1,,1b2) —(a1,,[b3) + (@1.,[b1) (as,,|b2) — (@1,,[b1)
= | (ag,,|b3) = (@g.,[b2) —(aq,,|bs) + (az.,|b1) (a2,,|b2) — (az,,|b1)
(a3, |b3) = (as.,[b2) —(as,,[b3) + (@s.,[b1) (as,,|b2) — (as,,|b1)
ai; a2 as bizy —b12. b1z — bz bizy — b1y
+ a1 a2 as |- |basy —baa, bor, —bas, baa, —bo1y
as; asz ass b3zy —bs2, b31, —b3zy b3y — 31y
(0ay,,[bs) — (1a1., b2)  —(2a1,, |bs) + (3au., [b1)
= | (6ay,, |bs) — (7as,,|b2) —(8ag,,|bs) + (9as.,[b1)
(2a3,, |b3) — (3as., [b2) —(4as,,[b3) + (5as.,[b1)
(4ay,, |b2) — (5au,, |b1)
(O&Qm, |bg) — (1&%, bl) + A- ROt(B).
(6as,, [ba) — (7as,, [b1)

«
Let us now use the assumption that A = —AT and set ( = | | . We may put
A = w((). Thus ~y
0y Oy Oy
VC = ﬂr ﬂy ﬂz
Y= Yy V2
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and
a1 a2 a3 0 a f
A=laxn axp ag|=|-a 0 ~].
azy as2 as3 -5 -y 0
This yields
(a1, [b3) = (@1., [b2) —(a1,,|b3) + (@i., [b1) (a1, |b2) — (@, [1)
(az,,[b3) — (az.,|b2) —(az,,|bs3) + (az.,[b1) (az,,[b2) — (az,,|b1)
(as,, |b3) — (&32, b2)  —(as,,|bs) + (fisza b1) (as,,|b2) — (as,, [b1)
((Oa ayaﬂy) |b3) ((OaaZaﬂZ) |b2) 0 0
= ((_aya 77@1) b3) ( Az, 772) |b2) 0 0
((=Bys =7, 0),1b3) — (=82, —72,0),[b2) 0 0
0 —((0, s, Bz), [b3) + ((0, vz, B2), [b1) 0
+10 _((_ara 5796) |b3) (( a250372)v|b1) 0
0 _((_ﬂma VY )a|b3) (( ﬂza Yz )a|b1) 0
0 0 ((Oa ar,ﬂr) |b2) ((O ayaﬂy)awl)
+10 0 ((_ara a'Yr) |b2) (( Ay a'Yy) |b1) .
0 0 ((—=Bz,—72,0),[b2) = ((—By, =y, 0), [b1)
Thus we arrive at
(a1,,103) = (@1.,[b2) —(au,,|b3) + (a1.,[b1) (ai,,[b2) — (@, [b1
vec | (az,,[b3) — (az2.,|b2) —(az,,|b3) + (az.,[b1) (az,,[b2) — (az,,[b1)
(as,,|bs) — (@3z,|52) —(as,,|b3) + (@32,“71) (@3T,|52) (as,, |b1)
((Oa ayaﬂy)a |b3) - ((Oaazaﬂz)a |b2)
((O amaﬂr)a |b3) + ((Oaa27ﬂ2)a |b1)
(0, az, Ba), b2) — ((0, vy, By), [b1)
(( Ay 77@1) |b3) ( Az, 772) |b2)
= (( ama a’ym) |b3)+(( aZa 772) |b1)
(( Ia ,'Yr) |b2) (( a ) a'Yy) |b1)
((=Bys =74, 0),1b3) — (=2, =72, 0), [b2)
_((_ r,_'Ym,O), |b3)+ (( 2y " V2 )a |b1)
((_ﬂra_7rao)a|b2) (( ﬂya 7@13 )a|b1)
0 b23 _b22 0 b33 —b32 0 0 0 Qg
—623 0 le —633 0 bgl 0 0 0 ay
bQQ —621 0 bgg —bgl 0 0 0 0 (6P
0 —biz b2 0 0 0 0 bsz —bs B
=1 b3 0  —buu 0 0 0 —bsz 0  bn By
—biz bn 0 0 0 0 bsz  —bs1 0 B
0 0 0 0 —bis b2 0 —bag b2 Ve
0 0 0 big 0 =bun Do 0 —bax Yy
0 0 0 —biz bn 0 —ba b 0 Yz

= Lp - vec(V().
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Therefore,
vec(Rot(A - B)) = Lp - vec(V{) + vec(4 - Rot B),

and we get the conclusion that
Rot(A - B) = matrix(Lg - vec(Vw ™ (A))) + (A - Rot B),

which is the first part of the lemma.
To find a simple direct proof of

det Lp = 2- (det B)?,

which shows in a few lines the above assertion, has so far eluded the efforts of
the author. Instead, one has to do all the computation by hand, but I hesitate to
confront the reader with them. O

LEMMA 3.8. For A € CH(2,M>**3) with A = —AT and B € C1(£2,M?*3), we have
Rot(B-A) = L - DB+ B -Rot(A),

where, for fized A, the map La : R?T s MB3*3 is linear and the application
A — Ly is also linear. (Here, DB denotes all partial derivatives of B with respect
to (x1,x2,23).)

Proof. TIs obvious from the foregoing analysis. O

Let us quickly see what happens in the standard case B = 11, which is usually
involved in proving Korn’s first inequality.

COROLLARY 3.9. Assume that A € C1(£2,M3*3) with A = —AT. Then
Rot(4A) =0 = A = const.

Proof. Retaining the same notation as in lemma 3.7, we have, for

0 a
A=|—-a 0 ~]|,
-8 - 0
that
ﬂy — Qy — Pz (679
Rot(A4) = Yy —Ve — Qy
—Vz _ﬂz Y + ﬂy
or

vec(Rot(A)) = Ly - vec(V().
Now, if Rot(A4) = 0, then this implies that ay, ay, Bz, 82,7y, 7> = 0 and

By —az =0, -1 1 0 a,
Yz — @z =0, = -1 0 —1|-{8,] =0,
Yo + ﬂy =0 0 I -1 e
invertible

which yields a, 8y, v, = 0. Hence o, 3,7y = const.
This is equivalent to A = const.
Note that we have also implicitly shown that Ly : R? — R? is invertible. O
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COROLLARY 3.10. Assume that A € C}(Q,M?’X?’) with A = —AT and that either
B € GL(3,R), B = const., or B € C1(2,M3*3), B = V1. Then, if Rot(A-B) = 0,
we have A = const.

Proof. From lemma 3.7, we know that Rot(A - B) = 0 implies
0 = matrix(Lp - vec(Vw ' (A))) + (A - Rot B).

Because B is invertible, so is Lp by way of the second part of lemma 3.7, and we
can write

vec(Vw™(A)) = L' - vec(A - Rot B).

But, in both cases, for B, we have Rot B = 0, and if we use the assumption that
A =—AT and put

o~
I
=@ R

Y
and A = w((), then we can write, in terms of {, equivalently
Ve=0
Hence the conclusion. O

LEMMA 3.11. Assume that A € C*(2,M>*3) with A= —AT and B € Cl(Q,M?’X?’)
and that Rot(A - B) = 0 and det B > ¢* > 0. Furthermore, if there is an xq € §2
with A(xg) =0, then A =0 everywhere.

Proof. From lemma 3.7, we know that Rot(A - B) = 0 implies
0 = matrix(Lp - vec(Vw ' (A))) + (A - Rot B).

Because B is invertible, so is Lp by way of the second part of lemma 3.7, and we
can write

vec(Vw™(A)) = L' - vec(A - Rot B).

Let us now use once more the assumption that A = —AT and put
«
¢=1|s
gl

and A = w(¢). This gives, in terms of (, equivalently
V¢ = matrix(L5" - vec(w(¢)) - Rot B).

Consider now a smooth curve x : [0,T] — z(t) € 2 starting at zo i.e. z(0) = zo.
With such smooth curves we can reach every point = € 2. We are interested in the
behaviour of ¢ along these curves. We differentiate the function ¢ — n(t) := ((x(t))
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to get

Snt) = (1)
)

dt
= V((x(t)) - 2(t)
= matrix(LE}r(t)) -vec(w({(z(t)))) - Rot B(x(t))) - (¢)
= matrix(LE}r(t)) -vec(w(n(t))) - Rot B(x(t))) - ©(t).
Together with 7(0) = ((x(0)) = ((x¢) = w (A(z0)) = w™1(0) = 0, this gives the
following linear system of ordinary differential equations for n along x(t):
4
at”
n(0) = 0.

Because this system has a unique solution and 1 = 0 is a solution, we must have
¢(x(t)) identically 0. With the arbitrariness of x(t), we see that ((x) is zero every-
where in 2. But A = w({) and we conclude A = 0 everywhere in (2. O

(t) = matrix(Lp(z(t)) ™" - vec(w(n(1)) - Rot B(x(1))) - (1),

4. Korn-type inequalities with non-constant coefficients

LEMMA 4.1 (Ad hoc higher regularity). Assume that ¢ € H'?(2) and F,, F;' €
CY(£2,GL(3,R)). Furthermore, suppose that Rot F,, € C1 (2, M3*3). If

Vo -Fy'(x)+ Fy (2)- Vo' =0, z€,
then ¢ € C*(2,R?) and A:=V¢- F;t e CL1/2(0Q,M?*3).

Proof. Put A = V¢ - Fy'(x). Then A = —AT and A € L?(R2) because of ¢ €
H'2(2) and F;' € C'(£2,GL(3,R)). We can solve for V¢ because F}, is invertible,
which gives V¢ = A - F,. Taking the operator Rot on both sides in the sense of

distributions, we have
0 = Rot(V¢) = Rot(A - F,).

Now we use our formula for Rot(A - F},), which gives
0 = matrix[Lp, - vec[V(w™*(A))]] + A - Rot(F}).
Taking vec on both sides, we get
0= Lp, - vec[V(w 1 (A))] + vec(A - Rot(F},)).

By assumption, F}, is everywhere invertible and so is then Lg,. Thus we can write
this equivalently as
vec[V(w™(A))] = —L;pl -vec(A - Rot(Fy)), }

L . (4.1)
V(w™(A)) = —matrix[Ly " - vec(A - Rot(F}))].

Because A € L%(02), F, € C1(2,GL(3,R)) and Rot F,, € C1(2,M3*3), we read
from this formula that V(w=1(A)) € L?(£2). But V(w™1(A)) controls all first deriva-
tives of A, which means A € H%2({2). Differentiating the above expression 4.1 on
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both sides once more, we get that A € H??(§2) since F},, Rot F}, are continuously dif-
ferentiable. Hence the Sobolev embedding theorem [1] yields A € C%1/2(2, M?3*3).
Looking again at 4.1, we see that, indeed, A € C11/2(£2,M?*3). Together with
V¢ = A-F,, we see that V¢ € C1(£2, M3*3). Thus, evidently, ¢ € C?(2,R3). O

LEMMA 4.2. Assume that ¢ € C*(£2,R3) and @), = 0. Moreover, let I' C 92 be a
two-dimensional smooth surface. Then there are two linear independent tangential
directions, 11, T2, on I' such that

Vo(x)-mni(z) =0,  Vo(x)- na(z) =0.

Hence

rank(Vo(z)) <1, =z €l

Proof. Look at curves s(t) on the surface I' starting in « € I'. Then ¢(s(t)) = 0.
Differentiating yields Ve(s(t)) - $(t) = 0. Because I" is a two-dimensional smooth
surface, there are two linear independent tangential directions in every point =z € I
If we choose the curves such that $(0) = 71 2, we see the first part of the lemma.
Because then dim(ker(V¢(x))) > 2, we see the second part as well. O

THEOREM 4.3 (Trivial nullspace). Assume that ¢ € Hi’Q(.Q,F) and Fp,Fp_1 €
C*(£2,GL(3,R)). Furthermore, suppose that Rot F, € C* (2, M**3). Then

IV¢- Fyt(z) + Fy () - Vol =0 = ¢=0.

Proof. Because of ¢ € H&’Q(Q, I') and the smoothness assumptions on F},, we know
by virtue of lemma 4.1 that ¢ € C'*(2,R?). Therefore, we can apply lemma 4.2 to
get that rank(V¢) < 1 for z € I'. Now set Vo - F;'! = A(z). In lemma 4.1, we
showed also that A € C™Y/2(02,M3*3), and, of course, A is skewsymmetric. We see
with lemma 3.4 that A|,, = 0. If we solve for V¢, we arrive at

Vé=A-F,

Taking now Rot on both sides in the strong sense yields Rot(A - F},) = 0, and we
are in the position to take lemma 3.11 into account. Thus we conclude that A =0
everywhere. Whence also V¢ = 0 everywhere. From ¢ € H(}’Q(Q, I') together with
Poincaré’s inequality [6, p. 281], we conclude that indeed ¢ = 0. O

Only for the convenience of the reader we give the following expression, which
we need in the sequel. Let P € C(2, M3*3) and ¢ € C1(£2,R3). Then, as usual,

990 9¢1 9%
a$1 8x2 a$3
962 962 o2 P11 P12 P13
V¢-P= 99~ 9¢7 097 P21 P22 P23
axl 8x2 8$3
P31 P32 P33
06> 9¢° 94°

axl 8x2 8$3
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Ot oot ot
i2911 + ipm + iplﬁ
X1 8$2 8$3

0¢? 0 0¢?
= —¢ p11 + —(b P21 + —¢ P31
T Oxs

0 1 a$2

0> o> 0>

8x1p11 + ) 22921 + ax3p31
! O’ P’
8—3312912 + 8_x2p22 + 8_333ng

o L 08 O
831312?12 8x2p22 8m3p32

o 3 o 3 o 3
—(b p12 + —¢ P22 + —¢ P32
X1 8x2 8$3
ot O’ O’
8$1p13 + 831322?23 + —a$3p33
0* D¢p? d¢?
8$1p13 + 831322?23 + 831332?33

9¢° 99° 99°

8$1p13 831322?23 831332?33

and we have, of course,

V¢-P+ PT.vgT
Ot Ot Ot >
o 2= - -
(8371 p11 + 831322921 + 8x3p31

a 1 a 1 a 1 a 2 a 2 a 2
= i2912 + inQ + ipsz + i2911 + ipm + %pm
3

axl 8$2 8x3 8$1 8$2
o9t L 090 o¢l 090 L 0 0¢°
D1 P13 8$2p2 D3 p3 8%1291 ) P21 b Pb31
8;451 + 8¢1 + i + - + - + -
O P12 O P22 ) P32 ) P11 ) P21 ) P31
d¢° d¢° d¢°
2 _—
<8$ P12 + e P22 + 8$3p32
8(;52 2 2 3 3 3
8—3312913 + ) P23 + ) P33 + f p12 + P P22 + 8—2932

Ot Ot Ot 0¢3 0> o¢®
8$1p13 + 831322?23 + 831332?33 + 8$1p11 + 831722?21 + axgpzﬂ

0> 0> 0> 0¢3 0> o¢®
8$1p13 + 8—3322923 + 8—3332933 + 8_a:1p12 + a—xQPQQ + 8—3332932

o¢* d¢* d¢* >
2 —/— - -
<8$1p13 + 831322?23 + 831332?33

For n = 3 spatial dimensions, we give the following definition.
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DEFINITION 4.4. Let oo = (g, g, 3) be a multi-index, and let a system of opera-
tors

Ny HY2(0Q) = L2(02), 1=1,...9,
be given in such a way that for ¢ = (¢1, ¢, ¢3) € HY2(£2)
3
Ni-¢i= Y nl,(x) D,
s=1 |a|=1

We say that this system is weakly coercive with respect to H2(£2) if there exists
¢t > 0 such that

9

2 2 2
> INLolS o + 141150 = cTlel 5 0
=1

for all ¢ € H2(02).
For & = (&1,&2,&3) € C3, we define the matrix

Ni ()€ = Y nbo(x) &8 - €57 - €52,

|a]=1
According to theorem 3.2 in [13, p. 310], we have the following result.

THEOREM 4.5. Let 2 C R? be a bounded Lipschitz domain and let n', € C(£2,R).
Then the system Nj is weakly coercive if and only if

Ve € N:VEER?, €40 = rank(Ny (z)¢) =3,

Ve €dN:VEE€C?, €40 = rank(N, (z)f) =3.

Proof. See [4,13]. O

COROLLARY 4.6. Let 2 C R? be a bounded Lipschitz domain and P € C(£2,GL(3)).
Then the system

{Ni¢})_, :=vec(V¢- P+ PT-veT)
of operators is weakly coercive over HLQ(Q),

Proof. Obviously, the coefficients of N;¢ satisfy the continuity condition of the
theorem. We check the rank condition for £ € C3, £ # 0. We have

{Nig}]_y = vec(Vop- P+ PT-VgT),
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which is equal to

2(%2911 + g;;:pm + g;:i:pm)
a;:iplz + g;;:pm + g;:i:p:m + %pn + g;:ézpm + g;jzpl}l
a;gpw + g;ip% + g;:i:p% + g;:fpn + g;zzpm + g;:izpm
i a;ipzz + g;:i:psz + g;szn + %pm + g;jzp:n

d¢? 0¢? d¢?
2<—¢ P12 + —¢ P22 + —(b p32>
i 0y Oxs

D¢? d¢? 0¢? g3 g3 g3
¢ 98 s+ 28+ 00, O 0
3

0x1q 0z Ox 0x1 0xo Oxs Pz

%pw + g;fm + g;:i:p% + 8;:;32911 + 8—32921 + 8—32931

g;jjpw + gfp% + gfj P33 + g;:fplz + g—xzpzz + g—mzpsz
2 <g;:fp13 + g;jzp% + g;:ip:ss)

Therefore, in this case, the matrix N;_ ¢ looks like

2(&ip + &apar + &3p31)  Eapi2 + Eopa + Eapse ipis + op2s + E3pss

0 &1p11 + §apa1 + £3p31 0
0 0 &1p11 + Eapa1 + £3P31
&1p12 + &apa2 + £3P32 0 0
&ipu + &opar +E&pa1 2(61p12 + Eap2z + E3p32)  E1pis + E2p23 + E3p33
0 0 §1p12 + &2paz + E3p32
§1p13 + &2p23 + €333 0 0
0 §1p13 + E2p23 + E3p33 0

&ip11 + &apar +E3ps1 Eapiz + Eapon + Eapse 2(&1p13 + Eapas + E3ps3)

Now we show that rank(N;,) < 2 implies ¢ = 0, which will give the desired theorem.
If rank(V;,) < 2, then the matrices

2(&ipn + &apar + &3p31) i1z + Eapae + Ea3pz2 E1pis + E2p2s + €3p33

E, = 0 §1p11 + Eap21 + E3pan 0 ;
0 0 §1p11 + &apar + E3pa1
§1p12 + &apaz + E3p32 0 0
Ey = [ &ip11 + &po1 +E&3p31 2(§1p12 + Eap22 + E3p32)  &1p1s + Sapas + E3p33 |

0 0 §1p12 + Eapaz + E3p32
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§1p13 + &2pas + E3p33 0 0
E3:= 0 §1p13 + E2p23 + E3p33 0
&ip11 + Eapor + E3ps1 api2 + Eapoo + E3psa 2(&1p1s + Eapas + E3p33)

must each be singular, which implies that the determinants, respectively, have to
vanish. But

0 = det By = 2(&1p11 + Sopa1 + 532031)3,
0 = det Ey = 2(£1p12 + &opaz + &3p32)°,
0 = det E3 = 2(&1p13 + Eopas + 532033)3-

This, in turn, implies that PT - ¢ = 0. But P is invertible and therefore ¢ = 0. O

CoRrOLLARY 4.7 (Korn’s second inequality for non-constant coefficients). Let 2 C
R? be a bounded Lipschitz domain and let Fy' € C(£2, GL(3)). Then

Ve Fy 't (@) + Fy H (@) Vo llTe0) + 14720
is a norm on HY2(82) equivalent to the standard norm.

Proof. As a consequence of weak coercivity, we get the existence of ¢ > 0 such
that

Ve - Fy(z) + Fy M (@) - Vo 20 + 16117200y = 91102 (0)-

However, the continuity of F~ Limplies that

Vo - F (@) + Fy M (@) - Vo T2y + 101720 < N6l1720) + K- [IVOlI7200)

<
< K+||¢||%I1,2(Q).
Hence the conclusion. O

REMARK 4.8. This is decisively more than Garding’s inequality, which, in the case
of non-constant coefficients, together with the strict Legendre-Hadamard condition,
is only valid for functions in Ha?(£2). Note that for constant coefficients we have
more, namely coercivity over H2?(§2) (compare with [23, p. 323]). But here we
have proved a generalization of Korn’s second inequality that might not have been
noticed before in this special form for invertible smooth Fi,.

For clarity of exposition, we cite the Garding’s inequality for comparison in our
context.

LEMMA 4.9 (Garding’s inequality). Let F'' € C%* (2, M**%) be given, with
det Fy(z) = pt > 0.
Then, for all £,m € R3,

I(n® &) - Fy () + Fy H () - (0@ &)TI1* = e (uh)lInll® - €l



238 P. Neff

and, as a consequence,
3t >0 Vo€ Hy*(2): |[Vo- F, () + F, F(2) - Vo 220 + 161|720
> gl ()
Proof. See, for example, [10, p. 9]. O
We are now in a position to prove our main result.

THEOREM 4.10 (Generalized Korn’s first inequality). Let 2 C R3® be a bounded
Lipschitz domain and let I' C 02 be a smooth part of the boundary with non-
vanishing two-dimensional Lebesque measure. Let

H*(2,T) = {¢ € H?(2)|¢,. = 0}

and let Fy,, F7t € cH(1, GL(3,R)) be given with det Fy,(x) = pu* > 0. Furthermore,
suppose that Rot F, € C*(£2,M>*3). Then

T >0 Voe HI2(2,1): Vo Fy ' (z) + Fy M (2) - Vo 7200y = ¢ l8l 2 ()

Proof. The proof proceeds now in a standard fashion by contradiction (see, for
example, [6,13] for the case of the classical Korn’s first inequality). Assume, on the
contrary, that there is a sequence of functions ¢ € H(}’Q(Q, I') such that

lprlFegoy =1, but [Vér-Fy ' (@) + F, " (2) - Vor 720y — 0

Via the Rellich compact embedding of H2(£2) in L?(2), there is a subsequence,
again denoted by ¢, and an element ¢ € H(}’Q(Q, I') with

ér — ¢ strongly in L?(2),
b — ¢ in HY2(02).
Due to the convexity of the mapping H — ||H - F; ' (z) + F; "(z) - HT[|, we have
IVé-Fy (@) + Fy (@) - Vo [|720)
< lim inf IV - Fy ' (z) + Fy " (2) - Vi 172 () = 0.

If we apply theorem 4.3, this yields ¢ = 0.
We show now that this subsequence is, in fact, a Cauchy sequence in the norm

IVu- Fy (2) + Fy () - VUTH%Z(Q) + lullZz (g
on HY2(£2). To see this, we note

IV(pr — &) - Fp_l(x) + Fp_T(x) - V(dx — ¢j)T||%2(Q) + llox — ¢j||%2(0)
<|Vor - Fy (@) + Fy N () - Vor 1720

— 0 by assumption
+ Ve, Fp_l(x) + Fp_T(x) : V¢;F||%2(Q) +[léx — ¢j||%2(0) :

—0 — 0 via Rellich
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Therefore, ¢, is also a Cauchy sequence in H?(f2), which means
dr — ¢ strongly in H2(£2)
and
||¢||%{112(Q) =1,
contrary to ¢ = 0. O

REMARK 4.11 (The general gradient case). The theorem shows that if Fj, = V¥,
it is sufficient to have F},, F;' € C'(2, GL(3,R)) (compare [7, p. 44]).

Interestingly enough, the above theorem can be proved using a direct argument
in the gradient case F,, = V¥, ¥ € C?(2,R?), Wthh mirrors the simple formula
for the first Korn’s inequality for functions ¢ € HY (Q)

THEOREM 4.12 (Special Ha?(£2) gradient case). Let 2 C R® be a bounded Lip-
schitz domain and let F,, = V¥, € C1(02,M3*3) be given with

det Fp_l(x) = pt = const. # 0.
Then
3T >0 Voe H?(R): (Vo Fyt(x) + By (2) - Vo 7200y = ¢ 0l3n2(0)-
Proof. For A € M*3, the Caley-Hamilton theorem tells us that
A% —tr(A) - A +tr(AdjA) - A—det A -1 = 0.

If A € GL(3,R), we can multiply this equation with A~!. Taking the trace on both
sides, we then have
tr(A?) —tr(A4)* + 2tr(Adj A) = 0. (4.2)

This formula remains valid for general A € M3*3. Now
IVe- @) + FyH (@) - Voo |2
=2|Vé- (@) + 2tx((Ve - By ' (2)))
=2|V¢ - FyH(2)]? — 4tr(Adj (Vo - F () + 262((Ve - Fy H(2)))?
> 2V By ()| — 4tr(Adj (Vo - 7 (2)),
where use has been made of the identity 4.2. Assume that ¢ € C§°(£2) and look at

tr(Adj (Vo - Fy () = (Adj (Vo - Fy ' (2)), 1)
= (Adj (W) AdJF (@)
= (Adj (V¢),det F; ' - F))

T(Adj (Ve), F))
H(Adj (Vo), VWT)

U
U
However, the Piola identity (see [6, p. 39]),
div Cof(V¥,) = div Adj V¥&,* =0,
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together with the divergence theorem implies that (u+ = const.)
/Q MAdj (V¢), Vi) do = it /Q(Adj (Ve), Vo)) dz =0
if ¢ € C§°(£2). Therefore, upon integrating, we get
Vo - Fyt(z) + Fy M () - V¢T||%2(n) Ve By (@) 1720

)‘mln Q(F 1F ) ||v¢||%2(n)a

where )\mm Q(F _1F ~T) denotes a lower bound for the smallest eigenvalues of
Fyl(x) - F, T(z) on Q An application of Pomcare s inequality gives the result
for ¢ € C§° (Q) But C5°(£2) is dense in HY?(£2). ]

=2
=2

More can be said in another special case.

THEOREM 4.13 (Special Ho?(£2) gradient case with @, a diffeomorphism). Let
2 CR? be a bounded Lipschitz domain and let Ff, = V¥, € C'(£2,M**3) be given
with det Fp_l(x) > ut and let W, : 2 C R — R3 be a C'-diffeomorphism. Then

T >0 Voe H?(R): |[Vo- Fyt () + Fy N (@) - Vo 12 = ¢ llolnz o)
Proof. The proof uses the fact that under the assumption that ¥, : 2 C R® — R?

is a diffeomorphism, the map x +— ¥, (x) =: £ induces a change of variables. Indeed,
if ¢ € C§°(42), we can uniquely define a function ¢, by setting

¢(z) = ¢e(Pp(2))-
We then get
Vo(x) = Vede(Tp(x)) - Vallp(z) or Vo(z) - Vol ' (2) = Vege(Tp(x)).

For ¢, we obtain by the simple H(}Q(Q) case of Korn’s first inequality that
[ Ivede + Voot Pacz2 [ vesn©lde,
EEW, () £evp(£2)

since ¢¢(§) = 0 if £ € 0V, (42). Now, on applying the change of variables formula,
we obtain

[ 1900 + 000 0) | det V)
> 2 [ [eou(iy(a))? dot VO, o) do
By assumption, det V¥, () is strictly positive. Hence we can conclude that
(et Vi, (2)) [ [V6,04(a)) + V(0 ()| d

> Qmén(detvuvlp(x))/n||V§¢e(u7p(x))||2dx.
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Therefore,

5 ming(det V¥, (x)
(det V¥, (x
(det V&, (
det V¥, ()
(
(

maxg

ming,

=
E
=]
Ql
ieS
L
&
.
<
=
=~
B

maxg

ming,

2(FT ESDIVET )

2 i a(FSYE D) Ve|22 0.
maxn(detFp(x)—l)Mmmﬂ( p ‘p NVelT ()

An application of Poincaré’s inequality, together with the density of C§°(£2) in
HY?(02), will give the result. O

For n = 2 space dimensions, we can prove exactly the same theorem as above,
but there is another theorem that might be interesting in its own right, as it can
handle incompatible plastic configurations with much less regularity.

THEOREM 4.14. Let £2 C R? be a bounded Lipschitz domain and F,, € L (2, M?*2)
be given with det Fp_l(x) = puT = const. # 0. Then

T >0 Voe H?(2): |[Vo- Fyt () + Fy T (@) - Vo 12 ) = ¢ llollnz o)
Proof. For A € M?*2, the Caley-Hamilton theorem tells us that
A? —tr(A)- A—detA-1 = 0.
Hence, taking the trace on both sides,
tr(A%) — tr(A4)% = 2det A,
which gives, for ¢ € C§°(£2),
IVe- @) + Fy H (@) - Voo |2
=2[Ve- B @) +2tx((Vo - FyH (2))?)
=2|Vo- F (@)|* +2te((Vo - Fy (2))* = 4det(Vo - Fy ' ()
>2|Ve- Fy (@) — 4p™ det(V ).
Because det(V¢) is a divergence, integrating over {2 and applying Poincaré’s in-
equality gives the desired result, since C§°({2) is dense in HY?(02). O
5. Concluding remarks
In the case of analysing the form ||F},(z) - Vo + Vo™ - FT(z)||? instead of
IV - Fy (@) + Fy M (@) - Vol |,

we can do the same calculations as in lemma 3.11. But we see that with lemma 3.8
and invertible B, we can directly solve for Rot A and we only have to check that
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Ly : R — R? is bijective. This can directly be seen by looking again at the
computations that were done in the proof of corollary 3.9. Altogether, the whole
analysis done so far carries over to this case.

The same type of coerciveness holds as well for forms of the type

Gy - Vo - Fy+ By - Voo - G,
with F,, G, € C'(£2,GL(3,R)). If we write
Gy - V- By + Fy - VoT -Gl = Gy - (Vo Fy - G+ Gyt By - VoT) - G,
we see immediately that we can always reduce the above case to the case
IVe- Clx) + C(2) - VoI,

with C € C'(2,GL(3,R)), since |G - X - GT|| and || X| are equivalent norms on
M3*3 if G € GL(3,R). This remark shows that we have Korn’s first inequality in
the case with elastic rotations as well.

A generalization of our main theorem to LP({2) spaces with 1 < p < o0, i.e.

3t >0 Vo€ HAP(Q.D)|[Vo- Fy @) + Fy (@) - Vo [0, 00 = ¢ 101500,

seems to be straightforward, because we get the generalization of Korn’s second
inequality in our situation and the LP({2) setting by theorem 6 in [4, p. 530]. But,
to proceed from Korn’s second inequality to Korn’s first inequality we did not make
use of any specific L?(§2) property.

The question remains to be settled whether the awkward smoothness assumptions
made for F}, and the part of the boundary I" are sharp. Less smoothness is, of course,
of utmost importance in real applications.
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