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On the generalized sum of squared logarithms inequality

Waldemar Pompe∗ and Patrizio Neff†
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Abstract

Assume n ≥ 2. Consider the elementary symmetric polynomials ek(y1, y2, . . . , yn) and
denote by E0, E1, . . . , En−1 the elementary symmetric polynomials in reverse order

Ek(y1, y2, . . . , yn) := en−k(y1, y2, . . . , yn) =
∑

i1<...<in−k

yi1yi2 . . . yin−k
, k ∈ {0, 1, . . . , n−1} .

Let moreover S be a nonempty subset of {0, 1, . . . , n−1}. We investigate necessary and
sufficient conditions on the function f : I → R, where I ⊂ R is an interval, such that the
inequality

f(a1) + f(a2) + . . .+ f(an) ≤ f(b1) + f(b2) + . . .+ f(bn) (*)

holds for all a = (a1, a2, . . . , an) ∈ In and b = (b1, b2, . . . , bn) ∈ In satisfying

Ek(a) < Ek(b) for k ∈ S and Ek(a) = Ek(b) for k ∈ {0, 1, . . . , n−1} \ S .

As a corollary, we obtain (*) if 2 ≤ n ≤ 4, f(x) = log2 x and S = {1, . . . , n− 1}, which is
the sum of squared logarithms inequality previously known for 2 ≤ n ≤ 3.
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1 Introduction - the sum of squared logarithms inequality

In a previous contribution [1] the sum of squared logarithms inequality has been introduced
and proved for the particular cases n = 2, 3. For n = 3 it reads: let a1, a2, a3, b1, b2, b3 > 0 be
given positive numbers such that

a1 + a2 + a3 ≤ b1 + b2 + b3 ,

a1 a2 + a1 a3 + a2 a3 ≤ b1 b2 + b1 b3 + b2 b3 ,

a1 a2 a3 = b1 b2 b3 .
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Then

log2 a1 + log2 a2 + log2 a3 ≤ log2 b1 + log2 b2 + log2 b3 .

The general form of this inequality can be conjectured as follows.

Definition 1.1
The standard elementary symmetric polynomials e1, . . . , en−1, en are

ek(y1, . . . , yn) =
∑

1≤j1<j2<...<jk≤n

yj1 · yj2 . . . · yjk , k ∈ {1, 2, . . . , n} ; (1.1)

note that en = y1 · y2 . . . · yn.

Conjecture 1.2 (Sum of squared logarithms inequality)
Let a1, a2, . . . , an, b1, b2, . . . , bn be given positive numbers. Then

ek(a1, . . . , an) ≤ ek(b1, . . . , bn), k ∈ {1, 2, . . . , n− 1}, en(a1, . . . , an) = en(b1, . . . , bn)

⇒
n
∑

i=1

log2 ai ≤
n
∑

i=1

log2 bi . (1.2)

Remark 1.3
Note that Conjecture 1.2 is trivial provided we have equality everywhere, i.e.

ek(a1, . . . , an) = ek(b1, . . . , bn), k ∈ {1, 2, . . . , n} . (1.3)

In this case, the coefficients a1, . . . an, b1, . . . bn are equal up to permutations, which can be
seen by looking at the characteristic polynomials of two matrices with eigenvalues a1, . . . , an
and b1, . . . , bn. From this perspective, having equality just in the last product en and strict
inequality else seems to be the most difficult case.

Based on extensive random sampling on Rn
+ for small numbers n it has been conjectured that

Conjecture 1.2 might be true for arbitrary n ∈ N. The sum of squared logarithms inequality
has immediate important applications in matrix analysis [7, 2] as well as in nonlinear elasticity
theory [4, 5, 6, 3]. In matrix analysis it implies that the global minimizer over all rotations to

inf
Q∈SO(n)

‖ sym∗ LogQ
T F‖2 = ‖

√
FTF‖2 (1.4)

at given F ∈ GL+(n) is realized by the orthogonal factor R = polar(F ) (such that RT F =√
FTF ). Here, ‖X‖2 :=

∑n
i,j=1 X

2
ij denotes the Frobenius matrix norm and Log : GL(n) 7→

gl(n) = Rn×n is the multivalued matrix-logarithm, i.e. any solution Z = LogX ∈ Cn×n of
exp(Z) = X and sym∗(Z) = 1

2 (Z
∗ + Z).

Recently, the case n = 2 was used to establish a polyconvexity statement in nonlinear elas-
ticity [5, 4]. For more background information on the sum of squared logarithms inequality we
refer the reader to [1].

In this paper we extend the investigation as to the validity of Conjecture 1.2 by considering
arbitrary functions f instead of f(x) = log2 x. We formulate this more general problem and we
are able to extend Conjecture 1.2 to the case n = 4. The same methods should also be useful
for proving the statement for n = 5, 6. However, the necessary technicalities prevent us from
discussing these cases in this paper.

In addition, we present ideas which might be helpful in attacking the fully general case,
namely arbitrary f and arbitrary n.

2 The generalized inequality

In order to generalize Conjecture 1.2 in the directions hinted at in the introduction, we consider
from now on a non-standard definition of the elementary symmetric polynomials. In fact, for
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n ≥ 2 it will be more convenient for us to reverse their numbering and define E0, E1, . . . , En−1

by

Ek(y1, . . . yn) := en−k(y1, . . . , yn) =
∑

i1<...<in−k

yi1 ·, yi2 . . . · yin−k
, k ∈ {0, 1, . . . , n− 1} .

(2.1)

In particular

E0(y1, . . . , yn) := en(y1, . . . , yn) = y1 · y2 · . . . · yn ,
En−1(y1, . . . , yn) := e1(y1, . . . , yn) = y1 + y2 + . . .+ yn . (2.2)

Let I ⊂ R be an open interval and let

∆n := {y = (y1, y2, . . . , yn) ∈ In : y1 ≤ y2 ≤ . . . ≤ yn} . (2.3)

Let S be a nonempty subset of {0, 1, . . . , n−1} and assume that a, b ∈ ∆n are such that

Ek(a) < Ek(b) for k ∈ S and Ek(a) = Ek(b) for k ∈ {0, 1, . . . , n−1} \ S . (2.4)

In this section we investigate necessary and sufficient conditions for a (smooth) function f : I →
R, such that the inequality

f(a1) + f(a2) + . . .+ f(an) ≤ f(b1) + f(b2) + . . .+ f(bn)

holds for all a, b ∈ ∆n satisfying assumption (2.4).

Remark 2.1
The formulation of the above problem has a certain monotonicity structure: we assume that
“E(a) < E(b)” and want to prove that “F (a) < F (b)”. Therefore our idea is to consider
a curve y connecting the points a and b, such that E(y(t)) “increases”. Then the function
g(t) = F (y(t)) should also increase and therefore g′(t) > 0 must hold. From this we are able to
derive necessary and sufficient conditions on the function f .

This approach motivates the following definition.

Definition 2.2 (b dominates a, a � b)
We will say that b dominates a, and denote a � b, if there exists a piecewise differentiable
mapping y : [0, 1] → ∆n (i.e. y is continuous on [0, 1] and differentiable in all but at most
countably many points) such that y(0) = a, y(1) = b, yi(t) 6= yj(t) for all but at most countably
many t ∈ [0, 1] and the functions

Ak(t) = Ek(y(t)) , k ∈ {0, 1, . . . , n−1}

are non-decreasing on the interval [0, 1].

If a � b, then Ek(a) = Ak(0) ≤ Ak(1) = Ek(b), so it follows from Definition 2.2 that a, b
satisfy assumption (2.4) with S being the set of all k for which Ak(t) is not a constant function
on [0, 1].

We are ready to formulate the main results of this chapter.

Theorem 2.3
Assume that a, b ∈ ∆n and let a � b. Let S ⊆ {0, 1, . . . , n−1} denote the set of all integers k
with Ek(a) < Ek(b). Moreover, assume that f ∈ Cn(I) be such that

(−1)n+k(xkf ′(x))(n−1) ≤ 0 for all x ∈ I and all k ∈ S . (2.5)

Then the following inequality holds:

f(a1) + f(a2) + . . .+ f(an) ≤ f(b1) + f(b2) + . . .+ f(bn) . (2.6)

A partially reverse statement is also true.
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Theorem 2.4
Let f ∈ Cn(I) be such that the inequality

f(a1) + f(a2) + . . .+ f(an) ≤ f(b1) + f(b2) + . . .+ f(bn) (2.7)

holds all a, b ∈ ∆n satisfying

Ek(a) ≤ Ek(b) for k ∈ S and Ek(a) = Ek(b) for k ∈ {0, 1, . . . , n−1} \ S (2.8)

for some nonempty subset S ⊆ {0, 1, . . . , n−1}. Then f satisfies property (2.5), i.e.

(−1)n+k(xkf ′(x))(n−1) ≤ 0 for all x ∈ I and all k ∈ S . (2.9)

In this respect, we can formulate a conjecture:

Conjecture 2.5
Let S be a nonempty subset of {0, 1, . . . , n−1} and assume that a, b ∈ ∆n are such that

Ek(a) < Ek(b) for k ∈ S and Ek(a) = Ek(b) for k ∈ {0, 1, . . . , n−1} \ S . (2.10)

Then there exists a curve y satisfying the conditions from Definition 2.2 and thus a � b.

Remark 2.6
In concrete applications of Theorem 2.3 and Theorem 2.4 one would like to know whether
condition (2.4) implies a � b. This is Conjecture 2.5. Unfortunately, we are able to prove
Conjecture 2.5 only for 2 ≤ n ≤ 4, I = (0,∞) and S ⊆ {1, 2, . . . , n−1} (see the next section).

Remark 2.7
It is easy to see that if I = (0,∞) then the function f(x) = log2 x satisfies property (2.5) for
S = {1, 2, . . . , n−1}. Indeed, we proceed by induction on n. For n = 2 and k = 1 the property
is immediate. Moreover

(−1)n+k(xkf ′(x))(n−1) = 2(−1)n+k(xk−1 log x)(n−1) (2.11)

= 2(−1)n+k((k − 1)xk−2 log x)(n−2) + 2(−1)n+k(xk−2)(n−2) ≤ 0

by the induction hypothesis, since the second summand vanishes. It remains to check property
(2.5) for k = 1, which is also immediate.

Note also that property (2.5) is not true for k = 0. Therefore Theorem 2.3 and Theorem
2.4 for f(x) = log2 x attain the following formulation:

Corollary 2.8
Assume that a, b ∈ Rn

+ be such that a � b and a1a2 . . . an = b1b2 . . . bn . Then

log2(a1) + log2(a2) + . . .+ log2(an) ≤ log2(b1) + log2(b2) + . . .+ log2(bn)

and this inequality fails, if the constraint a1a2 . . . an = b1b2 . . . bn is replaced by the weaker one
a1a2 . . . an ≤ b1b2 . . . bn .

Remark 2.9
This is a weaker statement than Conjecture 1.2 since we assume that a � b. If Conjecture 2.5
is true, then Conjecture 1.2 follows.

Remark 2.10
The function f(x) = xp (x > 0) with p ∈ (0, 1) satisfies property (2.5) for the set S =
{0, 1, . . . , n−1}. Indeed:

(−1)n+k(xkf ′(x))(n−1) = (−1)n+kp(k + p− 1)(k + p− 2) . . . (k + p− (n−1))xk+p−n .

The above product is not greater than 0, because among the factors k+p− 1, k+p− 2, . . . , k+
p− (n−1) there are exactly n− 1− k negative ones.

Similarly, the function f(x) = xp for p ∈ (−1, 0) satisfies property (2.5) for the set
S = {1, 2, . . . , n−1}, because p < 0 and among the factors k+p− 1, k+p− 2, . . . , k+p− (n−1)
there are exactly n− k negative ones. On the other hand, property (2.5) is not true for k = 0.

Thus, similarly like above, we have
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Corollary 2.11
Assume that a, b ∈ (0,∞)n be such that a � b and a1a2 . . . an = b1b2 . . . bn . If p ∈ (−1, 1), then

ap1 + ap2 + . . .+ apn ≤ bp1 + bp2 + . . .+ bpn .

This inequality fails for −1 < p < 0 (but remains true for 0 < p < 1) if the constraint
a1a2 . . . an = b1b2 . . . bn is replaced by the weaker one a1a2 . . . an ≤ b1b2 . . . bn .

Proof of Theorem 2.3 Let y : [0, 1] → ∆n be the curve connecting points a and b like in the
definition. Consider the function

p(t, x) = (x+ y1(t))(x + y2(t)) . . . (x+ yn(t)) =

n−1
∑

k=0

xkEk(y(t))

= (x+ a1)(x + a2) . . . (x+ an) +
∑

k∈S

xkAk(t) , (2.12)

where Ak(t) = Ek(y(t)) − Ek(a) is a non-decreasing mapping. Our goal is to show that the
function

η(t) =
n
∑

i=1

f(yi(t)) (2.13)

is non-decreasing on [0, 1], i.e. we show that η′(t) ≥ 0 a.e. on (0, 1).
To this end, fix i ∈ {1, 2, . . . , n}. Since p(t,−yi(t)) = 0, we obtain

∂
∂t p(t,−yi(t)) +

∂
∂x p(t,−yi(t)) · (−y′i(t)) = 0

for all t ∈ (0, 1) and therefore

∑

k∈S

(−yi(t))
kA′

k(t) +
∏

j 6=i

(yj(t)− yi(t)) · (−y′i(t)) = 0 , (2.14)

which gives

y′i(t) =
∑

k∈S

(−yi(t))
kA′

k(t)
(

∏

j 6=i

(yj(t)− yi(t))
)−1

.

From this we get

η′(t) =

n
∑

i=1

f ′(yi(t)) · y′i(t)

=

n
∑

i=1

f ′(yi(t)) ·
∑

k∈S

(−yi(t))
kA′

k(t)
(

∏

j 6=i

(yj(t)− yi(t))
)−1

=
∑

k∈S

A′
k(t)

n
∑

i=1

f ′(yi(t)) · (−yi(t))
k
(

∏

j 6=i

(yj(t)− yi(t))
)−1

. (2.15)

Fix t ∈ (0, 1) and write yi = yi(t) for simplicity. Since A′
k(t) ≥ 0, we will be done, if we show

that

D :=

n
∑

i=1

f ′(yi) · (−yi)
k
(

∏

j 6=i

(yj − yi)
)−1

≥ 0 for all k ∈ S .

To this end, consider the polynomial

g(x) =

n
∑

i=1

f ′(yi) · (−yi)
k
(

∏

j 6=i

(yj − yi)
)−1

·
∏

j 6=i

(x− yj) .

The degree of g equals n−1 and the coefficient at xn−1 is equal to D. Moreover,

g(yi) = f ′(yi) · (−yi)
k · (−1)n−1 (i = 1, 2, . . . , n) .
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Therefore the function h(x) = g(x) + (−1)n+kxkf ′(x) has n different roots y1, y2, . . . , yn in the
interval I. It follows that the function

h(n−1)(x) = (n− 1)!D + (−1)n+k(xkf ′(x))(n−1) (2.16)

has a root in the interval I, and since (−1)n+k(xkf ′(x))(n−1) ≤ 0 for all x ∈ I, it follows that
D ≥ 0, which completes the proof of Theorem 2.3. �

Proof of Theorem 2.4 Suppose, to the contrary, that (−1)k+n(xkf ′(x))(n−1) > 0 for some
x ∈ I and some k ∈ S. Then (−1)k+n(xkf ′(x))(n−1) > 0 holds for all x belonging to some
interval J contained in I. Choose the numbers a1 < a2 < . . . < an from J and consider

p(t, x) = (x+ a1) · (x+ a2) · . . . · (x+ an) + txk .

Then for all sufficiently small t (0 < t < ε), there exist different numbers yi(t) belonging to J ,
such that

p(t, x) = (x + y1(t))(x + y2(t)) . . . (x+ yn(t)) .

Then

xn +

n−1
∑

i=0

Ei(a) · xi + txk = p(t, x) = xn +

n−1
∑

i=0

Ei(y(t)) · xi ,

and since t > 0, we see that a and b = y(t) satisfy (2.8). We will be done if we show that

f(a1) + f(a2) + . . .+ f(an) > f(y1(t)) + f(y2(t)) + . . .+ f(yn(t)) .

We proceed in the same way, as in the proof of Theorem 2.3. We define

η(t) =

n
∑

i=1

f(yi(t))

and this time we want to show that η′(t) < 0 for 0 < t < ε.
By the Inverse Mapping Theorem (see proof of Proposition 3.4 below for a more detailed

explanation), y ∈ C1(0, ε) and therefore

η′(t) =

n
∑

i=1

f ′(yi(t)) · y′i(t) =
n
∑

i=1

f ′(yi(t)) · (−yi(t))
k
(

∏

j 6=i

(yj(t)− yi(t))
)−1

. (2.17)

Now, like previously, write yi = yi(t) for simplicity. Our goal is therefore to prove that

D :=
n
∑

i=1

f ′(yi) · (−yi)
k
(

∏

j 6=i

(yj − yi)
)−1

< 0 .

Consider the polynomial

g(x) =
n
∑

i=1

f ′(yi) · (−yi)
k
(

∏

j 6=i

(yj − yi)
)−1

·
∏

j 6=i

(x− yj) .

The degree of g equals n−1 and the coefficient at xn−1 is equal to D. Moreover, the function
h(x) = g(x) + (−1)n+kxkf ′(x) has n different roots y1, y2, . . . , yn in the interval J . It follows
that the function

h(n−1)(x) = (n− 1)!D + (−1)n+k(xkf ′(x))(n−1)

has a root in the interval J . And since (−1)n+k(xkf ′(x))(n−1) > 0 for all x ∈ J , it follows that
D < 0, which completes the proof of Theorem 2.4. �
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3 Construction of the connecting curve

In this section we prove that condition (2.4) implies a � b, if 2 ≤ n ≤ 4, I = (0,∞) and
S ⊆ {1, 2, . . . , n−1}. However, we start with a construction of the desired curve for a general
interval I, integer n ≥ 2 and set S ⊆ {0, 1, . . . , n−1}.

For a, b ∈ ∆n, we say that a < b, if a 6= b and Ek(a) ≤ Ek(b) for all k = 0, 1, . . . , n−1. We
say that a ≤ b, if a < b or a = b.

Definition 3.1
For a < b denote by C(a, b) the set of all piecewise differentiable (i.e. continuous and differen-
tiable in all but at most countably many points) curves y in ∆n satisfying:

(a) the curve y(t) starts at a (i.e. y(0) = a, if the curve y(t) is parametrized by the interval
[0, ε]);

(b) y(t) ∈ int (∆n) for all but at most countable many values t;
(c) the mappings Ek(y(t)) are non-decreasing on t and Ek(y(t)) ≤ Ek(b) for all t and each

k = 0, 1, . . . , n−1.
Note that a curve in C(A, b) does not necessarily end at the point b.

Proposition 3.2
Let n ≥ 2 be a positive integer and let S be a nonempty subset of {0, 1, . . . , n−1}. Let moreover
a, b ∈ ∆n be such that (2.4) holds. Furthermore, suppose that for all c ∈ ∆n with a ≤ c < b
the set C(c, b) is nonempty. Then a � b.

Proof. Each element (curve) of C(a, b) is a (closed) subset of ∆n. We equip the set C(a, b) with
the inclusion relation ⊆, obtaining a nonempty partially ordered set (C(a, b),⊆). We are going
to show that each chain {yi}i∈I has an upper bound in C(a, b).

To achieve this, consider the curve

y0 =
⋃

i∈I

yi .

Then obviously y0 satisfies conditions (a) and (c) of Definition 3.1. To prove (b) assume that y0
is parametrized on [0, 1]. Then for each positive integer k the curve yk, defined as the restriction
of y0 to the interval [0, 1 − 1

k ], is contained in some curve yi ∈ C(a, b) of the given chain {yi}.
Therefore yk(t) is piecewise differentiable and satisfies condition (b) for each positive integer k.
Moreover,

y0 =

∞
⋃

k=1

yk .

Hence y0 is piecewise differentiable and satisfies (b) as well.
Now, by the Kuratowski-Zorn lemma, there exists a maximal element y in (C(a, b),⊆). We

show that y is a desired curve connecting the points a and b, which will imply that a � b.
To this end, it is enough to show that, if the curve y is parametrized on [0, 1], then y(1) = b.

Suppose, to the contrary, that y(1) = c 6= b. Then a ≤ c < b, and hence the set C(c, b) is
nonempty. Thus the curve y can be extended beyond the point c, which contradicts the fact
that y is a maximal element in C(a, b). This completes the proof of Proposition 3.2. �

From now on assume that I = (0,∞) and S is a nonempty subset of {1, 2, . . . , n−1}.
In order to prove that (2.4) implies a � b, it suffices to show that the sets C(a, b) for a, b ∈ ∆n

with a < b are nonempty. This is implied by the following conjecture, which we will prove later
for n ≤ 4.

Conjecture 3.3
Let n ≥ 2 be an integer and a ∈ ∆n. Let S be a nonempty subset of {1, 2, . . . , n−1} with the
property that there exist Ak > 0 for k ∈ S such that all the roots of the polynomial

q(x) = (x+ a1)(x+ a2) . . . (x + an) +
∑

k∈S

Akx
k

are real (and hence negative). Then there exist continuous on [0, ε], differentiable on (0, ε)
and nondecreasing mappings Bk : [0, ε] → R (k ∈ S) with Bk(0) = 0 such that

∑

k∈S Bk(t) is

7



increasing on [0, ε] and for all sufficiently small values of t > 0 the polynomial

(x+ a1)(x+ a2) . . . (x + an) +
∑

k∈S

Bk(t)x
k

has n distinct real (and hence negative) roots.

Now we show how Conjecture 3.3 implies that the sets C(a, b) are nonempty.

Proposition 3.4
Let n and S be such that the conjecture holds. Let moreover a, b ∈ ∆n be such that (2.4) holds.
Then the set C(a, b) is nonempty.

Proof. Consider the polynomials

p(x) = (x+ a1)(x + a2) . . . (x+ an) and q(x) = (x+ b1)(x+ b2) . . . (x+ bn) .

Then

q(x)− p(x) =

n−1
∑

k=0

(Ek(b)− Ek(a))x
k =

∑

k∈S

Akx
k ,

where Ak > 0 for all k ∈ S. According to the conjecture, there exist continuous on [0, ε] and
differentiable on (0, ε) nondecreasing mappings Bk : [0, ε] → R, with Bk(0) = 0 such that
∑

k∈S Bk(t) is increasing on [0, ε] and for all t ∈ (0, ε) the polynomial

p(x) +
∑

k∈S

Bk(t)x
k

has n distinct real (and hence negative) roots −yn(t) < −yn−1(t) < . . . < −y1(t) < 0. We show
that y(t) = (y1(t), y2(t), . . . , yn(t)) defines a differentiable curve (parametrized on [0, ε]) that
belongs to C(a, b), provided ε is chosen in such a way that Bk(ε) ≤ Ak for k ∈ S.

Consider the following mapping Ψ: ∆n → Ψ(∆n) given by

Ψ(y) = (En−1(y), En−2(y), . . . , E0(y)) .

Then it follows from Remark 1.3 that the mapping Ψ is injective, hence Ψ is a continuous
bijection defined on a closed subset of Rn. Therefore the mapping Ψ−1 is continuous and thus

y(t) = Ψ−1(a+ (B0(t), B1(t), . . . , Bn−1(t))) (t ∈ [0, ε])

(here we put Bk(t) = 0 for k 6∈ S) is a curve starting at a. Moreover y(t) ∈ ∆n. Hence condition
(a) is satisfied. Since y(t) ∈ int (∆n) for all t ∈ (0, ε), condition (b) holds. It is also clear that
(c) is satisfied, since Ek(y(t)) = Ek(a)+Bk(t) ≤ Ek(a)+Ak = Ek(b) for all k ∈ {0, 1, . . . , n−1}.

So it remains to prove that y(t) is differentiable on (0, ε). This however is a consequence of
the Inverse Mapping Theorem, if we show that

det[DΨ(y)] 6= 0 for all y ∈ int (∆n).

To this end, let V (y) be the n × n Vandermonde-type matrix given by Vij(y) = (−yi)
n−j

(1 ≤ i, j ≤ n). This matrix is obtained from the standard Vandermonde matrix

W (−y1,−y2, . . . ,−yn) =















1 −y1 (−y1)
2 · · · (−y1)

n−1

1 −y2 (−y2)
2 · · · (−y2)

n−1

1 −y3 (−y3)
2 · · · (−y3)

n−1

...
...

...
. . .

...
1 −yn (−yn)

2 · · · (−yn)
n−1















(3.1)

by reversing the order of columns of W .
Then by the formula

tn−1 +

n−2
∑

k=0

tkEk(z1, z2, . . . , zn−1) = (t+ z1)(t+ z2) . . . (t+ zn−1) , (3.2)
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we infer that

V (y) ·DΨ(y) = diag
(

∏

j 6=1

(yj − y1),
∏

j 6=2

(yj − y2), . . . ,
∏

j 6=n

(yj − yn)
)

. (3.3)

It is well-known that
det[V (y)] =

∏

i<j

(yj − yi) 6= 0 (y ∈ int∆n) .

Therefore we obtain

det[DΨ(y)] =
∏

i<j

(yi − yj) 6= 0 (y ∈ int∆n) ,

which completes the proof of Proposition 3.4. �

Lemma 3.5
Assume that n ≥ 3 is odd and let 0 < a1 ≤ a2 ≤ . . . ≤ an. Let moreover Ak ≥ 0 for
k = 1, 2, . . . , (n−1)/2 with at least one Ak not equal to 0. Consider the polynomials

P (x) = (x+ a1)(x + a2) . . . (x+ an) +

(n−1)/2
∑

k=1

Akx
2k−1 ,

Q(x) = (x+ a1)(x + a2) . . . (x+ an) +

(n−1)/2
∑

k=1

Akx
2k . (3.4)

Then the polynomial P has exactly one root in the interval (−a1, 0) and at most two roots in
the interval (−an,−an−1). Moreover, the polynomial Q has exactly one root in the interval
(−∞,−an) and at most two roots in the interval (−a2,−a1).

Proof. That P has exactly one root in (−a1, 0) follows immediately from the observation that
P (−a1) < 0, P (0) > 0 and P ′(x) > 0 on (−a1, 0).

Now we show that Q has exactly one root in (−∞,−an).
Dividing the equation Q(x) = 0 by xna1a2 . . . an and substituting z = 1/x and bi = 1/ai,

yields the equation P0(z) = 0, where

P0(z) = (z + b1)(z + b2) . . . (z + bn) +

(n−1)/2
∑

k=1

Bkz
2k−1

for some nonnegative numbers Bk, not all equal to 0. We already know that P0 has exactly one
root in the interval (−bn, 0), so it follows that Q has exactly one root in the interval (−∞,−an).

Now we prove that Q has at most two roots in the interval (−a2,−a1). To the contrary,
suppose that Q has at least 3 roots in (−a2,−a1). Since Q(−a2) > 0 and Q(−a1) > 0, it follows
that Q has an even number, and hence at least four, roots in the interval (−a2,−a1).

Let 0 > −c1 ≥ −c2 ≥ . . . ≥ −cn−1 be the roots of p′(x) = 0, where

p(x) = (x+ a1)(x + a2) . . . (x+ an) . (3.5)

Then a1 < c1 < a2. The polynomial Q(x) is decreasing on the interval [−a2,−c1], so it has
at most one root in this interval. Therefore the polynomial Q has at least three roots in the
interval (−c1,−a1), and consequently the equation Q′′(x) = 0 has a root in (−c1,−a1). But
Q′′(x) > 0 for all x > −c1, a contradiction. Hence Q must have at most two roots in (−a2,−a1).

Finally, to prove that P has at most two roots in the interval (−an,−an−1), divide the
equation P (x) = 0 by xna1a2 . . . an and substitute z = 1/x and bi = 1/ai. This reduces to the
equation Q0(z) = 0, where

Q0(z) = (z + b1)(z + b2) . . . (z + bn) +

(n−1)/2
∑

k=1

Bkz
2k

for some nonnegative numbers Bk, not all equal to 0. We already know that Q0 has at most
two roots in the interval (−bn−1,−bn), so it follows that P has at most two roots in the interval
(−an,−an−1). This completes the proof of Lemma 3.5. �

The same proof yields an analogous result for even values of n.
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Lemma 3.6
Assume that n ≥ 2 is even and let 0 < a1 ≤ a2 ≤ . . . ≤ an. Let moreover Ak ≥ 0 for
k = 1, 2, . . . , n/2 and not all of the Ak’s are equal to 0. Consider the polynomials

P (x) = (x+ a1)(x+ a2) . . . (x+ an) +

n/2
∑

k=1

Akx
2k−1 ,

Q(x) = (x+ a1)(x+ a2) . . . (x+ an) +

n/2−1
∑

k=1

Akx
2k . (3.6)

Then the polynomial P has exactly one root in each of the intervals (−∞,−an) and (−a1, 0)
and Q has at most two roots in each of the intervals (−an,−an−1) and (−a2,−a1).

Proof. The same proof as that for Lemma 3.5 can be used. �

Now we turn to the proof of Conjecture 3.3 for 2 ≤ n ≤ 4 and an arbitrary nonempty set
S ⊆ {1, 2, . . . , n−1}.

We first make some useful general remarks.
Let I(a) = {i ∈ {1, 2, . . . , n−1} : ai = ai+1}. If I(a) is empty, then the conjecture holds.

Indeed, if k ∈ S, then all the roots of the polynomial

(x+ a1)(x+ a2) . . . (x + ak) + txk

are, for all sufficiently small t > 0, real and distinct.

On the other hand, if I(a) = {1, 2, . . . , n−1}, then only the set S = {1, 2, . . . , n−1} satisfies
the assumptions of the conjecture. Indeed, suppose that l 6∈ S and let −b1 ≥ −b2 ≥ . . . ≥ −bn
be the roots of

q(x) = (x + a1)
n +

∑

k∈S

Akx
k .

Then by the inequality of arithmetic and geometric means, we obtain

El(a)
(

n
l

) =
El(b)
(

n
l

) ≥ (E0(b))
(n−l)/n = (E0(a))

(n−l)/n =
El(a)
(

n
l

) , (3.7)

and hence b1 = b2 = . . . = bn. Since E0(a) = E0(b), it follows that a = b, i.e. Ak = 0 for all
k ∈ S. A contradiction.

Let I be a non-empty subset of {1, 2, . . . , n−1}. We observe that the conjecture is true for
a set S and all a ∈ ∆n with I(a) = I, if it is true for a set T = {n−k : k ∈ S} and all b ∈ ∆n

with I(b) = {n−i : i ∈ I}. Indeed: if all the roots of the polynomial

q(x) = (x+ a1)(x+ a2) . . . (x + an) +
∑

k∈S

Akx
k

are real, then substituting x = 1/z and ai = 1/bi, we infer that all the roots of the polynomial

r(z) = (z + b1)(z + b2) . . . (z + bn) +
∑

l∈T

Blz
l

are real. Hence there exist continuous on [0, ε], differentiable on (0, ε) and nondecreasing map-
pings Cl(t) with Cl(0) = 0 such that the polynomial

(z + b1)(z + b2) . . . (z + bn) +
∑

l∈T

Cl(t)z
l

has n distinct real roots. Substituting z = 1/x and bi = 1/ai, we infer that the polynomial

(x+ a1)(x + a2) . . . (x+ an) +
∑

k∈S

Cn−k(t)x
k

has n distinct real roots.

For n = 2 the only possibility for the set S is {1} and it is enough to notice that the
polynomial (x+ a1)(x + a2) + tx has two distinct real roots for any t > 0.
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Assume now n = 3. Then, in view of the above remarks, we have to consider two cases: 1)
a1 < a2 = a3; 2) a1 = a2 = a3.

1) If 2 /∈ S, then the condition of Conjecture 3.3 can not be satisfied since, according Lemma
3.5, the polynomial

P (x) = (x+ a1)(x + a2)
2 +A1x

has only one real root for all A1 > 0. We can therefore assume 2 ∈ S, and for all sufficiently
small t > 0, the polynomial

(x+ a1)(x+ a2)
2 + tx2

has three distinct real roots.

2) According to the above remarks, S = {1, 2}. Then the polynomial (x+ a1)
3 + ta1x+ tx2

has 3 distinct real roots for all sufficiently small t > 0.

Assume n = 4. In this case we have 5 possibilities: 1) a1 = a2 < a3 < a4; 2) a1 < a2 =
a3 < a4; 3) a1 < a2 = a3 = a4; 4) a1 = a2 < a3 = a4; 5) a1 = a2 = a3 = a4.

1) We note that S 6= {2}, since, by Lemma 3.6, the polynomial

(x+ a1)
2(x+ a3)(x + a4) +A2x

2 for A2 > 0

has at most two real roots. Therefore S contains an odd integer k. Then for all sufficiently
small t > 0, the polynomial (x+ a1)

2(x+ a3)(x + a4) + txk has four distinct real roots.

2) Note that 2 ∈ S, since otherwise, by Lemma 2, the polynomial

(x+ a1)(x + a2)
2(x+ a4) +A1x+A3x

3 for A1, A3 > 0

has at most two real roots. Then for all sufficiently small t > 0, the polynomial

(x+ a1)(x + a2)
2(x + a4) + tx2

has four distinct real roots.

3) We observe that {1, 2} ⊂ S or {2, 3} ⊂ S, since otherwise, by Lemma 2, each of the
polynomials

(x+ a1)(x + a2)
3 +A1x+A3x

3 and (x+ a1)(x+ a2)
3 +A2x

2 for A1, A2, A3 > 0

has at most two real roots. Moreover, we prove that S 6= {1, 2}.
Suppose that the polynomial (x + a1)(x + a2)

3 + A1x + A2x
2 has four real roots. Let

Q1(x) = (x+a1)(x+a2)
3 and Q2(x) = A1x+A2x

2. Let −c 6= a2 be the root of the polynomial
Q′

1(x) and let −d be the root of Q′
2(x).

If d < c, then Q is decreasing on (−∞,−c], so Q has at most one root in this interval.
Therefore Q has at least 3 roots in the interval (−c, 0). Thus Q′′(x) has a root in the interval
(−c, 0), which is impossible, since Q′′(x) > 0 on (−c, 0).

If a2 ≥ d ≥ c, then Q is increasing on the intervals [−c, 0) and (−∞,−d], so Q must have
at least two roots in the interval (−d,−c). But Q(x) < 0 on this interval.

Finally, if d > a2, then Q may only have roots in the union (−∞, a2) ∪ (−a1, 0). But
Q is increasing on (−a1, 0), so Q has 3 roots in (−∞, a2). This however is impossible, since
Q′′(x) > 0 for x ∈ (−∞, a2). Thus {2, 3} ⊆ S and the polynomial

(x+ a1)(x + a2)
3 + tx2(x + a2)

has for all sufficiently small t > 0 four distinct roots.

4) Since the polynomial (x + a1)
2(x+ a3)

2 +A2x
2 has no real roots, 1 ∈ S or 3 ∈ S. Then

the polynomial (x + a1)
2(x + a3)

2 + txk for k = 1, 3 has for all sufficiently small t > 0 four
distinct real roots.

5) In view of the above remarks, S = {1, 2, 3}. Consider

r(x) = (x+ a1)
4 + tx3 + 2ta1x

2 + t(a21 − t2)x = (x+ a1)
4 + tx((x + a1)

2 − t2) .

Then for all sufficiently small t > 0, a21 − t2 > 0, and the polynomial r has four distinct real
roots, because

r(−a1 − 2t) = t3(10t− 3a1) < 0 , r(−a1) = a1t
3 > 0 and r(−a1 + 2t) = t3(22t− 3a1) < 0 .

Thus we have proved:
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Corollary 3.7
Conjecture 3.3 is true if 2 ≤ n ≤ 4 and S is an arbitrary subset of {1, 2, . . . , n−1}.

This implies that the sum of squared logarithms inequality (Conjecture 1.2) holds also for n = 4.

Corollary 3.8 (Sum of squared logarithms inequality for n = 4)
Let a1, a2, a3, a4, b1, b2, b3, b4 > 0 be given positive numbers such that

a1 + a2 + a3 + a4 ≤ b1 + b2 + b3 + b4 ,

a1 a2 + a1 a3 + a2 a3 + a1 a4 + a2 a4 + a3 a4 ≤ b1 b2 + b1 b3 + b2 b3 + b1 b4 + b2 b4 + b3 b4 ,

a1 a2 a3 + a1 a2 a4 + a2 a3 a4 + a1 a3 a4 ≤ b1 b2 b3 + b1 b2 b4 + b2 b3 b4 + b1 b3 b4 ,

a1 a2 a3 a4 = b1 b2 b3 b4 .

Then

log2 a1 + log2 a2 + log2 a3 + log2 a4 ≤ log2 b1 + log2 b2 + log2 b3 + log2 b4 .

Proof. Use Corollary 3.7 and observe that S may be an arbitrary subset of {1, 2, 3}. �

Corollary 3.9
Let n ≥ 2 be an integer and let T be an arbitrary subset of {1, 2, . . . , n−1}. Assume that the
conjecture holds for n and for any nonempty subset S of T . Let moreover f ∈ Cn(0,∞). Then
the inequality

f(a1) + f(a2) + . . .+ f(an) ≤ f(b1) + f(b2) + . . .+ f(bn)

holds for all a, b ∈ ∆n satisfying

Ek(a) ≤ Ek(b) for k ∈ T and Ek(a) = Ek(b) for k = 0 or k 6∈ T (3.8)

if and only if

(−1)n+k(xkf ′(x))(n−1) ≤ 0 for all x > 0 and all k ∈ T . (3.9)

Proof. Assume first (3.9) holds and let a, b ∈ ∆n satisfy (3.8). Consider any c ∈ ∆n with
a ≤ c < b. Then the pair c, b satisfies condition (2.4) for some nonempty subset S of T .
Therefore by Proposition 3.4, the set C(c, b) is nonempty and hence by Proposition 3.2, a � b.
Now Theorem 2.3 implies that inequality (2.6) holds.

Conversely, if (2.6) holds for all a, b ∈ ∆n satisfying (3.8), then (2.6) also holds for all
a, b ∈ ∆n satisfying condition (2.4) with S = T . Thus Theorem 2.4 implies (3.9). This com-
pletes the proof. �

4 Outlook

Our result generalizes and extents the previously known results on the sum of squared logarithms
inequality. Indeed, compared to the proof in [1] our development here views the problem from
a different angle in that it is not the logarithm function that defines the problem, but a certain
monotonicity property in the geometry of polynomials, explicitly stated in Conjecture 3.3.

If one tries to adopt the above proof of Conjecture 3.3 for n ≤ 4 to the case n ≥ 5, one has to
deal with approximately 2n cases considered separately. Therefore it is clear, that the extension
to natural numbers n beyond n = 6, say, is out of reach with such a method. Instead, a general
argument should be found to prove or disprove Conjecture 3.3 for general n. Furthermore, it
might be worthwhile to develop a better understanding of the differential inequality condition
(−1)n+k(xkf ′(x))(n−1) ≤ 0.
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