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planar hyperelasticity
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Abstract

In this note, we provide an explicit formula for computing the quasiconvex envelope of any real-valued
function W : SL(2) → R with W (RF ) = W (FR) = W (F ) for all F ∈ SL(2) and all R ∈ SO(2), where
SL(2) and SO(2) denote the special linear group and the special orthogonal group, respectively. In order
to obtain our result, we combine earlier work by Dacorogna and Koshigoe on the relaxation of certain
conformal planar energy functions with a recent result on the equivalence between polyconvexity and
rank-one convexity for objective and isotropic energies in planar incompressible nonlinear elasticity.
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1 Introduction

A classical task in nonlinear hyperelasticity is to minimize an energy functional of the form

I : W 1,p(Ω;Rn) → R , I(ϕ) =

∫

Ω

W (∇ϕ(x)) dx (1.1)

under certain boundary conditions, where Ω ⊂ R
n represents the reference configuration of an elastic body.

The elastic behaviour of the body is completely determined by the choice of a particular energy density W
depending on the deformation gradient F = ∇ϕ. In the compressible case, since the exclusion of (local)
self-intersection implies detF > 0, the domain of the energy W is restricted to the group GL+(n) of n× n–
matrices with positive determinant. Modeling deformations of incompressible materials [14], on the other
hand, requires the stronger constraint detF = 1; in this case, the natural domain of the energy is given by
the special linear group SL(n).

In order to ensure the existence of minimizers for functionals of the form (1.1), it is necessary to pose
additional conditions on the energy density W . The most common requirements for this purpose are certain
generalized convexity properties : Since classical convexity of W leads to physically unreasonable material
behaviour [29], weakened notions of convexity are usually considered, the most important ones being rank-
one convexity, quasiconvexity and polyconvexity.

Compared to functions defined on the full matrix space R
n×n, the restricted domain of the energy W

poses additional challenges with respect to these convexity properties (a number of which were famously
addressed and solved by John Ball in his seminal 1977 paper [4, 5]), but also allow for obtaining some
significantly simplified criteria. In particular, under the additional assumptions of objectivity and isotropy, a
large number of necessary and sufficient criteria for rank-one convexity and polyconvexity of energy functions
on GL+(n) and SL(n) have been given in the literature [20, 21, 1, 11, 28, 3, 29, 13, 25, 23].

In the two-dimensional case of planar elasticity, the above generalized convexity properties can be simpli-
fied even further. In addition to the well-known observation that polyconvexity and convexity1 of a function
W : SL(2) → R are equivalent,2 it was recently demonstrated that in the planar incompressible case, these
properties are in turn equivalent to the (generally weaker) rank-one convexity and quasiconvexity for isotropic
and objective energy functions [15]. Based on these earlier results, this note provides an explicit relaxation re-
sult which allows for a direct computation of the quasiconvex envelope of any isotropic and objective function
W : SL(2) → R.

2 Generalized convexity properties of incompressible energy func-

tions

Apart from classical convexity, we will consider the following weakened convexity properties of planar energy
functions with values in R ∪ {+∞}.
Definition 2.1. Let W : R2×2 → R ∪ {+∞}. Then W is called

• rank-one convex if for all F ∈ R
2×2, t ∈ [0, 1] and H ∈ R

2×2 with rank(H) = 1,

W ((1− t)F + t(F +H)) ≤ (1− t)W (F ) + tW (F +H) ;

• quasiconvex if for every bounded open set Ω ⊂ R
2 and all smooth functions ϑ ∈ C∞

0 (Ω) with compact
support, ∫

Ω

W (F0 +∇ϑ) dx ≥
∫

Ω

W (F0) dx =W (F0) · |Ω| ;
1A function W : M → R on a non-convex domain M ⊂ R

n×n, e.g. on M = GL+(n) or M = SL(n), is called convex if there

exists a convex function W̃ : Rn×n → R ∪ {+∞} with W̃ (F ) = W (F ) for all F ∈ M , cf. Definition 2.2.
2Under the constraint detF = 1, any polyconvex representation W (F ) = P (F,detF ) can be reduced to a convex function in

terms of F , cf. [15, Lemma B.1].
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• polyconvex if

W (F ) = P (F, detF ) for some convex function P : R2×2 × R ∼= R
5 → R ∪ {+∞} .

For an incompressible planar energy, i.e. a finite-valued function W : SL(2) → R defined on the domain
SL(2) only, we will employ the following definitions.

Definition 2.2. Let W : SL(2) → R. Then W is called rank-one convex [quasiconvex/polyconvex] if the
function

Ŵ : R2×2 → R ∪ {+∞} , Ŵ (F ) =

{
W (F ) : F ∈ SL(2) ,

+∞ : F /∈ SL(2) .

is rank-one convex [quasiconvex/polyconvex] in the sense of Definition 2.1. Furthermore, W is called convex

if there exists a convex function W̃ : R2×2 → R ∪ {+∞} such that W̃ (F ) =W (F ) for all F ∈ SL(2).

Defining quasiconvexity for functions which may attain the value +∞ is often avoided completely since,
in this case, it no longer implies the weak lower semicontinuity of the associated energy functional [9, 4].
Furthermore, a quasiconvex function with values in R ∪ {+∞} is not necessarily rank-one convex in general
[9]. However, for the incompressible case considered here (i.e. W (F ) = +∞ if and only if F /∈ SL(2)),
quasiconvexity of W does indeed imply rank-one convexity, as shown by Conti [7].

Note also that for W : SL(2) → R, the existence of a polyconvex representation W (F ) = P (F, detF )
can be reduced to the case where P (F, d) = +∞ if and only if d 6= 1. Thereby, P is reduced to a (convex)
function in terms of F , which implies that W is polyconvex if and only if W (or rather an extension of W to
the domain R

2×2) is convex (cf. [15, Lemma B.1]).

2.1 Generalized convex envelopes

For each of the convexity properties considered in the previous section, we can define a corresponding envelope
of an arbitrary function on R

2×2.

Definition 2.3. Let W : R2×2 → R ∪ {+∞} be bounded below. Then the rank-one convex, quasiconvex,
polyconvex and convex envelopes RW,QW,PW,CW : R2×2 → R ∪ {+∞} of W are respectively defined by

RW (F ) = sup{w(F ) |w : R2×2 → R ∪ {+∞} rank-one convex, w(X) ≤W (X) for all X ∈ R
2×2} ,

QW (F ) = sup{w(F ) |w : R2×2 → R ∪ {+∞} quasiconvex, w(X) ≤W (X) for all X ∈ R
2×2} ,

PW (F ) = sup{w(F ) |w : R2×2 → R ∪ {+∞} polyconvex, w(X) ≤W (X) for all X ∈ R
2×2} ,

CW (F ) = sup{w(F ) |w : R2×2 → R ∪ {+∞} convex, w(X) ≤W (X) for all X ∈ R
2×2} .

Again, these definitions can be applied to functions defined on SL(2) via the natural extension of the domain
to R

2×2.

Definition 2.4. LetW : SL(2) → R. Then the rank-one convex, quasiconvex, polyconvex and convex envelope
of W are defined by

RW = (RŴ )
∣∣
SL(2)

, QW = (QŴ )
∣∣
SL(2)

, PW = (PŴ )
∣∣
SL(2)

, CW = (CŴ )
∣∣
SL(2)

in the sense of Definition 2.3, where

Ŵ : R2×2 → R ∪ {+∞} , Ŵ (F ) =

{
W (F ) : F ∈ SL(2) ,

+∞ : F /∈ SL(2) .
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Remark 2.5. The implications

W convex =⇒ W polyconvex =⇒ W quasiconvex =⇒ W rank-one convex,

which hold for any function W : SL(2) → R (cf. [9, 7]), immediately imply the inequalities

CW (F ) ≤ PW (F ) ≤ QW (F ) ≤ RW (F ) for all F ∈ SL(2) .

The quasiconvex envelope, in particular, plays an important role in relaxation approaches to non-quasiconvex
minimization problems: If, for an energy of the form (1.1), the existence of minimizers under boundary con-
ditions cannot be ensured, then the infimum of the attained energy values might in many cases be obtained
instead by minimizing the relaxed functional [9, Chapter 9]

I : W 1,p(Ω;Rn) → R , I(ϕ) =

∫

Ω

QW (∇ϕ(x)) dx .

Such relaxation methods are used, for example, in the modeling of materials with complex microstructures
[19, 8].

In general, computing the quasiconvex envelope of a given energy W is a rather difficult problem, with
explicit representations being available only for a small number of special cases [11, 22]. The main result of
this note (Theorem 3.5), however, shows that in the objective and isotropic case of planar incompressible
energies, this task can be accomplished by simple analytical methods.

3 The quasiconvex envelope of objective and isotropic functions

on SL(2)

It is well known that any objective and isotropic function W : GL+(n) → R can be expressed in terms of
singular values,3 i.e. there exists a symmetric function q : (0,∞)n → R such that W (F ) = q(λ1, . . . , λn) for
all F ∈ GL+(n) with singular values λ1, . . . , λn. The corresponding representation W (F ) = q(λ1, λ2) of a
planar incompressible energy W can be simplified even further.

Lemma 3.1. Let W : SL(2) → R be an objective and isotropic function. Then there exist uniquely defined

functions q : (0,∞) × (0,∞) → R, φ : [0,∞) → R and φ̃ : R → R such that for all F ∈ SL(2) with singular
values λ1, λ2,

W (F ) = q(λ1, λ2) = φ̃(λ1 − λ2) = φ

(
λmax(F )−

1

λmax(F )

)
, (3.1)

where λmax(F ) = max{λ1, λ2}.

Note that q(x, y) = q(y, x) for all x, y > 0 and φ̃(−t) = φ̃(t) for all t ∈ R due to the isotropy of W .

Furthermore, it is easy to see that for any real-valued function φ : [0,∞) → R or any φ̃ : R → R with

φ̃(−t) = φ̃(t) for all t ∈ R, an objective and isotropic energy W : SL(2) → R is defined by (3.1).

Different representations, for example in terms of the squared Frobenius matrix norm ‖F‖2 =∑2
i,j=1 F

2
ij ,

have been considered in the literature as well [1] (cf. [13]). However, expressing W in the form (3.1) allows
for stating convexity criteria in particularly simple terms (cf. Theorem 3.4).

In view of Lemma 3.1, the equality

|λ1 − λ2| =
√
‖F‖ − 2 =

√
‖F‖ − 2 detF , (3.2)

which holds for any F ∈ SL(2), suggests a direct connection between the notion of convex envelopes in the
incompressible case and an earlier relaxation result by Dacorogna and Koshigoe [11].

3In nonlinear elasticity, the singular values of the deformation gradient F ∈ GL+(n), which coincide with the eigenvalues of

both the material stretch tensor U =
√
FTF and the spatial stretch tensor V =

√
FFT , are also called principal stretches.
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Proposition 3.2 ([11, Proposition 5.1], cf. [30]). Let W : R2×2 → R be of the form

W : R2×2 → R , W (F ) = g(
√
‖F‖2 − 2 detF ) (3.3)

for some g : [0,∞) → R. Then

RW (F ) = QW (F ) = PW (F ) = CW (F ) = g̃∗∗
(√

‖F‖2 − 2 detF
)
, (3.4)

where g̃∗ is the Legendre-transformation of the extended function

g̃ : R → R , g̃(x) =

{
g(x) : x ≥ 0

g(−x) : x < 0

and g̃∗∗ = (g̃∗)
∗
.

Remark 3.3. Since g̃ is finite valued on R, the equality g̃∗∗ = Cg̃ between the biconjugate and the convex
envelope of g̃ holds if g̃ is bounded below [9, Theorem 2.43].

Due to (3.2), the restriction W = W
∣∣
SL(2)

of any function W : R2×2 → R of the form (3.3) to SL(2) can

be written as
W (F ) =W (F ) = g(|λ1 − λ2|) = g̃(λ1 − λ2)

for F ∈ SL(2), i.e. in the form (3.1) with φ = g and φ̃ = g̃. Similarly, any objective and isotropicW : SL(2) →
R can be uniquely extended to a function W : R2×2 → R of the form (3.3) by letting g = φ or, equivalently,

g̃ = φ̃.

However, despite this striking connection, Proposition 3.2 is not immediately applicable to the case of
functions defined on SL(2): Note carefully that the convex envelopes in eq. (3.4) take into account not only

the value ofW on SL(2), but also the value of a specific extension Ŵ ofW to R
2×2. The underlying difference

is that the notion of (generalized) convexity on a subset of R2×2 (cf. Definition 2.2) requires W to have any
extension to R

2×2 satisfying the respective convexity property, which is, a priori, not necessarily of the form
(3.3).

On the other hand, Proposition 3.2 can be used to obtain lower bounds for the envelopes of incompressible
energies; particularly,

CW (F ) = sup{w(F ) |w : R2×2 → R convex, w(X) ≤W (X) for all X ∈ R
2×2}

≤ sup{w(F ) |w : R2×2 → R convex, w(X) ≤W (X) for all X ∈ SL(2)} (3.5)

= sup{w(F ) |w : R2×2 → R convex, w(X) ≤W (X) for all X ∈ SL(2)} = CW (F )

for any objective and isotropic function W : SL(2) → R and all F ∈ SL(2), where W : R2×2 → R denotes the
extension of W described above. Again, note carefully that it is not immediately obvious whether equality
holds in (3.5).

In order to fully establish a result similar to Proposition 3.2 in the incompressible case, we will require
the following criteria for generalized convexity properties.

Theorem 3.4 ([15]). Let W : SL(2) → R be an objective and isotropic function. Then the following are
equivalent:

i) W is rank-one convex,

ii) W is polyconvex,

iii) the function φ̃ : R → R with W (F ) = φ̃(λ1−λ2) for all F ∈ SL(2) with singular values λ1, λ2 is convex,
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iv) the function φ : [0,∞) → R with W (F ) = φ(
√
‖F‖2 − 2) = φ

(
λmax(F ) −

1

λmax(F )

)
is nondecreasing

and convex.

The characterization of polyconvex energies on SL(2) by criterion iv) in Theorem 3.4 is originally due to
Mielke [25]. A criterion for the rank-one convexity of a twice differentiable energy in terms of the represen-
tation W (F ) = Ψ(‖F‖2) = Ψ(λ21 + λ22) has previously been given by Abeyaratne [1].

Using Theorem 3.4, it is possible to find an explicit representation of the generalized convex envelopes
RW , QW , PW and CW for any isotropic and objective function on SL(2).

Theorem 3.5. Let W : SL(2) → R be objective, isotropic and bounded below. Then

RW (F ) = QW (F ) = PW (F ) = CW (F ) = Cφ̃(λ1 − λ2) = Cmφ

(
λmax(F )−

1

λmax(F )

)
(3.6)

for all F ∈ SL(2) with singular values λ1, λ2, where λmax(F ) = max{λ1, λ2} and Cmφ : [0,∞) → R denotes
the monotone-convex envelope of φ, given by

Cmφ(t) := sup
{
p(t) | p : [0,∞) → R monotone increasing and convex with p(s) ≤ φ(s) ∀ s ∈ [0,∞)

}
,

i.e. the largest monotone and convex function bounded above by φ.

Proof. Since φ̃(−t) = φ̃(t) = φ(t) for all t ≥ 0, it is easy to see (cf. [11]) that Cmφ(t) = Cφ̃(t) = Cφ̃(−t) for
all t ≥ 0 and thus, in particular,

Cφ̃(λ1 − λ2) = Cmφ(|λ1 − λ2|) = Cmφ

(
λmax(F )−

1

λmax(F )

)

for all λ1, λ2 > 0. Furthermore, Remark 2.5 establishes the inequalities CW (F ) ≤ PW (F ) ≤ QW (F ) ≤
RW (F ), thus it remains to show that RW (F ) ≤ Cφ̃(λ1 − λ2) ≤ CW (F ).

According to Lemma 3.1, there exists a uniquely determined ψ̃ : R → R such that RW (F ) = ψ̃(λ1 − λ2)
for all F ∈ SL(2) with singular values λ1, λ2.

4 Due to the rank-one convexity of RW and Theorem 3.4, the

function ψ̃ is convex. Since

ψ̃(t) = RW
(
diag

(√
4+t2+t

2 ,
√
4+t2−t

2

))
≤W

(
diag

(√
4+t2+t

2 ,
√
4+t2−t

2

))
= φ̃(t)

as well, we find ψ̃(t) ≤ Cφ̃(t) for all t ∈ R and thus

RW (F ) = ψ̃(λ1 − λ2) ≤ Cφ̃(λ1 − λ2)

for all F ∈ SL(2).

Now, in order to establish the remaining inequality Cφ̃(λ1 − λ2) ≤ CW (F ), let

W : R2×2 → R , W (F ) = φ̃(
√
‖F‖ − 2 detF )

denote the unique extension of W to R
2×2 of the form (3.3). Then using (3.5) and Remark 3.3, we find

CW (F ) ≥ CW (F ) = φ̃∗∗(
√
‖F‖ − 2 detF ) = φ̃∗∗(λ1 − λ2) = Cφ̃(λ1 − λ2)

for all F ∈ SL(2) with singular values λ1, λ2. �

4Note that the rank-one convex envelope of an objective and isotropic function is itself objective and isotropic [6].
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Another result similar to Theorem 3.5 has previously been obtained [24] for so-called conformally invariant
functions on GL+(2), i.e. any W : GL+(2) → R satisfying

W (AFB) =W (F ) for all A,B ∈ {aR ∈ GL+(2) | a ∈ (0,∞) , R ∈ SO(2)} ,

where SO(2) denotes the special orthogonal group. In addition to being objective and isotropic, such a
function is isochoric, i.e. invariant under (purely volumetric) scaling of the deformation gradient F .

Remark 3.6. Due to eq. (3.6), the problem of finding the quasiconvex (as well as the rank-one convex and
the polyconvex) envelope of W reduces to the task of computing the convex envelope of a scalar function.
This latter problem can, for example, be solved by using Maxwell’s equal area rule [29, p. 319] and often
admits a direct analytical solution.

Combining Theorem 3.5 with Proposition 3.2 also yields the following relation between the envelopes of
incompressible energies and their extensions to R

2×2 of the form (3.3); recall from Remark 3.3 that Cφ̃ = φ̃∗∗

if φ̃ : R → R is bounded below.

Corollary 3.7. Let W : SL(2) → R be objective, isotropic and bounded below. Define

W : R2×2 → R , W (F ) = φ̃(
√
‖F‖2 − 2 detF ) ,

where φ̃ : R → R is the uniquely determined function with W (F ) = φ̃(λ1−λ2) for all F ∈ SL(2) with singular
values λ1, λ2. Then

RW = QW = PW = CW = Cφ̃(λ1 − λ2) = φ̃∗∗(
√
‖F‖2 − 2 detF )

= (RW )
∣∣
SL(2)

= (QW )
∣∣
SL(2)

= (PW )
∣∣
SL(2)

= (CW )
∣∣
SL(2)

.

As a simple example, we consider the restriction of the classical Alibert–Dacorogna–Marcellini energy [2,
12]

WADM : R2×2 → R , WADM(F ) = ‖F‖2(‖F‖2 − 2γ detF ) , γ ∈ R

to the special linear group SL(2), i.e.

W : SL(2) → R , W (F ) = ‖F‖4 − 2γ‖F‖2 , γ ∈ R ,

where ‖ . ‖ denotes the Frobenius norm. It was shown by Alibert, Dacorogna and Marcellini [2, 12] that
different convexity properties hold for WADM depending on the exact value of γ, which strictly distinguishes

convexity (|γ| ≤ 2
√
2

3 ), polyconvexity (|γ| ≤ 1) and rank-one convexity (|γ| ≤ 2√
3
); the question whether

WADM is not quasiconvex for some |γ| ≤ 2√
3
is still open [10].

In the incompressible case, of course, the energy is simplified considerably; in particular, W is convex for
any γ ≤ 2 as the composition of a monotone and convex function with the convex mapping F 7→ ‖F‖. In
general, since (using the equality λ1λ2 = 1) we find

W (F ) = (λ21 + λ22)
2 − 2γ (λ21 + λ22)

= (λ1 − λ2)
4 + (4− 2γ) · (λ1 − λ2)

2 + 4− 4γ

for all F ∈ SL(2) with singular values λ1, λ2, the function W can be expressed as W (F ) = φ̃(λ1 − λ2) with

φ̃(t) = t4 + (4− 2γ) · t2 + 4− 4γ .

Then φ̃′′(t) = 12t2 + 8− 4γ is nonnegative for all t ≥ 0 if and only if γ ≤ 2, thus according to Theorem 3.4,
W is rank-one convex, quasiconvex polyconvex and/or convex on SL(2) only if γ ≤ 2. For γ > 2, we can
explicitly compute the convex envelope (cf. Figure 1)

Cφ̃(t) =

{
φ̃(t) : t2 ≥ γ − 2 ,

−γ2 : t2 < γ − 2 .

7



of φ̃ and use Theorem 3.5 to find the generalized convex envelopes of W , which are given by

RW (F ) = QW (F ) = PW (F ) = CW (F ) = Cφ̃(λ1 − λ2) =

{
W (F ) : (λ1 − λ2)

2 ≥ γ − 2

−γ2 : (λ1 − λ2)
2 < γ − 2

=

{
W (F ) : ‖F‖2 ≥ γ

−γ2 : ‖F‖2 < γ

for any F ∈ SL(2) with singular values λ1, λ2 = 1
λ1

.

−√
γ − 2

√
γ − 2

φ̃

Cφ̃

t

Figure 1: The convex envelope Cφ̃ of φ̃ : R → R with φ̃(t) = t4 + (4− 2γ) · t2 + 4− 2γ.

A further classical example of an elastic energy applicable to the incompressible case is given by the logarithmic
Hencky strain energy [17, 18, 26, 27, 16]

WH : SL(2) → R , WH(F ) = ‖logV ‖2 = ‖log
√
FFT ‖2 = log2(λ1) + log2(λ2) ,

where logV = log
√
FFT denotes the principal matrix logarithm of the stretch tensor V =

√
FFT . Note

that for detF = 1, WH can equivalently be expressed as

‖dev logV ‖2 = ‖log((det V )−1/2V )‖2 = ‖log((detF )−1/2V )‖2 = ‖logV ‖2 =WH(F ) ,

where devX = X − trX
2 1 is the deviatoric part of X ∈ R

2×2 and 1 denotes the identity matrix. Since

WH(F ) = log2(λ1) + log2(λ2) = 2 log2(λmax(F )) = 2 log2

(
|λ1 − λ2|+

√
4 + (λ1 − λ2)2

2

)
,

the representation WH(F ) = φ̃(λ1 − λ2) of the Hencky energy is given by

φ̃(t) = 2 log2

(
|t|+

√
4 + t2

2

)
.

Due to the sublinear growth of φ̃, we find Cφ̃ ≡ 0 and thus, using Theorem 3.5,

RWH = QWH = PWH = CWH ≡ 0 .
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