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Overview

We consider the mathematical analysis of geo-

metrically exact generalized continua of

micromorphic type. The two-field minimization

problem (for the macrodeformation field and the

affine microdeformation field) is investigated in

a variational form, namely, in the quasistatic,

conservative load case. Two existence theorems

in Sobolev spaces are given for the resulting

nonlinear boundary value problems. These

results comprise existence results for the micro-

incompressible case and the Cosserat micropolar

case. The mathematical analysis employs the

direct methods of the calculus of variations and

an extended Korn’s inequality.

Introduction

This contribution addresses the mathematical

analysis of geometrically exact generalized con-

tinua of micromorphic type. General continuum

models involving independent rotations have

been introduced by the Cosserat brothers [5] at

the beginning of the last century. Since then, the

Cosserat concept has been generalized in various

directions; for an overview of these so-called

microcontinuum theories, we refer to [3, 4, 7, 8,

19, 20]. The micromorphic model includes in

a natural way size effects, i.e., small samples

behave comparatively stiffer than large samples.

These effects have recently received much atten-

tion in conjunction with nano-devices. From

a computational point of view, theories with

size effect are increasingly used to regularize

non-well-posed situations, e.g., shear banding in

elastoplasticity without hardening. It has already

been shown that infinitesimal elastoplasticity

augmented with purely elastic Cosserat effects

indeed leads to a well-posed problem, for both

the quasistatic and dynamic case [26, 27].

The mathematical analysis of general

micromorphic solids restricted to the infinitesimal,

linear elastic models is presented already, e.g., in

[6, 9, 10] for linear micropolar models and in

[11–13] for linear microstretch or micromorphic

models. New developments regarding the weakest

possible curvature contribution and invariance

questions related to the infinitesimal model can

be found in [14, 15, 30–33]. A connection of

micromorphic models to gradient plasticity has

been given in [35, 36].

The major difficulty of the mathematical treat-

ment in the finite-strain case is related to the

geometrically exact (fully frame indifferent) for-

mulation of the theory and the appearance of

nonlinear manifolds necessary for the description

of the microstructure. In addition, coercivity

turns out to be a delicate problem related to the

possible fracture of the material. For related work

on existence theorems in the case where coerciv-

ity is postulated from the beginning as

a constitutive assumption, we refer the reader to

[18, 39, 40].

This entry is organized as follows: first, we

shortly review the basic concepts of the geomet-

rically exact elastic micromorphic theories in

a variational context, i.e., we formulate the

quasistatic conservative load case as a two-field

minimization problem. Then, the existence proof

is presented. Since the two-field variational prob-

lem is only conditionally coercive, we need to

introduce a modification for the applied loads in

order to ensure first that the functional to be

minimized is bounded below and second that

the curvature contribution can be controlled.

This modification of the loads, herein called prin-

ciple of bounded external work, expresses noth-

ing but the physical fact that by arbitrarily
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moving the solid in a force field, only a finite

amount of work can be gained. Such a condition

is, however, unnecessary in classical finite

elasticity. With this preparation, existence of

minimizers in Sobolev spaces is then established

using the direct methods of the calculus of vari-

ations and an extended inequality of Korn type.

The application of this micromorphic model

and some constitutive issues are discussed in

[22, 24, 29]. The corresponding finite element

implementation is treated, e.g., in [16, 17].

The Finite-Strain Elastic Micromorphic
Model

Useful Notations

LetO � R3 be a bounded domain with Lipschitz

boundary @O and let G be a smooth subset of @O
with nonvanishing two-dimensional Hausdorff

measure. For a; b 2 R3, we let a; bh iR3 denote

the scalar product on ℝ3 with associated vector

norm ak k2R3¼ a; ah iR3 :We denote byM3�3 the

set of real 3�3 second-order tensors, written

with capital letters, and by T(3) the set of all

third-order tensors. The standard Euclidean

scalar product on M3�3 is given by

X; Yh iM3�3 ¼ tr XYT½ �, and thus, the Frobenius

tensor norm is Xk k2 ¼ X;Xh iM3�3 . In the follow-

ing we omit the index ℝ3, M3�3. The identity

tensor on M3 � 3will be denoted by 1, so that

tr X½ � ¼ X; 1h i. We let Sym and PSym denote the

symmetric and positive-definite symmetric

tensors, respectively. We adopt the usual

abbreviations of Lie-group theory, i.e.,

GLð3;RÞ :¼ fX 2 M3�3 j det½X� 6¼ 0g the

general linear group, SLð3;RÞ :¼ fX 2 GL

ð3;RÞ j det½X� ¼ 1g, Oð3Þ :¼ fX 2 GLð3;RÞ j
XTX ¼ 1g, and SOð3;RÞ :¼ fX 2 GLð3;RÞ
jXTX ¼ 1; det½X� ¼ 1g with corresponding

Lie algebras soð3Þ :¼ fX 2 M3�3 jXT ¼ �Xg
of skew symmetric tensors and

slð3Þ :¼ fX 2 M3�3 jtr X½ � ¼ 0g of traceless

tensors. We set symðXÞ ¼ 1
2
ðXT þ XÞ and

skew ðXÞ ¼ 1
2
ðX � XTÞ such that

X ¼ symðXÞ þ skewðXÞ. We write the classical

polar decomposition in the form

F ¼ RU ¼ polarðFÞU with R ¼ polarðFÞ the

orthogonal part of F and U the positive-definite

Biot stretch tensor. For a second-order tensor X,
we define the third-order tensor h ¼ DxXðxÞ ¼
ðHðXðxÞ:e1Þ;HðXðxÞ:e2Þ;HðXðxÞ:e3ÞÞ¼ðh1; h2; h3Þ
2 M3�3 �M3�3 �M3�3. For third-order

tensors h 2 Tð3Þ, we set hk k2 ¼P3
i¼1 hi
�� ��2

together with symðhÞ :¼ ðsymh1; symh2; symh3Þ
and tr h½ � :¼ ðtr h1

� �
; tr h2
� �

; tr h3
� �Þ 2 R3. More-

over, for any second-order tensor X, we define

X 	 h :¼ ðXh1;Xh2;Xh3Þ and h 	 X correspond-

ingly. In general we work in the context of

nonlinear, finite elasticity. For the total deforma-

tion ’ 2 C1ðO;R3Þ, we have the deformation

gradient F ¼ H’ 2 CðO;M3�3Þ and we use H
in general only for column vectors in ℝ3. We

employ the standard notation of Sobolev spaces,

i.e., L2ðOÞ;H1;2ðOÞ;H1;2
� ðOÞ, which we use indif-

ferently for scalar-valued functions as well as for

vector-valued and tensor-valued functions.

Moreover, we set Xk k1 ¼ supx2O XðxÞk k. We

use capital letters to denote possibly large

positive constants, e.g., C+, K, and lowercase

letters to denote possibly small positive con-

stants, e.g., c+, d+.

Basic Equations

We now present the finite-strain micromorphic

approach in a strictly Lagrangian description. We

first introduce an independent kinematical field of

microdeformations P 2 GLþð3;RÞ together

with its right polar decomposition

P ¼ Rp 	Up ¼ polarðPÞ 	 Up ¼ Rp e
ap
3 Up; det½P� ¼ eap ;

Up ¼ Up

det½Up�1=3
2 SLð3;RÞ;

P ¼ P

det½P�1=3
2 SLð3;RÞ

ð1Þ
with Rp 2 SOð3;RÞ and Up 2 PSymð3;RÞ\
SLð3;RÞ. The microdeformations P are meant

to describe the substructure of the material which

can rotate, stretch, shear, and shrink. We refer to

Rp as microrotations. Following Eringen [7,

p. 13], we distinguish the general micromorphic

case, P 2 GLþð3;RÞ ¼ Rþ	SLð3;RÞ with
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9 additional degrees of freedom (DOF); the

micro-incompressible micromorphic case, P 2
SLð3;RÞ with 8 DOF; the microstretch case,

P 2 Rþ 	 SOð3;RÞ with 4 DOF; and the

micropolar case, P 2 SOð3;RÞwith only 3 addi-
tional DOF. The theory with voids is included if

P 2 Rþ 	 1 with one DOF.

The micromorphic theory we deal with can

formally be obtained by introducing the

multiplicative decomposition of the macroscopic

deformation gradient F into independent

microdeformation P and the micromorphic,

nonsymmetric right stretch tensor U (first

Cosserat deformation tensor, the relative distor-

tion) with

F ¼ P 	 U; U ¼ P�1F; U 2 GLþð3;RÞ
ð2Þ

leading altogether to a micro-compressible,

micromorphic formulation.

In the quasistatic case, the micromorphic the-

ory is derived from a two-field variational princi-

ple by postulating the following “Euclidean

action” [5, p. 156] I for the finite macroscopic

deformation ’ : ½0; T� � O 7!R3 and the

independent microdeformation P : ½0; T��
O 7!GLþð3;RÞ:

Ið’;PÞ ¼
ð
O
WðF;P;DxPÞ �Pf ð’Þ �PMðPÞ dV

�
ð
GS

PNð’Þ dS

�
ð
GC

PMc
ðPÞ dS 7!min : w:r:t: ð’;PÞ;

PjG ¼ Pd; ’jG ¼ gdðtÞ
ð3Þ

The elastically stored energy density W

depends on the macroscopic deformation gradi-

ent F ¼ H’ as usual but in addition on the

microdeformation P together with their first-

order space derivatives, represented through the

third-order tensor DxP. HereO � R3 is a domain

with boundary @O and G � @O is that part of

the boundary, where Dirichlet conditions gd,Pd

for displacements and microdeformations,

respectively, can be prescribed, while GS � @O
is a part of the boundary, where traction boundary

conditions in the form of the potential of applied

surface forces PN are given with G \ GS ¼ ;.
The potential of external applied volume force

is Pf and PM takes on the role of the potential of

applied external volume couples. In addition,

GC � @O is the part of the boundary, where the

potential of applied surface couples PMc
is

applied with G \ GC ¼ ;. On the free boundary

@O n fG [ GS [ GCg, corresponding natural

boundary conditions for ’ and P apply, which

are obtained automatically in the variational

process.

Variation of the action I with respect to ’

yields the traditional equation for balance of lin-

ear momentum, and variation of I with respect to

P yields the additional balance of moment of

momentum [see 29]. The standard conclusion

from frame-indifference (invariance of the free

energy under superposed rigid body motions) is

as follows: for all

8Q 2 SO ð3,RÞ ) WðF; P; DxPÞ
¼ WðQF; QP; Dx½QP�Þ
¼ WðQF; QP; QDxPÞ

and this leads to the reduced representation of the

energy (specify Q ¼ R
T
p ):

WðF;P;DxPÞ ¼ WðRT
p F;R

T
p P;R

T
p DxPÞ

¼ WðUpU;Up;R
T
p DxPÞ

¼ W]ðU;Up;Kp;H apÞ
ð4Þ

where for P ¼ Rp Up 2 SLð3;RÞ we set

Kp :¼ R
T
p DxP

¼ R
T
p HðP:e1Þ;RT

p HðP:e2Þ;RT
p HðP:e3Þ

� �
2 M3�3 �M3�3 �M3�3

ð5Þ

For a geometrically exact (macroscopically

isotropic) theory, we assume in the following an

additive split of the total free-energy density
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into micromorphic relative local stretch

(macroscopic), stretch of the substructure itself

(microscopic), and micromorphic curvature part

according to

W] ¼ WmpðUÞ|fflfflfflffl{zfflfflfflffl}
relative macroscopic energy

þ WfoamðUp; apÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
microscopic local energy

þ WcurvðKp;H apÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
microscopic interaction energy

ð6Þ

since a possible coupling between U and Kp

for centrosymmetric bodies can be ruled out

[37, p. 14].

The Elastic Macroscopic Micromorphic
Strain Energy Density

For a macroscopic theory which is relevant

mainly for small elastic strain, we require that

WmpðUÞ is a nonnegative isotropic quadratic

form (leading to a physically linear problem).

This covers already many cases of physical inter-

est. For the local energy contribution elastically

stored in the substructure, we assume the

nonlinear expression

WfoamðUpÞ ¼ mmjj Up

det½Up�ð1=3Þ
� 1jj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

isochoric substructure energy

þ lm

4
ðdet½Up� � 1Þ2 þ ð 1

det½Up� � 1Þ2
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
volumetric energy

¼ mm Up �1
�� ��2

þ lm

4
ðeap � 1Þ2 þ ðe� ap � 1Þ2
� �

¼: WfoamðUp; apÞ
ð7Þ

avoiding self-interpenetration in a variational set-

ting, since Wfoam ! 1 as det½P� ¼ det½Up� ! 0

if lm > 0.

The most general isotropic quadratic form of

Wmp is

WmpðUÞ ¼ mejj symðU � 1Þjj2 þmcjj skewðU � 1Þjj2

þ le
2

tr symðU � 1Þ� �2
ð8Þ

with material constants me; mc; le such that

me; 3le þ 2me; mc � 0 from non-negativity of (8)

[see 7].

The coefficients me; le are effective elastic

constants which in general do not coincide with

the classical Lamé constants. The so-called

Cosserat couple modulus mc (rotational couple

modulus) remains for the moment unspecified,

but we note that mc ¼ 0 is physically possible,

even in the micropolar case, since the

micromorphic reaction stress DUWmpðUÞ 	 UT
is

not symmetric in general, i.e., the problem does

not decouple [28]. By formal similarity with the

classical formulation, we may call mm, lm the

microscopic Lamé moduli of the affine

substructure.

The Nonlinear Elastic Curvature
Energy Density

The curvature energy is responsible for the size-

dependent resistance of the substructure against

local twisting and inhomogeneous volume

change. Thus, inhomogeneous microstructural

rearrangements are penalized. For the curvature

term, to be specific, we assume

WcurvðKp;HapÞ¼ m
L1þp
c

12
1þa4Lqc jjKpjjq
� 


� a5 jjsymKpjj2þa6jj skewKpjj2þa7 tr Kp

� �2� �1þp
2

þm
L1þp
c

12
a8 jjHap jj1þpþa8Lcjj Hap jj2þp
� �

ð9Þ

where Lc>0 is setting an internal length scale

with units of length. It is to be noted that we

have decoupled the curvature coming from inho-

mogeneous volume changes and from pure twist-

ing. The values a4 � 0; p > 0 and q � 0 are

additional material constants. We mean

tr Kp

� �2 ¼ jj tr Kp

� �jj2 by abuse of notation.
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In the finite-strain regime, Wcurv should pref-

erably be coercive in the sense that we impose

pointwise

9 cþ > 0 9 r > 1 : 8Kp 2 Tð3Þ 8x 2 R3 :

WcurvðKp; xÞ � cþ jjðKp; xÞjjr
ð10Þ

or less demanding

9 r > 1 :
WcurvðKp; xÞ
jj ðKp; xÞr jj ! 1 as jjðKp; xÞjj ! 1

ð11Þ
which implies necessarily a6; a8 > 0 in (9).

Observe that our formulation of the

micromorphic curvature tensor is mathematically

convenient in the sense that jjKpjj ¼
jjRT

p DxPjj ¼ jjDxPjj provides pointwise control

of all first derivatives of P independent of the

values of P itself.

Note that the presented formulation includes

a finite-strain Cosserat micropolar model as

a special case, if we set P ¼ R 2 SOð3;RÞ. In
the Cosserat case, an alternative curvature tensor

based on R
T
CurlR suggests itself [34].

Altogether, we have the following correspon-

dence of limit problems:

lm ! 1 ) micro-incompressible

model :

manifold SLð3;RÞ
mm ! 1 ) microstretch model :

manifold Rþ 	 SOð3;RÞ
mm; lm ! 1 ) micropolar model :

manifold SOð3;RÞ
mm; lm; mc ! 1 ) higher ðsecondÞ gradient

continua of Mindlin-type

ð12Þ

Analysis of the Mathematical Problem

The Micromorphic Problem in Variational

Form

Let us gather the obtained three-field problem

posed in a variational form. The task is to

find a triple ð’;P; apÞ : O � R3 7!R3�
SLð3;RÞ �R of macroscopic deformation ’

and independent microdeformation P ¼ e
ap
3 P,

minimizing the energy functional I with

Ið’;P; apÞ ¼
ð
O
½WmpðP�1H’Þ þWfoamðUp; apÞ

þWcurvðRT
p DxP;H apÞ �Pf ð’Þ

�PMðPÞ�dV�
ð
GS

PNð’Þ dS

�
ð
GC

PMc
ðPÞ dS 7!min : w:r:t: ð’;P; apÞ

ð13Þ

under the constraints

Up ¼ R
T
p P; Rp ¼ polarðPÞ

U ¼ P�1H’; P ¼ e
ap
3 P

ð14Þ

and the Dirichlet boundary conditions

’jG ¼ gd; RpjG ¼ Rpd; UpjG ¼ Upd )
PjG ¼ Rpd Upd; apjG ¼ apd

ð15Þ

Here, the constitutive assumptions on the den-

sities are taken to be

WmpðUÞ ¼ mejj symðU� 1Þjj2

þ mc jj skewðUÞjj2þle
2
tr symðU� 1Þ� �2

WfoamðUp;apÞ ¼ mmjj Up�1jj2

þ lm

4
ðeap � 1Þ2þðe�ap � 1Þ2
� �

WcurvðKp;HapÞ ¼ m
L1þp
c

12
1þ a4Lqc jjKpjjq
� 


� a5jj symKpjj2þa6jj skewKpjj2þa7 tr Kp

� �2� �1þp
2

þm
L1þp
c

12
a8 jjHap jj1þpþa8Lcjj Hap jj2þp
� �

Kp ¼ R
T
p DxP¼ R

T
p HðP:e1Þ;RT

p HðP:e2Þ;RT
p HðP:e3Þ

� �
ð16Þ
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It is assumed that me; le > 0, mc � 0, and

mm; lm; Lc > 0. The parameters ai; i ¼ 1; ::; 8

are dimensionless weighting factors. If not

stated otherwise, we assume that

a5 > 0; a6 > 0; a8 > 0; a7 � 0.

Traditionally, in the conservative dead load

case, one would have

Pf ð’Þ ¼ f ; ’h i; PMðPÞ ¼ M;Ph i
PNð’Þ ¼ N; ’h i; PMc

ðPÞ ¼ Mc;Ph i ð17Þ

for the potentials of applied loads with given

functions f 2 L2ðO;R3Þ; M 2 L2ðO;M3�3Þ;
N 2 L2ðGS;R

3Þ; Mc 2 L2ðGC;M
3�3Þ.

For the treatment of our model, we need

to assume, however, that the external

potentials, describing the configuration depen-

dent applied loads, are continuous with respect

to the topology of L1ðOÞ; L1ðGSÞ; L1ðGCÞ,
respectively, and satisfy in addition the crucial

condition

9Cþ > 0 8’ 2 L1ðO;R3Þ;
P 2 L1ðO;GLþð3;RÞÞ :ð
O
Pf ð’Þ �PMðPÞ dV;ð

GS

PNð’Þ dS;ð
GC

PMc
ðPÞ dS � Cþ

ð18Þ

While continuity is satisfied, e.g., for the dead

load case Pf ð’Þ ¼ f ; ’h i and f 2 L1ðOÞ, the

second condition (18) restricts attention to

“bounded external work.” If we want to describe

a situation corresponding to the classical dead

load case, we could take

Pf ð’Þ ¼ 1

1þ ½ ’ðxÞk k � Kþ�þ
f ðxÞ; ’ðxÞh i

ð19Þ

for some large positive constant K+ and ½	�þ the

positive part of a scalar argument. It suffices now

that f 2 L1ðOÞ, then
Ð
O Pf ð’Þ dV � Cþ,

independent of ’ 2 L1ðOÞ.

The new condition (18) can be rephrased as

saying that only a finite amount of work can

be performed against the external loads, regard-

less of the magnitude of translation and

microdeformation. This is certainly true for any

real field of applied loads [23]. The mathematical

consequence is that when considering infimizing

sequences without this assumption, it could

happen that the curvature contribution is not

controlled while the total energy remains

bounded.

The Coercivity Inequality

We distinguish three different situations:

Case 1: mc > 0; a4 � 0; p � 1; q � 0. Elastic

macro-stability, local first-order

micromorphic. Fracture excluded

Case 2: mc ¼ 0; a4 > 0; p � 1; q > 1. Elastic

pre-stability, nonlocal second-order

micromorphic, macroscopic specimens, in

a sense close to classical elasticity, zero

Cosserat couple modulus. Fracture excluded

for bounded external work

Case 3: mc ¼ 0; a4 ¼ 0; 0 < p � 1; q ¼ 0.

Elastic pre-stability, nonlocal second-order

micromorphic theory, macroscopic speci-

mens, in a sense close to classical elasticity,

zero Cosserat couple modulus. Since possibly

’ 62W1;1ðO;R3Þ, due to lack of elastic coer-

civity, including fracture in multiaxial

situations.

We refer to 0 < p< 1; q � 0 as the subcritical

case, to p ¼ 1; q � 0 as the critical case, and to

p � 1; q > 1 as the supercritical case. We will

treat the first two cases mathematically.

The decisive analytical tool underlying the

treatment of case 2 (supercritical, mc ¼ 0) is the

following inequality establishing coercivity:

Theorem 1. (Extended Korn’s First Inequal-

ity). Let O � R3 be a bounded Lipschitz domain

and let G � @O be a smooth part of

the boundary with nonvanishing 2-
dimensional Hausdorff measure. Define

H1;2
� ðO;GÞ :¼ ff 2 H1;2ðOÞ jfjG ¼ 0g and let

Fp;F
�1
p 2 C0ðO;GLð3;RÞÞ. Then
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9 cþ > 0 8 f 2 H1;2
� ðO;GÞ :

HfF�1
p ðxÞ þ F�T

p ðxÞHfT
��� ���2

L2ðOÞ

� cþ fk k2H1;2ðOÞ

Proof. The proof of this version of Korn’s

inequality is presented in [38], which is improv-

ing on a similar result of the present author [21]

where the possible validity of the inequality has

been first observed.

Existence Results for the Geometrically Exact

Elastic Micromorphic Model

The following results have first been obtained

in [23].

Theorem 2. (Existence for Elastic

Micromorphic Model: Case 1). Let O � R3

be a bounded Lipschitz domain and assume for
the boundary data gd 2 H1ðO;R3Þ and

Pd 2 W1;1þpðO;GLþð3;RÞÞ. Moreover, let the

applied external potentials satisfy (18). Then
(13) with material constants conforming to case

1 and p > 1 admits at least one minimizing

solution triple ð’;P; apÞ 2 H1ðO;R3Þ�
W1;1þpðO; SLð3;RÞÞ �W1;2þpðO;RÞ.

Proof. The proof is based on the direct methods

of the calculus of variations. The influence of the

external potentials is gathered in writingPð’;PÞ.
With the prescription of ðgd;PdÞ as data of the

problem, it is clear that I<1 for exactly this pair

of functions after decomposing Pd in its rota-

tional, isochoric stretch and volumetric stretch.

Since (18) is assumed, it is also clear that I is

bounded below for all ’ 2 L2ðO;R3Þ and

P 2 L2ðO;GLþð3;RÞÞ.
We may therefore choose infimizing

“sequences of triples”

ð’k;P
k
; akpÞ 2 H1ðO;R3Þ �W1;1þpðO; SLð3;RÞÞ

�W1;2þpðO;RÞ
ð20Þ

such that

limk!1 Ið’k;P
k
; akpÞ ¼ inffIð’;P; apÞ j’ 2 L1ðO;R3Þ;

P 2 L1ðO; SLð3;RÞÞ; ap 2 L1ðO;RÞg
ð21Þ

The total curvature contribution Wcurv along

this sequence is bounded independent of the num-

ber k again on account of (18).

Observe now that the micromorphic curvature

term Kp controls P 2 W1;1þpðO; SLð3;RÞÞ, in

view of Kp

�� �� ¼ R
T
p DxP

��� ��� ¼ DxP
�� �� pointwise,

the assumption that a5; a6 > 0 and the application

of Poincaré’s inequality with the Dirichlet condi-

tions on P. Moreover, since a8 > 0 we obtain

boundedness of akp 2 W1;2þpðO;RÞ, again inde-

pendent of k 2 N. This result remains true

already without specification of Dirichlet bound-

ary conditions for ap since the term eap estimates

any Lq-norm of ap . For p > 1 Sobolev’s embed-

ding shows that we can choose a subsequence,

not relabeled, such that strongly

akp ! bap 2 C0ðO;RÞ; k ! 1 ð22Þ

Now we may extract a subsequence again

denoted by P
k
converging strongly in L1þpðOÞ

to an element bP 2 W1;1þpðO;M3�3Þ since p > 0

by assumption. Moreover, a further subsequence

can be found, such that the curvature tensor Kp,k

converges weakly to some cKp in L1þpðOÞ. For
1< ð1þ pÞ< 3, the embedding

W1;1þpðOÞ � L
3ð1þpÞ
3�ð1þpÞ�dðOÞ; d � 0 ð23Þ

for three space dimensions is compact for d > 0

and shows that the subsequence P
k

can be

chosen such that it converges indeed strongly in

the topology of L6�dðOÞ, since we have moreover

p � 1, which implies immediately thatbP 2 W1;1þpðO; SLð3;RÞÞ. If 1þ p � 3, we can

use better embeddings to have the same

conclusion.

Because mc > 0, we have the simple algebraic

estimate
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WmpðP�1;kFkÞ � mc P�1;kFk � 1
�� ��2

¼ mc P�1;kFk
�� ��2 �2 P�1;kFk; 1

� �þ 3
� �

� mc Uk

�� ��2 �2
ffiffiffi
3

p
Uk

�� ��þ 3
� �

ð24Þ

implying the boundedness of the micromorphic

stretch Uk ¼ P�1;kFk in L2ðOÞ. Moreover, by

Hölder’s inequality, we obtain

Fk
�� ��

s;O ¼ PkP�1;kFk
�� ��

s;O

� Pk
�� ��

r1;O
P�1;kFk
�� ��

r2;O

¼ jje
akp
3 P

k jjr1;O jjP�1;kFkjjr2;O

� sup
x2O

e
akp ðxÞ
3 jj Pk jjr1;O jjP�1;kFkjjr2;O;

1

s
¼ 1

r1
þ 1

r2

ð25Þ

Since P
k
is bounded in L6ðOÞ (see (23)) and

P�1;kFk is bounded in L2ðOÞ and akp is strongly

converging in C0ðO;RÞ (22), we may choose

r1 ¼ 6; r2 ¼ 2 to obtain boundedness of

Fk ¼ H’k in LsðOÞ; s ¼ 3
2
. Using the Dirichlet

boundary conditions for ’k and the generalized

Poincaré inequality, we get





’k






W1;sðO;R3Þ � Const ð26Þ

By the boundedness of ’k in W1;sðO;R3Þ we
may extract a subsequence, not relabeled, such

that ’k * ’̂ 2 W1;sðO;R3Þ. Furthermore, we

may always obtain a subsequence of ð’k;PkÞ
such that Uk ¼ P�1;kFk converges weakly in

L2ðOÞ to some element bU on account of the

boundedness of the stretch energy and mc > 0.

We have already shown that for p � 1, the

sequence P
k

converges indeed strongly in

LrðOÞ to an element bP 2 W1;1þpðO; SLð3;RÞÞ.
Therefore,

P
�1;k ¼ 1

det½Pk�
AdjP

k ! 1

det½bP�AdjbP
¼ bP�1

in L
r
2ðO; SLð3;RÞÞ;

r ¼ 3ð1þ pÞ
ð3� ð1þ pÞÞ � d; if 1< ð1þ pÞ< 3

ð27Þ

and we obtain for p > 1 that P
�1;k ! bP�1

strongly in L3þ~dðO; SLð3;RÞÞ; ~d > 0. Moreover,

P�1;k ¼ e�
akp
3 P

�1;k ! bP�1 ¼ e�
bap
3 bP�1;k

ð28Þ

on account of the strong convergence of akp :
Thus, P

�1;k
Fk converges certainly weakly tobP�1

F in L1ðOÞ on account of Hölder’s inequality
(sharp). The weak limit in L1ðOÞ must coincide

with the weak limit of Uk in L2ðOÞ. Hence, the
identity bU ¼ bP�1

H’̂ holds.

Since the mapping polar GLþð3;RÞ7!
SOð3;RÞ is a bounded continuous function on

invertible matrices with positive determinant, it

generates a nonlinear superposition operator

polarð	Þ : LrðO;GLþð3;RÞÞ7!LrðO; SOð3;RÞÞ
ð29Þ

which, moreover, is continuous [1, p. 101,

Th. 3.7]. Thus, Rk ¼ polarðPkÞ ! bR ¼ polarðbPÞ
strongly in LrðOÞ, and a similar argument as for

the sequence Uk shows that

Kp;k * cKp ¼ polarðbPÞTDx
bP ð30Þ

in L1þpðOÞ, weakly. Again on account of Pk ! bP
in LrðO; SLð3;RÞÞ, we infer now

U
k
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
k;T

P
k

q
!

ffiffiffiffiffiffiffiffiffibPTbPq
¼ bUp

in LrðO; SLð3;RÞÞ
ð31Þ

E 1482 Existence of Minimizers in Nonlinear Elastostatics of Micromorphic Solids



because the map M3�3 7!PSymð3Þ; X 7!
ffiffiffiffiffiffiffiffiffi
XTX

p
is continuous and has linear growth.

Since the total energy is convex in the

extended set of variables ðU;Up;Kp;H apÞ and

continuous w.r.t. ap; and the external potential

P is continuous w.r.t. strong convergence in

L1ðOÞ on account of (18), we get

Ið’̂; bP;bapÞ ¼ ð
O
WmpðbUÞ þWfoamðbUp;bapÞ

þWcurvðcKp;HbapÞ dV�Pð’̂; bPÞ
� lim inf

k!1

ð
O
WmpðUkÞ þWfoamðUk

pÞ

þWcurvðKp;k;H akpÞ dV�Pð’k;PkÞ
¼ lim

k!1
Ið’k;P

k
; akpÞ

¼ inff Ið’;P; apÞ j’ 2 L1ðO;R3Þ;
P 2 L1ðO; SLð3;RÞÞ; ap 2 L1ðO;RÞg

ð32Þ

which implies that the limit triple ð’̂; bP;bapÞ
is a minimizer. Note that the limit

microdeformations P ¼ e
ap
3 Rp Up may fail to

be continuous, if p � 2 (nonexistence or limit

case of Sobolev embedding). Moreover, unique-

ness cannot be ascertained, since SLð3;RÞ is

a nonlinear manifold (and the considered prob-

lem is indeed highly nonlinear), such that convex

combinations in SLð3;RÞ may leave SLð3;RÞ.
Since the functional I is differentiable, the mini-

mizing pair is a stationary point and therefore

a solution of the corresponding field equations.

Note again that the limit microdeformations

may fail to be continuously distributed in space.

That under these unfavorable circumstances

a minimizing solution may nevertheless be

found is entirely due to mc > 0 and p > 1. The

proof simplifies considerably in the geometri-

cally exact Cosserat micropolar case

P 2 SOð3;RÞ, in which case p � 1 is already

sufficient, c.f. [39].

We continue with the supercritical case which

is more appropriate for macroscopic situations

and closer to classical elasticity [23].

Theorem 3. (Existence for Elastic

Micromorphic Model: Case 2). Let O � R3

be a bounded Lipschitz domain and assume for

the boundary data gd 2 H1ðO;R3Þ and

Pd 2 W1;1þpþqðO; SLð3;RÞÞ. Moreover, let

the applied external potentials satisfy (18).

Then (13) with material constants conforming

to case 2 admits at least one minimizing

solution triple ð’;P; apÞ 2 H1ðO;R3Þ�
W1;1þpþqðO; SLð3;RÞÞ �W1;2þpðO;RÞ.

Proof. We repeat the arguments of case 1.

However, the boundedness of infimizing

sequences is not immediately clear. Boundedness

of the microdeformations P
k

holds true

in the space W1;1þpþqðO; SLð3;RÞÞ with

1þ pþ q > N ¼ 3; hence, we may extract

a subsequence, not relabeled, such that P
k
con-

verges strongly to bP 2 C0ðO; SLð3;RÞÞ in the

topology of C0ðO; SLð3;RÞÞ on account of the

Sobolev-embedding theorem. Since

P�1;k ¼ e�
akp
3 P

�1;k
; we obtain as well that

P�1;k ! bP�1 2 C0ðO;GLþð3;RÞÞ ð33Þ

on account of strong convergence of akp :
Along such strongly convergent sequence of

microdeformations, the sequence of deforma-

tions ’k is also bounded inH1ðO;R3Þ. However,
this is not due to a basically simple estimate as in

case 1, but only true after integration over the

domain: at face value, we only control certain

mixed symmetric expressions in the deformation

gradient. Let us define uk 2 H1;2ðO;R3Þ by

’k ¼ gd þ ð’k � gdÞ ¼ gd þ uk. We then prove

the inequality [23]

1> Iðgd;Pd;apdÞ>
ð
O
WmpðUkÞþWfoamðUk

p;a
k
pÞ

þWcurvðKp;k;HakpÞdV�Pð’k;P
kÞ

�
�
me
8
cK �C2

bP�1�P�1;k
��� ���

1

�
ukk k2H1;2ðOÞ �C

ð34Þ

where we applied the extended Korn’s inequality

Theorem 1 yielding the positive constant cK

for the continuous microdeformation bP�1
:
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Since bP�1 �P�1;k
��� ���

1
! 0 for k ! 1 due to

(33), we are able to conclude the boundedness

of uk in H1ðOÞ. Hence, ’k is bounded in H1ðOÞ.
Now we obtain that Uk *

bU ¼ bP�1
H’̂ by con-

struction with the notations as in case 1. The

remainder proceeds as in case 1. This finishes

the argument. The limit microdeformations bP
are indeed found to be continuous.

We mention that both existence results can be

easily adapted to cover the micromorphic micro-

incompressible case ap � 1.

Conclusions

The presented variational micromorphic prob-

lem fits neatly into the framework of the direct

methods of the calculus of variations. The coer-

civity part for the deformation is, however,

nontrivial, and for the (uncommon) value of

the Cosserat couple modulus mc ¼ 0, additional

difficulties arise which can only be

circumvented by the use of the generalized

Korn’s first inequality. In both cases 1 and 2,

more realistic assumptions on the applied exter-

nal loads P are necessary to establish a lower

bound for the energy I and a control of the

curvature independent of the magnitude of

deformation.

Altogether, the quasistatic finite

micromorphic theory is established on firm

mathematical grounds. With the same methods,

the geometrically exact microstretch case

(restricted manifold Rþ 	 SOð3;RÞ) can also

be treated.

An extension of the method to other choices of

strain and curvature measures is possible.

A related method has been employed for the

treatment of nonlinear Cosserat shell models in

[25]. Thermal stress problems for Cosserat shells

have been investigated in [2]. The open case

(case 3) allows for discontinuous macroscopic

deformations and might therefore be a model

problem allowing to describe fracture. The

presented variational framework is ideally suited

for subsequent numerical treatment by the finite

element method.
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Overview

Systems including components with relative slid-

ing, like clutches, brakes, hot forming tools,

induce heating due to conversion of mechanical

to thermal energy. The corresponding heating is

a major design parameter as it influences the

tribological and mechanical performances (wear

of the materials, friction performances, risks of

cracks, vibrations, etc.). Various types of thermal

localizations may appear, usually named as hot

spots, which could lead to very high local tem-

peratures. The difficulty of understanding and

modeling all of these phenomena still remains
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