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r é s u m é

Nous étudions les propriétés de convexité des fonctions énergie pour des matériaux 
incompressibles dans le cas de l’élasticité non-linéaire plane. Nous montrons que la 
convexité de rang 1 d’une fonction énergie isotrope et élastique W dans le groupe 
spécial linéaire SL(2) implique la polyconvexité de W .

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this paper is to study the relation between rank-one convexity and polyconvexity of ob-
jective and isotropic real valued functions W on SL(2) = {X ∈ R

2×2 | detX = 1}. These convexity 
properties play an important role in the theory of nonlinear hyperelasticity, where W (∇ϕ) is interpreted 
as the energy density of a deformation ϕ : Ω → R

2; here, Ω ⊂ R
2 corresponds to a planar elastic body 

in its reference configuration. In particular, energy functions on the domain SL(2) are used for mod-
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elling incompressible materials, since in this case, the deformation ϕ is subject to the additional constraint 
det∇ϕ = 1.1

The notion of polyconvexity was introduced into the context of nonlinear elasticity theory by John 
Ball [5,6] (cf. [34,11,39]). Polyconvexity criteria in the case of spatial dimension 2 were conclusively 
discussed by Rosakis [36] and Šilhavý [41–44,46–48], while an exhaustive self-contained study giving neces-
sary and sufficient conditions for polyconvexity in arbitrary spatial dimension was given by Mielke [22]. 
Rank-one convexity plays an important role in the existence and uniqueness theory for linear elasto-
statics and elastodynamics [30,16,14,15,19]. Criteria for the rank-one convexity of functions defined on 
GL+(2) = {X ∈ R

2×2 | detX > 0} were established by Knowles and Sternberg [18] as well as by Šilhavý 
[43,45], Dacorogna [10], Aubert [4] and Davies [12].

It is well known that the implications

polyconvexity =⇒ quasiconvexity =⇒ rank-one convexity

hold for functions on Rn×n (as well as for functions on SL(n), see [9, Theorem 1.1]) for arbitrary dimension n. 
The reverse implications, on the other hand, do not hold in general: rank-one convexity does not imply 
polyconvexity [2] for dimension n ≥ 2, and rank-one convexity does not imply quasiconvexity [7,49,33,11]
for n > 2. Whether this latter implication holds for n = 2 is still an open question: the conjecture that 
rank-one convexity and quasiconvexity are not equivalent for n = 2 is also called Morrey’s conjecture [24]. 
For certain classes of functions on R2×2, however, it has been demonstrated that the two convexity properties 
are, in fact, equivalent [50,40,20,49,25,8,7,32,31,27].

In a previous paper [21], we have shown that any energy function W : GL+(2) → R which is isotropic 
and objective (i.e. bi-SO(2)-invariant) as well as isochoric2 is rank-one convex if and only if it is poly-
convex. In January 2016, a question by John Ball motivated some investigation into whether this result 
might be applicable to the incompressible case. In March 2016, at the Joint DMV and GAMM Annual 
Meeting in Braunschweig, Alexander Mielke indicated that some of his results [22] should be suitable for 
this task.

The main result of the present paper is Theorem 3.1, which states that for objective and isotropic energies 
on SL(2), rank-one convexity implies (and is therefore equivalent to) polyconvexity. Theorem 3.1 includes 
a slightly stronger two-dimensional version of a criterion by Dunn, Fosdick and Zhang (cf. Section 2.2): 
an energy W with W (F ) = φ(

√
‖F‖ − 2) for F ∈ SL(2) is polyconvex on SL(2) (if and only if it is rank 

one convex) if and only if φ is nondecreasing and convex, regardless of any regularity assumption on the 
energy.3

2. Rank-one convexity and polyconvexity on SL(2)

We consider the concepts of rank-one convexity and polyconvexity of real-valued objective, isotropic 
functions W on the group GL+(2) = {X ∈ R

2×2 | detX > 0} and on its subgroup SL(2) = {X ∈
R

2×2 | detX = 1}. We denote by λ1, λ2 the singular values of F (i.e. the eigenvalues of U =
√
FT F ), 

and λmax := max{λ1, λ2} denotes the largest singular value of F (also called the spectral norm of F ). The 
elastic energy W is assumed to be objective as well as isotropic, i.e. to satisfy the equality

1 Note that a function W defined only on SL(2) can equivalently be expressed as a (discontinuous) function W : R2×2 → R ∪{+∞}
with W (F ) = +∞ for all F /∈ SL(2). This interpretation of functions not defined on all of R2×2 is reflected by Mielke’s definition 
of polyconvexity [22] of energies W on SL(2), see Definition 2.2.
2 A function W : GL+(2) → R is called isochoric if W (a F ) = W (F ) for all a ∈ (0, ∞). Some relations between isotropic, objective 

and isochoric energies and the functions defined on SL(2) are discussed in Section 4. In elasticity theory, isochoric energy functions 
measure only the change of form of an elastic body, not the change of size.
3 Throughout this article, ‖X‖2 = 〈X, X〉 denotes the Frobenius tensor norm of X ∈ R

n×n, where 〈X, Y 〉 = tr(Y TX) is the 
standard Euclidean scalar product on Rn×n. The identity tensor on Rn×n will be denoted by 1, so that tr (X) = 〈X, 1〉.
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W (Q1 F Q2) = W (F ) for all F ∈ GL+(2) and all Q1, Q2 ∈ SO(2) , (2.1)

where SO(2) = {X ∈ R
2×2 | XTX = 1 , det(X) = 1} denotes the special orthogonal group.

2.1. Basic definitions

In order to discuss the different convexity conditions, we first need to define rank-one convexity as well 
as polyconvexity in the incompressible (planar) case, i.e. for functions on SL(2).

2.1.1. Rank-one convexity
Following a definition by Ball [5, Definition 3.2], we say that W is rank-one convex on GL+(n) if it is 

convex on all closed line segments in GL+(n) with end points differing by a matrix of rank one, i.e.

W (F + (1 − θ)ξ ⊗ η) = W (θ F + (1 − θ) (F + ξ ⊗ η)) ≤ θW (F ) + (1 − θ)W (F + ξ ⊗ η)

for all F ∈ GL+(n), θ ∈ [0, 1] and all ξ, η ∈ R
2 with F + t · ξ ⊗ η ∈ GL+(n) for all t ∈ [0, 1], where ξ ⊗ η

denotes the dyadic product.
Since, in the following, we will consider the case of energy functions which are defined on only on 

the special linear group SL(2), we need to define rank-one convexity for functions W : SL(2) → R. The 
restrictions imposed by rank-one convexity are less strict in this case: the functions needs to be convex only 
along line segments in rank-one direction which are contained in the set SL(2), i.e. satisfy the additional 
condition

det(F + t · ξ ⊗ η) = 1 for all t ∈ [0, 1] . (2.2)

The following lemma can be used to simplify condition (2.2) and thus allows us to give a simpler definition 
of rank-one convexity in the incompressible case.

Lemma 2.1. Let F, H ∈ R
2×2. Then

det(F + H) = det(F ) + det(F ) 〈F−T , H〉 + detH . (2.3)

Proof. For continuity reasons, it suffices to consider the case detF �= 0. Since, for H ∈ R
2×2,

det(1+ H) = 1 + trH + detH , (2.4)

we find

det(F + H) = det((1+ H F−1)F ) = det(1+ H F−1) det(F )

= det(F )(1 + tr(H F−1) + det(H F−1))

= det(F ) + det(F ) 〈H,F−T 〉 + det(H) . �
Since rank(ξ ⊗ η) = 1 implies det(ξ ⊗ η) = 0, we thus find

det(F + t · ξ ⊗ η) = detF [1 + t 〈F−T , ξ ⊗ η〉]

for F ∈ R
2×2. In particular, condition (2.2) is satisfied if and only if

〈F−T , ξ ⊗ η〉 = 0 . (2.5)
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Condition (2.5) can also be interpreted geometrically [13]: if the set SL(2) is regarded as a three-
dimensional surface embedded in the 4-dimensional linear space R2×2 of all second order tensors, then 
the relation DF (det F ).H = (detF ) 〈F−T , H〉 implies that the tangent space TSL(2) to SL(2) at F ∈ SL(2)
is given by

TSL(2)(F ) := {H ∈ R
2×2 | 〈H,F−T 〉 = 0} . (2.6)

It follows that for F ∈ SL(2),

det(F + t · ξ ⊗ η) = 1 ∀ t ∈ [0, 1] ⇐⇒ 〈ξ, F−T η〉 = 0 ⇐⇒ ξ ⊗ η ∈ TSL(2)(F ) . (2.7)

We also note that, due to the above, (2.2) already implies that the equality det(F + t · ξ ⊗ η) = 1 holds for 
all t ∈ R as well. These well-known (see e.g. [13]) equivalences allow for the following definition of rank-one 
convexity.

Definition 2.1. A function W : SL(2) → R is called rank-one convex if the mapping

t �→ W (F + t · ξ ⊗ η)

is convex on R for all F ∈ SL(2) and all ξ, η ∈ R
2 such that ξ ⊗ η ∈ TSL(2)(F ).

2.1.2. Polyconvexity
Throughout this article, we will use the following definitions of polyconvexity for energy functions defined 

on the sets on Rn×n, GL+(n) = {X ∈ R
n×n | detX > 0} and SL(n) = {X ∈ R

n×n | detX = 1}, 
respectively.

Definition 2.2.

i) (Ball [5]) A function W : Rn×n → R ∪ {∞} is called polyconvex if there exists a convex function 
P : Rm → R ∪ {∞} such that

W (F ) = P (M(F )) for all F ∈ R
n×n , (2.8)

where M(F ) ∈ R
m denotes the vector of all minors of F .

ii) (Mielke [22]) A function W : GL+(n) → R is called polyconvex if the function

W̃ : Rn×n → R ∪ {∞} , W̃ (F ) =
{
W (F ) : F ∈ GL+

∞ : F /∈ GL+ (2.9)

is polyconvex according to i).
iii) (Mielke [22]) A function Winc : SL(n) → R is called polyconvex if the function

W̃ : Rn×n → R ∪ {∞} , W̃ (F ) =
{
Winc(F ) : F ∈ SL(n)
∞ : F /∈ SL(n)

(2.10)

is polyconvex according to i).



92 I.-D. Ghiba et al. / J. Math. Pures Appl. 116 (2018) 88–104
2.2. Criteria for rank-one convexity and polyconvexity in the incompressible planar case

For twice differentiable energies on SL(3), necessary and sufficient conditions for rank-one convexity 
were established by Zubov and Rudev [53,52] as well as by Zee and Sternberg [51]. An easily applicable 
criterion for rank-one convexity is available for the special case of differentiable functions on SL(3) of the form 
F �→ W (F ) = φ(γ), where γ =

√
‖F‖2 − 3 represents the amount of shear (cf. Theorem 3.1): Dunn, Fosdick 

and Zhang [13] have shown that the energy W is rank-one convex on SL(3) if and only if φ is nondecreasing 
and convex. This criterion is related, with appropriate modifications, to those obtained by Zee and Sternberg 
[51, p. 83], but it only requires the energy to be once differentiable. Note that not every function on SL(3)
can be written in the form W (F ) = φ(

√
‖F‖2 − 3), so this criterion cannot be applied in the general case 

of incompressible energies (as was already noted in [13]). In contrast to the three-dimensional case, every 
energy defined on SL(2) admits a unique representation in terms of the amount of shear 

√
‖F‖2 − 2. This 

representation was also used by Mielke [22] in order to establish necessary and sufficient conditions for 
polyconvexity on SL(2), cf. Proposition 2.3.

The following necessary and sufficient conditions for rank-one convexity on SL(2) are adapted from a 
similar criterion for the ellipticity4 of incompressible, isotropic hyperelastic solids by Abeyaratne [1]. A proof 
of the Proposition is given in Appendix A.

Proposition 2.1. Let W : SL(2) → R be a twice-differentiable objective and isotropic function. Then there 
exists a unique function ψ : [0, ∞) → R such that

W (F ) = ψ(I), I = ‖F‖2 = λ2
max(F ) + 1

λ2
max(F ) (2.11)

for all F ∈ SL(2), where λmax(F ) is the largest singular value of F . Furthermore, the following are equivalent:

i) W is rank-one convex,
ii) ψ satisfies the inequalities

dψ

dI
(I) ≥ 0 , 2 (I − 2) d

2ψ

dI2 (I) + dψ

dI
(I) ≥ 0 for all I ∈ [2,∞) . (2.12)

In the two-dimensional incompressible case, i.e. for an objective and isotropic energy W on SL(2), another 
representation of the energy can be obtained from formula (2.11): since, for F ∈ SL(2),

γ :=
√
‖F‖2 − 2 =

√
λ2

1 + λ2
2 − 2 =

√
(λ1 − λ2)2 = |λ1 − λ2| = λmax − λmin = λmax − 1

λmax

and

4 Abeyaratne [1] considers the ordinary ellipticity of twice-differentiable energies, which are defined as follows:

for compressible materials: det Q 	= 0 (or 〈Qξ, ξ〉 	= 0 for all ξ ∈ R
2 \ {0}) ,

for incompressible materials: det
(

Q11 Q12 −m1

Q21 Q22 −m2

m1 m2 0

)
	= 0 (or 〈Qξ, ξ〉 	= 0 for all ξ ∈ R

2 \ {0} with 〈ξ, F−T
η〉 = 0) ,

where Qαγ =
∑

β,δ=1,2
∂2W

∂Fαβ ∂Fγδ
ηβηδ with α, γ ∈ {1, 2} is the acoustic tensor, m = F−T η and η ∈ R

2 \ {0}. Abeyaratne’s 
mechanical motivation is the requirement that the system of the jump equations of equilibrium should be satisfied only by the 
trivial solution. In the three-dimensional case, this concept was also considered by Zee and Sternberg [51]. We recall that for 
compressible materials, the strong ellipticity (or strict Legendre–Hadamard ellipticity) is equivalent to the positive definiteness 
of the acoustic tensor Q, while rank-one convexity is equivalent to the positive semidefiniteness of Q.
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I = 2 +
(
λmax − 1

λmax

)2

= 2 + γ2 ,

there exists a unique function φ : [0, ∞) → R such that

W (F ) = ψ(I) = φ(
√

‖F‖2 − 2) = φ
(
λmax − 1

λmax

)
for all F ∈ SL(2) . (2.13)

The next criterion for rank-one convexity in terms of this representation can be obtained by a direct 
adaptation of the proof of the aforementioned three-dimensional result by Dunn, Fosdick and Zhang [13] to 
the two-dimensional case.

Proposition 2.2. Let W : SL(2) → R be an objective and isotropic differentiable function. Then there exists 
a unique function φ : [0, ∞) → R such that

W (F ) = φ
(
λmax(F ) − 1

λmax(F )

)
for all F ∈ SL(2), where λmax(F ) is the largest singular value of F . Furthermore, the following are equivalent:

i) W is rank-one convex,
ii) φ is nondecreasing and convex on [0, ∞).

It is easy to see that if an energy (and thus ψ) is twice differentiable, then Proposition 2.2 and Proposi-
tion 2.1 are equivalent: for γ =

√
I − 2 we find

dψ

dI
= dφ

dγ

1
2
√
I − 2

= 1
γ

dφ

dγ
and d2ψ

dI2 = 1
4 γ2

d2φ

dγ2 − 1
4 γ3

dφ

dγ
, (2.14)

thus the monotonicity of φ in Proposition 2.1 is equivalent to dψ
dI (I) ≥ 0 for all I ∈ [2, ∞), while the 

convexity of φ is equivalent to 2 (I − 2) d
2ψ
dI2 (I) + dψ

dI (I) ≥ 0 for all I ∈ [2, ∞).

In addition to these criteria for rank-one convexity, we will use the following polyconvexity criterion, 
which is due to Mielke [22, Theorem 5.1].

Proposition 2.3. Let W : SL(2) → R be an objective and isotropic function, and φ : [0, ∞) → R the unique 
function with

W (F ) = φ
(
λmax(F ) − 1

λmax(F )

)
for all F ∈ SL(2), where λmax(F ) is the largest singular value of F . The following are equivalent:

i) φ is nondecreasing and convex on [0, ∞),
ii) W is polyconvex (in the sense of Definition 2.2 iii)).

Using Mielke’s criterion as well as representation formula (2.11), Mora-Corral and Strugaru [23] recently 
gave a criterion for polyconvexity on SL(2) with respect to the representation of the energy in terms of the 
largest singular value.
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3. Equivalence of rank-one convexity and polyconvexity on SL(2)

We now want to show that for objective and isotropic energy functions on SL(2), rank-one convexity and 
polyconvexity are equivalent.

3.1. Differentiable functions

For differentiable functions, this result can be obtained directly by comparing Proposition 2.2 and Propo-
sition 2.3.

Proposition 3.1. Let W : SL(2) → R be objective and isotropic as well as differentiable. Then the following 
are equivalent:

i) W is rank-one convex,
ii) the function φ : [0, ∞) → R with W (F ) = φ

(
λmax(F ) − 1

λmax(F )

)
is nondecreasing and convex,

iii) W is polyconvex.

3.2. The general case

Our main result of this paper is the equivalence of rank-one convexity and polyconvexity for objective 
and isotropic energy functions in general, without any regularity assumptions. The following theorem also 
provides another geometric interpretation of the criteria from Proposition 2.2 and Proposition 2.3 by Dunn 
et al. and Mielke: the convexity and monotonicity of the function φ is equivalent to the convexity of the 
energy with respect to the amount of shear. Note that in the planar incompressible case, an energy function 
is already completely determined by its response to simple shear deformations [1].5

Theorem 3.1. Let W : SL(2) → R be an objective and isotropic function. Then the following are equivalent:

i) W is rank-one convex,
ii) W is polyconvex,
iii) the mapping φ̃ : R → R , φ̃(γ) = W (

( 1 γ
0 1

)
) is convex,

iv) the function φ : [0, ∞) → R with W (F ) = φ(
√
‖F‖2 − 2) = φ

(
λmax(F ) − 1

λmax(F )

)
is nondecreasing 

and convex.

Proof. i) =⇒ iii):
We note that (

1 γ
0 1

)
= 1+ γ · ξ ⊗ η with ξ =

(
1
0

)
, η =

(
0
1

)
.

Furthermore, det(1+γ ·ξ⊗η) = 1 for all γ ∈ R. Thus the rank-one convexity of W implies that the mapping 
γ �→ W (

( 1 γ
0 1

)
) = W (1+ γ · ξ ⊗ η) is convex on R.

5 Any plane volume preserving deformation can be decomposed locally into the product of a simple shear in a suitable direction 
followed or preceded by a suitable rotation. More precisely, for any F ∈ SL(2), there exist Q1, Q2 ∈ O(2) such that

F = Q1 K Q2 , K =
(

1 γ
0 1

)
, γ = ±

√
I − 2 , I = ‖F‖2

.
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iii) =⇒ iv):
Let φ : [0, ∞) → R denote the uniquely defined function with W (F ) = φ(λmax(F ) − 1

λmax(F ) ) for all 
F ∈ SL(2). We first show that φ(t) = φ̃(t) for all t ≥ 0: for γ ≥ 0, the singular values of the simple shear are

λmax(
(

1 γ
0 1

)
) = 1

2 (γ +
√

γ2 + 4) and λmin(
(

1 γ
0 1

)
) = 1

2 (−γ +
√

γ2 + 4) . (3.1)

Thus we find

λmax(
(

1 γ
0 1

)
) −

(
λmax(

(
1 γ
0 1

)
)
)−1

= λmax(
(

1 γ
0 1

)
) − λmin(

(
1 γ
0 1

)
)

= 1
2 (γ +

√
γ2 + 4) − 1

2 (−γ +
√
γ2 + 4) = γ (3.2)

and therefore

φ̃(γ) = W (
(

1 γ
0 1

)
) = φ

(
λmax(

(
1 γ
0 1

)
) −

(
λmax(

(
1 γ
0 1

)
)
)−1

)
= φ(γ)

for all γ ≥ 0.
Since φ̃ is convex by assumption of condition iii), it follows that φ = φ̃

∣∣
[0,∞) is convex on [0, ∞) as well. 

Thus it only remains to show that h = φ̃
∣∣
[0,∞) is also nondecreasing.

Let 0 ≤ t1 ≤ t2. Then t1 lies in the convex hull of −t2 and t2, i.e. t1 = s(−t2) + (1 − s) t2 for some 
s ∈ [0, 1]. Since φ̃ is convex on R and φ̃(−t) = φ̃(t) for all t ∈ R, we thus find

φ(t1) = φ̃(t1) ≤ s φ̃(−t2) + (1 − s) φ̃(t2) = φ̃(t2) = φ(t2) ,

which shows that φ is nondecreasing.
iv) =⇒ ii):
Condition iv), i.e. the convexity and monotonicity of φ, is exactly condition i) in Proposition 2.3, which 

immediately implies that W is polyconvex. Note that in contrast to Proposition 2.2, Proposition 2.3 does 
not require the energy to be differentiable.

ii) =⇒ i):
This implication is well known, see for example [11, Theorem 5.3]. �

Remark 3.1. In addition to showing the equivalence between rank-one convexity and polyconvexity on SL(2), 
Theorem 3.1 requires no regularity of the energy and thus improves the known criteria for rank-one convexity 
on SL(2).

Remark 3.2. Note that we have only used the implication i) ⇒ ii) from Proposition 2.3. Since the compo-
sition of a polyconvex function with a monotone and convex function is polyconvex, in order to prove this 
implication it is sufficient to show that the function

W : SL(2) → R , W (F ) = λmax − 1
λmax

is polyconvex on SL(2). We will give an alternative proof of this statement in Appendix B.
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Fig. 1. A visualization of our first approach: implications (2) and (3) hold (see Proposition 4.2 and Proposition 4.1), whereas it turns 
out from Remark 4.1 that implication (1) does not hold in general. Implication (0) is the main result of this article (Theorem 3.1).

4. Functions on SL(2) and isochoric functions on GL+(2)

Functions on the special linear group SL(2) are closely connected to so-called isochoric functions on 
GL+(2), i.e. functions Wiso : GL+(2) → R with Wiso(a F ) = W (F ) for all a ∈ R

+. In particular, any 
isochoric function can be written as [21]

Wiso(F ) = Winc

(
F

(detF )1/2

)
, (4.1)

where Winc = W
∣∣
SL(2) is the restriction of Wiso to SL(2). Furthermore, the relation (4.1) describes a 

bijection between the set of isochoric functions and the set of functions on SL(2). We also note that Winc is 
objective/isotropic if and only if Wiso is objective/isotropic.

A result similar to Theorem 3.1 has previously been shown to hold for isochoric functions [21]. In the 
following, we briefly discuss a failed first attempt to prove Theorem 3.1 by using this earlier result, thereby 
highlighting the difference between convexity properties of isochoric functions and functions on SL(2).

Proposition 4.1 ([21]). Let Wiso : GL+(2) → R be an objective, isotropic and isochoric function, i.e.

Wiso(aF ) = Wiso(F ) for all a ∈ R
+ := (0,∞) ,

and let g : R+ × R
+ → R , h : R+ → R denote the uniquely determined functions with

Wiso(F ) = g(λ1, λ2) = h

(
λ1

λ2

)
= h

(
λ2

λ1

)
(4.2)

for all F ∈ GL+(2) with singular values λ1, λ2. Then the following are equivalent:

i) Wiso is polyconvex.
ii) Wiso is rank-one convex,
iii) g is separately convex,
iv) h is convex on R+,
v) h is convex and non-decreasing on [1, ∞).

Of course, in order to show the equivalence of rank-one convexity and polyconvexity for functions on 
SL(2), one might attempt to combine Proposition 4.1 with the relation (4.1).

This approach, which is visualized in Fig. 1, can be summarized as follows: we would like to show that 
the rank-one convexity of Winc implies the rank-one convexity of Wiso (in the notation of (4.1)). If this was 
the case, then we could apply Theorem 4.1 to show that Wiso is polyconvex, and thus Winc is polyconvex 
as the restriction of the polyconvex function Wiso to SL(2), cf. Definition 2.2.

However, this approach turned out not to be viable: although the rank-one convexity of Wiso implies the 
rank-one convexity of Winc, the reverse is not true in general.
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Proposition 4.2. Let Wiso : GL+(2) → R be an objective, isotropic and isochoric function. Then rank-one 
convexity (equivalently polyconvexity) of Wiso on GL+(2) implies rank-one convexity (equivalently polycon-
vexity) of Winc : SL(2) → R on SL(2). The reverse implication does not hold in general.

Proof. Since Wiso : GL+(2) → R is an objective, isotropic, isochoric rank-one convex function on GL+(2), 
the unique function h : R+ → R satisfying (4.2) is convex and non-decreasing on [1, ∞). For all F ∈ SL(2),

h
(
λ2

max(F )
)

= h

(
λmax(F )
λmin(F )

)
= Wiso(F ) = Winc(F ) = φ

(
λmax(F ) − 1

λmax(F )

)
, (4.3)

where λmax(F ) is the largest singular value of F and φ : [0, ∞) → R is the unique function such that the 
last equality of (4.3) holds. Therefore

φ(θ) = h

(
(θ +

√
θ + 4)2

4

)
for all θ ≥ 0 . (4.4)

Since the mapping θ �→ (θ+
√
θ+4)2
4 is monotone increasing and convex from [0, ∞) to [1, ∞) and h : R+ → R

is convex and non-decreasing on [1, ∞), the function φ : [0, ∞) → R is nondecreasing and convex. Thus 
Theorem 3.1 yields the polyconvexity and rank-one convexity of the function Winc = W

∣∣
SL(2). For the 

second part of the proof, we refer to Remark 4.1 for a counterexample. �
Remark 4.1 (Counterexample to the above approach). Consider the function Wiso : GL+(2) → R with

Wiso(F ) =
∣∣∣∣
√

λ1

λ2
−

√
λ2

λ1

∣∣∣∣
for all F ∈ GL+(2) with singular values λ1, λ2 ∈ R

+. Then

i) Wiso is objective, isotropic and isochoric on GL+(2),
ii) Wiso is not rank-one convex on GL+(2),
iii) the restriction Winc = Wiso

∣∣
SL(2) of Wiso to SL(2) is polyconvex and rank-one convex on SL(2).

Proof. In order to show i), it suffices to remark that

Wiso(F ) = h

(
λ1

λ2

)
with h(t) =

∣∣∣∣√t−
√

1
t

∣∣∣∣
for all F ∈ GL+(2) with singular values λ1, λ2. Thus Wiso is objective, isotropic and isochoric, and according 
to Theorem 4.1, Wiso is rank-one convex if and only if h is convex and non-decreasing on [1, ∞). Since

h′′(t) = −1
4 t−

3
2 − 3

4 t−
5
2

for all t > 1, h is not convex, which proves ii).
It remains to show iii), i.e. that the restriction Winc = Wiso

∣∣
SL(2) of Wiso to SL(2) is (SL-)polyconvex. 

We first give an explicit representation of Winc: let F ∈ SL(2). Then 1
λ2

= λ1 =: λ, thus

Winc(F ) = Wiso(F ) =
∣∣∣∣
√

λ1

λ2
−
√

λ2

λ1

∣∣∣∣ =

∣∣∣∣∣
√

λ
1 −

√
1
λ

λ

∣∣∣∣∣ =
∣∣∣∣√λ2 −

√
1
λ2

∣∣∣∣ =
∣∣∣λ− 1

λ

∣∣∣

λ
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= max{λ, 1
λ} − min{λ, 1

λ} = max{λ1, λ2} − min{λ1, λ2}

= λmax − 1
λmax

= φ

(
λmax − 1

λmax

)
,

where λmax = max{λ1, λ2} = max{λ, 1λ} and φ : [0, ∞) → R is defined by φ(s) = s. According to Proposi-
tion 2.3, a function W : SL(2) → R with W (F ) = φ(λmax − 1

λmax
) for all F ∈ SL(2) with maximum singular 

value λmax is polyconvex if and only if φ is non-decreasing and convex on [0, ∞). Since the mapping φ
obviously satisfies these conditions, the function Winc is polyconvex on SL(2) and thus rank-one convex [11, 
Theorem 5.3] (cf. Theorem 3.1). �
5. Outlook

We finish with some open questions: consider an energy W : GL+(2) → R with volumetric-isochoric split6

W (F ) = Wiso

(
F

detF 1/2

)
+ Wvol(detF ) . (5.1)

Such a split is relevant for slightly compressible materials like vulcanized rubber, cf. [3,17,28,29,26]. It is an 
open question whether rank-one convexity implies polyconvexity for an energy W of this type. There might 
also be additional restrictions on the isochoric part Wiso( F

det F 1/2 ) and the volumetric part Wvol(detF ) which 
assure that the implication holds.

A related question is whether the rank-one convexity of the total energy W implies the rank-one convexity 
of the individual parts Wiso( F

det F 1/2 ) and Wvol(detF ), respectively. In particular, this would imply (due to 
Theorem 3.1 and Proposition 4.1) that rank-one convexity is equivalent to polyconvexity for energy functions 
of the form (5.1).
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Appendix A. An alternative proof of a rank-one convexity criterion for twice-differentiable functions on 
SL(2)

In this appendix, we will give an alternative proof of the rank-one convexity criterion stated in Proposi-
tion 2.1. We assume that the energy W : SL(2) → R is twice-differentiable. In this case, rank-one convexity 
is equivalent to Legendre–Hadamard ellipticity on SL(2):

D2
FW (F )(ξ ⊗ η, ξ ⊗ η) ≥ 0 for all F ∈ SL(2) and ξ, η ∈ R

2 with ξ ⊗ η ∈ TSL(2)(F ) . (A.1)

6 The applications of a split of the form (5.1) in the anisotropic case has been discussed by Sansour [38]. Sansour’s statement for 
isotropy is already contained in a 1948 article by Richter [35, page 209].
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The Legendre–Hadamard ellipticity condition can equivalently be stated as

〈Q(F, η) ξ, ξ〉 ≥ 0 for all F ∈ SL(2) and ξ, η ∈ R
2 such that 〈F−T η, ξ〉 = 0 , (A.2)

where the acoustic tensor Q = (Qαγ)αγ is defined by

Qαγ(F, η) = ∂2W (F )
∂Fαβ ∂Fγδ

ηβηδ . (A.3)

Here, we employ the Einstein summation convention for Greek subscripts (which take the values 1, 2).
Note that for η = 0, the Legendre–Hadamard ellipticity condition is satisfied for all F ∈ SL(2) and all 

ξ ∈ R
2. Hence we may assume that η is a unit vector. Note also that for all η ∈ R

2 \ {0} with ‖η‖ = 1 and 
all F ∈ SL(2),

〈F−T η, ξ〉 = 0 ⇐⇒ ξ = a ε F−T η for some a ∈ R , (A.4)

where

ε :=
(

0 1
−1 0

)
(A.5)

is the two-dimensional alternator. Since F−1 = εT F ε for F ∈ SL(2) and ε εT = 1, we find that condition 
(A.2) is equivalent to

〈Q(F, η)FT ε η, FT ε η〉 ≥ 0 for all F ∈ SL(2) and η ∈ R
2 \ {0} with ‖η‖ = 1 , (A.6)

which can be written in terms of the components as

εαλεβμFγλFδμQγδηαηβ ≥ 0 for all F ∈ SL(2) and η ∈ R
2 \ {0} with ‖η‖ = 1 . (A.7)

Now consider the fourth order elasticity tensor defined by

Cαβγδ = ∂2W (F )
∂Fαβ∂Fγδ

. (A.8)

The Legendre–Hadamard condition on SL(2) is equivalent to

〈C. (FT ε η) ⊗ η, (FT ε η) ⊗ η〉 ≥ 0 for all F ∈ SL(2) and η ∈ R
2 \ {0} with ‖η‖ = 1 . (A.9)

For objective and isotropic energies W : SL(2) → R given by

W (F ) = ψ(I), I = ‖F‖2 = λ2
max(F ) + 1

λ2
max(F ) , (A.10)

we find

∂W (F )
∂Fαβ

= 2Fαβ ψ
′(I) , Cαβγδ = 4Fαβ Fγδ ψ

′′(I) + 2 δαγ δβδ ψ′(I) , (A.11)

and the acoustic tensor is given by
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Qαγ = Cαβγδ ηβηδ = 4Fαβ Fγδ ηβ ηδ ψ
′′(I) + 2 δαγ δβδ ηβ ηδ ψ′(I)

= 4Fαβ ηβ Fγδηδ ψ
′′(I) + 2 δαγ ηδ ηδ ψ′(I). (A.12)

Hence, after some calculations (cf. [1]), condition (A.6) becomes

(εαλεβμCαβ ηλημ)ψ′(I) + 2(εαλCαρ ηρηλ)2ψ′′(I) ≥ 0 for all F ∈ SL(2) , η ∈ R
2 \ {0} , ‖η‖ = 1 ,

where C = FTF . Due to isotropy, we can assume without loss of generality that

C =
(
λ2

1 0
0 λ2

2

)
, (A.13)

thus we obtain the condition

(λ2
1η

2
2 + λ2

2 η
2
1)2 ψ′(I) + 2(λ2

1 − λ2
2)2 η2

1η
2
2 ψ

′′(I) ≥ 0 (A.14)

for all F ∈ SL(2) , η ∈ R
2 \ {0} , ‖η‖ = 1 ,

which in turn is equivalent to

[λ2
2 ψ

′(I)] η4
1 + [λ2

1 ψ
′(I)] η4

2 + [(λ2
1 + λ2

2)ψ′(I) + 2(λ2
1 − λ2

2)2 ψ′′(I)] η2
1 η

2
2 ≥ 0 (A.15)

for all F ∈ SL(2) , η ∈ R
2 \ {0} , ‖η‖ = 1 .

Using the notation [1]

E11 = λ2
2 ψ

′(I), E22 = λ2
1 ψ

′(I), E12 = E21 = 1
2[(λ2

1 + λ2
2)ψ′(I) + 2(λ2

1 − λ2
2)2 ψ′′(I)] ,

condition (A.14) can be written as

〈E ζ, ζ〉 ≥ 0 for all ζ ∈ R
2
+ . (A.16)

Note carefully that (A.16) does not imply that E is positive semi-definite, since the inequality needs to hold 
only for ζ ∈ R

2
+ and not for all ζ ∈ R

2. Instead, it is easy to see that condition (A.16) holds if and only if

E11 ≥ 0 and E22 ≥ 0 and
[
E12 < 0 =⇒ detE ≥ 0

]
, (A.17)

which, after some computation, can be stated as

ψ′(I) ≥ 0 and
[
(λ2

1 + λ2
2)ψ′(I) + 2(λ2

1 − λ2
2)2 ψ′′(I) < 0 (A.18)

=⇒ (λ1 + λ2)2 Ψ′(I) + 2(λ2
1 − λ2

2)2 Ψ′′(I) ≥ 0
]
.

Since under the assumption ψ′(I) ≥ 0, the implication

(λ2
1 + λ2

2)ψ′(I) + 2(λ2
1 − λ2

2)2 ψ′′(I) ≥ 0 (A.19)

=⇒ (λ1 + λ2)2 Ψ′(I) + 2(λ2
1 − λ2

2)2 Ψ′′(I) ≥ 0

holds in general, we conclude that condition (A.19) (and thus the Legendre–Hadamard ellipticity of W ) is 
equivalent to
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ψ′(I) ≥ 0 and (λ1 + λ2)2 Ψ′(I) + 2(λ2
1 − λ2

2)2 Ψ′′(I) ≥ 0 ,

which we can write as

ψ′(I) ≥ 0 , ψ′(I) + 2(λ1 − λ2)2 ψ′′(I) ≥ 0 .

Finally, in terms of I, this can be expressed as

ψ′(I) ≥ 0 , ψ′(I) + 2(I − 2)ψ′′(I) ≥ 0 ,

which is the criterion for rank-one convexity given in Proposition 2.2 and Proposition 2.1.

Appendix B. Polyconvexity of the mapping F �→ λmax − 1
λmax

In order to keep the proof of our main result self-contained (see Remark 3.2), we will show that the 
mapping F �→ λmax − 1

λmax
is polyconvex on SL(2). First, we require the following lemma, which states that 

every polyconvex function on SL(2) is the restriction of a convex function on R2×2 to SL(2).

Lemma B.1. A function W : SL(2) → R is polyconvex if and only if there exists a convex function P̃ : R2×2 →
R ∪ {∞} such that W (F ) = P̃ (F ) for all F ∈ SL(2).

Proof. First, assume that W (F ) = P̃ (F ) for all F ∈ SL(2) with a convex function P̃ : R2×2 → R ∪ {∞}. 
Then the function

P : R2×2 × R → R ∪ {∞} , P (M, δ) :=
{
P̃ (M) : δ = 1 ,
∞ : δ �= 1

is convex and

W (F ) = P̃ (F ) = P (F, 1) = P (F,detF ) for all F ∈ SL(2)

as well as

W (F ) = ∞ = P (F,detF ) for all F /∈ SL(2) .

Thus, according to Definition 2.2, W is polyconvex on SL(2).7
Now, assume that W is polyconvex on SL(2). Then there exists a convex function P : R2×2×R → R ∪{∞}

such that

P (F,detF ) =
{
W (F ) : F ∈ SL(2) ,
∞ : F /∈ SL(2) .

In particular, the function P̃ : R2×2 → R ∪ {∞} with P̃ (M) := P (M, 1) for all M ∈ R
2×2 is convex, and

P̃ (F ) = P (F, 1) = P (F,detF ) = W (F )

for all F ∈ SL(2). �
7 Note that the minors of F ∈ R

2×2 are exactly the entries of F and the determinant of F .
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A number of well-known criteria for the classical convexity on (subsets of) Rn×n have been discussed 
in the literature. The following two lemmas, for example, provide equivalence criteria for the convexity on 
R

n×n and GL+(n), respectively, for functions which are objective as well as isotropic and only attain finite 
values. Note, however, that the mapping P̃ : R2×2 → R ∪ {∞} from Lemma B.1 does not need to have any 
of these three properties.

Lemma B.2 ([5, Theorem 5.1]). Let P̃ : Rn×n → R be objective and isotropic with

P̃ (M) = g(λ1, . . . , λn)

for all M ∈ R
n×n with singular values λ1, . . . , λn. Then P̃ is convex on Rn×n if and only if g is convex on 

R
n
+ and g is nondecreasing in each variable.

Lemma B.3 ([36, Theorem 3.1]). Let P̃ : GL+(n) → R be objective and isotropic with

P̃ (M) = g(λ1, . . . , λn)

for all M ∈ R
n×n with singular values λ1, . . . , λn. Then P̃ is convex on GL+(n) (i.e. can be extended to a 

convex function on Rn×n) if and only if g is convex on Rn
+ and g satisfies

g(λ1, . . . , λn) ≤ g(λ1 + β, . . . , λn + β) for all β > 0 .

In order to show that

W : SL(2) → R , W (F ) = λmax − 1
λmax

is polyconvex on SL(2), we now consider the function

Wext : R2×2 → R , Wext =
√
‖F‖2 − 2 det(F ) .

Then Wext is an extension of W to R2×2, since

W (F ) = λmax − 1
λmax

= |λ1 − λ2| =
√
λ2

1 + λ2
2 − 2λ1 λ2 = Wext(F )

for all F ∈ SL(2). In order to obtain the SL(2)-polyconvexity of W from Lemma B.1, it therefore remains 
to show that Wext is convex. This was first observed by Rosakis and Simpson [37, Lemma 3.1]: since

Wext(F ) =
√

‖F‖2 − 2 detF =
√

F 2
11 + F 2

12 + F 2
21 + F 2

22 − 2 (F11 F22 − F12 F21)

=
√

(F11 − F22)2 + (F12 + F21)2

= 1√
2

∥∥∥∥(F11 − F22 F12 + F21
F12 + F21 F22 − F11

)∥∥∥∥
=

√
2

2

∥∥∥∥( 2F11 F12 + F21
F12 + F21 2F22

)
−

(
F11 + F22 0

0 F11 + F22

)∥∥∥∥
=

√
2 ‖symF − tr F

2 · 1‖ =
√

2 ‖dev2 symF‖ ,
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the function Wext is convex as the composition of the convex function X �→
√

2 ‖X‖ and the linear mapping 
F �→ dev2 symF .

Note carefully that a real valued function W on R2×2 can be represented in terms of the singular values 
of the argument if and only if

W (Q1 F Q2) = W (F ) for all F ∈ GL+(2) and all Q1, Q2 ∈ O(2) , (B.1)

where O(2) = {X ∈ R
2×2 | XTX = 1} denotes the orthogonal group. While the restriction of the function 

Wext to GL+(2) is objective and isotropic in the sense of Equation (2.1), it does not satisfy Equation (B.1), 
since in general Wext(QX) �= Wext(X) �= Wext(XQ) for Q ∈ O(2) \ SO(2). In particular, Wext cannot be 
represented in terms of the singular values of the argument on all of R2×2.8 Thus neither Lemma B.2 nor 
Lemma B.3 is applicable to Wext.
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