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Introduction

Simple shear deformation [Thiel, Voss, Martin, and Neff 2018b]

A simple shear deformation is a mapping ϕ : Ω ⊂ R3 → R3 of the form

∇ϕ = Fγ =

1 γ 0
0 1 0
0 0 1

 = 1 + γe2 ⊗ e1

with the amount of shear γ ∈ R.
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Introduction

Pure shear stress

A pure shear stress is a stress tensor T ∈ Sym(3) of the form

T s =

0 s 0
s 0 0
0 0 0

 = s (e1 ⊗ e2 + e2 ⊗ e1)

with the amount of shear stress s ∈ R.

upper shear force

lower shear force
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Introduction

In isotropic nonlinear elasticity the Cauchy stress tensor is

σ = β01 + β1B + β−1B
−1

with βi = βi
(
I1(B), I2(B), I3(B)

)
and B = FFT .

Set σ = T s =

0 s 0
s 0 0
0 0 0

 , Fγ =

1 γ 0
0 1 0
0 0 1


0 s 0
s 0 0
0 0 0

 = σ = (β0 +β1 +β−1)1+

 β1γ
2 (β1 − β−1)γ 0

(β1 − β−1)γ β−1γ
2 0

0 0 0


=⇒ γ2 (β1 − β−1) = 0 then γ = 0 or s = 0 .

Pure shear Cauchy stress never corresponds to a simple shear deformation!
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Introduction

Questions:

• Independent of the elasticity law, which kind of deformations do
correspond to pure shear Cauchy stress?
[Destrade, Murphy, and Saccomandi 2012; Moon and Truesdell 1974; Mihai and Goriely 2011]

• Which of these deformations are suitable to be called ‘shear’?

• Which constitutive requirements ensure that only ‘shear’ deformations
correspond to pure shear Cauchy stress?
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Which kind of deformations correspond to pure shear stress?

B = FFT and σ̂(B) commute for any isotropic stress response.
⇐⇒ B and σ̂(B) are simultaneously diagonalizable.

σ̂(B) = T s can be diagonalized to Q diag(s,−s, 0)QT with

Q :=
1√
2

1 −1 0
1 1 0

0 0
√

2

 ∈ SO(3) .

Thus B = Q diag(λ2
1, λ

2
2, λ

2
3)QT with [Thiel, Voss, Martin, and Neff 2018a]

B =
1

2

λ2
1 + λ2

2 λ2
1 − λ2

2 0
λ2

1 − λ2
2 λ2

1 + λ2
2 0

0 0 2λ2
3

 6= FγF
T
γ =

1 + γ2 γ 0
γ 1 0
0 0 1

 .
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Which kind of deformations correspond to pure shear stress?

σ̂(B) = T s =

0 s 0
s 0 0
0 0 0

 ⇐⇒ B =
1

2

λ2
1 + λ2

2 λ2
1 − λ2

2 0
λ2

1 − λ2
2 λ2

1 + λ2
2 0

0 0 2λ2
3

 .

Then F is uniquely determined by triaxial stretch and simple shear

F = Fγ diag(a, b, c)Q =

1 γ 0
0 1 0
0 0 1

a 0 0
0 b 0
0 0 c

Q

up to an arbitrary Q ∈ SO(3) with

a = λ1λ2

√
2

λ2
1 + λ2

2

, b =

√
λ2

1 + λ2
2

2
, c = λ3 , γ =

λ2
1 − λ2

2

λ2
1 + λ2

2

.
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Which of these deformations are suitable to be called shear?

Linear Elasticity

The linear elastic Cauchy stress σlin = 2µ dev ε+ κ tr ε with ε = sym(F − 1)
and dev ε = ε− 1

3
tr ε1 is a pure shear if and only if

F = 1 +

0 γ
2

0
γ
2

0 0
0 0 0


︸ ︷︷ ︸

ε∈Sym(3)

+A , A ∈ so(3) .

Fγ =

1 γ 0
0 1 0
0 0 1

 = 1 +

0 γ
2

0
γ
2

0 0
0 0 0


︸ ︷︷ ︸

εγ∈Sym(3)
infinitesimal pure

shear strain

+

 0 γ
2

0
− γ

2
0 0

0 0 0


︸ ︷︷ ︸

ωγ∈so(3)
infinitesimal rotation

.
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Which of these deformations are suitable to be called shear?

γ
1 + εγ

Fγ = 1 + εγ + ωγ

ground parallel
(deck of cards)

• The deformation Fγ is infinitesimally volume preserving, tr εγ = 0.

• The deformation Fγ is planar, eigenvalue 1 to eigenvector e3.

• The deformation Fγ is ground parallel, eigenvectors e1 and e3.
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Which of these deformations are suitable to be called shear?

Generalizing from linear elasticity to nonlinear elasticity

• Pure shear Cauchy stress acts only in a plane

• Leonardo da Vinci: “Nessuno effetto è in natura sanza ragione” (No effect
is in nature without cause) Codex Atlanticus

−→ Nonlinear shear deformation should be planar

γ
σ =

0 s 0
s 0 0
0 0 0


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Which of these deformations are suitable to be called shear?

Definition: Finite shear deformation [Thiel, Voss, Martin, and Neff 2018b]

• The deformation F is volume preserving, detF = 1.

• The deformation F is planar, eigenvalue 1 to eigenvector e3.

• The deformation F is ground parallel, eigenvectors e1 and e3.

=⇒ there exists λ ∈ R+ with λ1 = λ, λ2 = 1
λ

and λ3 = 1.

σ̂(B) = T s =

0 s 0
s 0 0
0 0 0

 =⇒ V =
√
B =

1

2

λ1 + λ2 λ1 − λ2 0
λ1 − λ2 λ1 + λ2 0

0 0 2λ3

 .
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Which of these deformations are suitable to be called shear?

Finite pure shear stretch

V =
1

2

λ+ 1
λ

λ− 1
λ

0
λ− 1

λ
λ+ 1

λ
0

0 0 2

 =
1

2

eα + e−α eα − e−α 0
eα − e−α eα + e−α 0

0 0 2


=

cosh(α) sinh(α) 0
sinh(α) cosh(α) 0

0 0 1

 = exp
...

matrix exponential

0 α 0
α 0 0
0 0 0


︸ ︷︷ ︸

infinitesimal pure shear strain

=: Vα , α := log λ .

infinitesimal pure shear strain εγ
tr εγ = 0

finite pure shear stretch Vα
detVα = 1

exp

γ = 2α
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Which of these deformations are suitable to be called shear?

σ̂(B) = T s =

0 s 0
s 0 0
0 0 0

 =⇒ F =

1 γ 0
0 1 0
0 0 1

a 0 0
0 b 0
0 0 c

Q.

with λ1 = λ, λ2 = 1
λ

, λ3 = 1 and α = log λ:

Finite simple shear deformation

F =

1 tanh(2α) 0
0 1 0
0 0 1




1√
cosh(2α)

0 0

0
√

cosh(2α) 0
0 0 1

Q

=
1√

cosh(2α)

1 sinh(2α) 0
0 cosh(2α) 0

0 0
√

cosh(2α)

Q =: Fα .
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Which of these deformations are suitable to be called shear?

Finite simple shear deformation

A finite simple shear deformation is a mapping ϕ : Ω ⊂ R3 → R3 of the form

∇ϕ = Fα =
1√

cosh(2α)

1 sinh(2α) 0
0 cosh(2α) 0

0 0
√

cosh(2α)


with the linearization Fα

α�1−→ Fγ and γ = 2α.

increases the height:

1

1

1

1

1√
cosh(2α)


√

cosh(2α)

︸ ︷︷ ︸
sinh(2α)√
cosh(2α)

Fα = VαR

ϑ?
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Which of these deformations are suitable to be called shear?

F = Fγ diag(a, b, c)

γ

R Vα

diag(a, b, c)
Fγ

F = VαR
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Constitutive requirements in hyperelasticity

Which constitutive requirements ensure that only finite shear deformations
correspond to pure shear Cauchy stress?

Vα =

cosh(α) sinh(α) 0
sinh(α) cosh(α) 0

0 0 1

 = Q ·

λ 0 0
0 1

λ
0

0 0 1


︸ ︷︷ ︸

pure shear deformation

· QT with λ = eα,

σ̂(B) =

0 s 0
s 0 0
0 0 0

 = Q

s 0 0
0 −s 0
0 0 0

 QT , Q =
1√
2

1 −1 0
1 1 0
0 0 1

 .

λ1 = λ , λ2 =
1

λ
, λ3 = 1︸ ︷︷ ︸

singular values of F

=⇒ σ1 = s , σ2 = −s , σ3 = 0︸ ︷︷ ︸
principal Cauchy stresses

.
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Constitutive requirements in hyperelasticity

I1 = tr B = λ2
1 + λ2

2 + λ2
3 , I2 = tr(Cof B) = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 , I3 = detB = λ2

1λ
2
2λ

2
3

σ = β01 + β1B + β−1B
−1 with βi = βi

(
I1(B), I2(B), I3(B)

)
=⇒

β1 + β−1 = 0 and β0 = 0 ∀ λ ∈ R+ with λ1 = λ , λ2 =
1

λ
, λ3 = 1 .

β0 =
2
√
I3

(
I2
∂W

∂I2
+ I3

∂W

∂I3

)
, β1 =

2
√
I3

∂W

∂I1
, β−1 = −2

√
I3
∂W

∂I2
,

=⇒
∂W

∂I1
=
∂W

∂I2
and I2

∂W

∂I2
+
∂W

∂I3
= 0 ∀ I1 = I2 ≥ 3 , I3 = 1 .

σi =
λi

λ1 λ2 λ3

∂W

∂λi
(λ1, λ2, λ2) =⇒

λ
∂W

∂λ1
+

1

λ

∂W

∂λ2
= 0 and

∂W

∂λ3
= 0 ∀ λ1 = λ , λ2 =

1

λ
, λ3 = 1 .
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Constitutive requirements in hyperelasticity

Tension-compression symmetry [Voss, Baaser, Martin, and Neff 2018]

Elastic energy W : GL+(3)→ R of the form

W (F ) = Wtc(F ) + f (detF ) ,

where Wtc is tension-compression symmetric, i.e. Wtc(F−1) = Wtc(F ) and
f ′(1) = 0.

Hencky-type [Neff, Ghiba, and Lankeit 2015; Neff, Lankeit, Ghiba, Martin, and Steigmann 2015]

Elastic energy W : GL+(3)→ R of the form

W (F ) = ψ
(
‖dev logV ‖2, |tr logV |2

)
for arbitrary functions ψ : R2

+ → R.
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