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Abstract

For the recently introduced isotropic relaxed micromorphic generalized continuum model, we show
that under the assumption of positive definite energy, planar harmonic waves have real velocity. We also
obtain a necessary and sufficient condition for real wave velocity which is weaker than positive-definiteness
of the energy. Connections to isotropic linear elasticity and micropolar elasticity are established. Notably,
we show that strong ellipticity does not imply real wave velocity in micropolar elasticity, while it does in
isotropic linear elasticity.
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1 Introduction
Investigations of real wave propagation and ellipticity are not new in principle. Indeed, it is textbook knowl-
edge for linear elasticity that positive definiteness of the elastic energy implies real wave velocities (phase
velocities) v = ω/k where ω [Hz] is the angular frequency and k[1/m] ∈ R is the wavenumber of planar prop-
agating waves. In classical elasticity, having real wave velocities is equivalent to rank-one convexity (strong
ellipticity or Legendre-Hadamard ellipticity). Moreover, ellipticity is equivalent to the positive definiteness of
the acoustic tensor. For anisotropic linear elasticity we mention [7], while for anisotropic nonlinear elasticity
we refer the reader to [3, 22,39,40].

The same question of ellipticity and real wave velocities in generalized continuum mechanics has been
discussed for micropolar models, e.g. in [41] and for elastic materials with voids in [8]. For the isotropic
micromorphic model results can be found with respect to positive definite energy and/or real wave velocity
[37, 42], Mindlin [23, 24] and Eringen’s book [11, pp. 277-280]. These latter results present conditions which
are neither easily verifiable nor are truly transparent. This is due to a certain lack of mathematical structure
of the classical micromorphic model. Indeed, the implication that positive definiteness of the energy always
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implies real wave velocities is not directly established and demonstrated. In this paper we investigate the
relaxed micromorphic model in terms of conditions for real wave velocities for planar waves and establish a
necessary and sufficient conditions for this to happen.

This paper is organized as follows. We shortly recall the basics of the relaxed micromorphic model and
discuss the wave propagation problem for propagating planar waves. Since we deal with an isotropic model,
we can, without loss of generality, assume wave propagation in one specific direction only. The dispersion
relations are then obtained and real wave-velocities under assumption of uniform-positiveness of the elastic
energy are established.

We next present a set of necessary and sufficient conditions for real wave-velocities in the relaxed mi-
cromorphic model which is weaker than positivity of the energy, as the strong ellipticity condition is with
respect to positive definiteness of the energy in the case of linear elasticity. Then, for didactic purposes,
we repeat the analysis for isotropic linear elasticity in order to see relations of our necessary and sufficient
condition to the strong ellipticity condition in linear elasticity. Similarly, we discuss micropolar elasticity and
establish necessary and sufficient conditions for real wave propagation. We finally show that strong ellipticity
in micropolar and micromorphic models is not sufficient for having real wave velocities, when dealing with
plane waves.

2 The relaxed micromorphic model
The relaxed micromorphic model has been recently introduced into continuum mechanics in [31]. In subse-
quent works [18–21], the model has shown its wider applicability compared to the classical Mindlin-Eringen
micromorphic model in diverse areas [1, 11,15,23,24].

The dynamic relaxed micromorphic model counts only 8 constitutive parameters in the (simplified)
isotropic case (µe, λe, µmicro, λmicro, µc, Lc, ρ, η). The simplification consists in assuming one scalar
micro-inertia parameter η and a uni-constant curvature expression. The characteristic length Lc is intrinsi-
cally related to non-local effects due to the fact that it weights a suitable combination of first order space
derivatives of the microdistorion tensor in the strain energy density (1). For a general presentation of the
features of the relaxed micromorphic model in the anisotropic setting, we refer to [4].

2.1 Elastic energy density
The relaxed micromorphic model couples the macroscopic displacement u ∈ R3 and an affine substructure
deformation attached at each macroscopic point encoded by the micro-distortion field P ∈ R3×3. Our
novel relaxed micromorphic model endows Mindlin-Eringen’s representation of linear micromorphic models
with the second order dislocation density tensor α = −CurlP instead of the full gradient ∇P .7 In the
isotropic hyperelastic case the elastic energy reads

W = µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2

+ µc ‖ skew (∇u − P )‖2 (1)

+ µmicro ‖ symP‖2 +
λmicro

2
(trP )

2
+
µe L

2
c

2
‖CurlP‖2

= µe ‖ dev sym (∇u − P )‖2 +
2µe + 3λe

3
(tr (∇u − P ))

2︸ ︷︷ ︸
isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

+ µmicro ‖ dev symP‖2 +
2µmicro + 3λmicro

3
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µe L

2
c

2
‖CurlP‖2︸ ︷︷ ︸

simplified isotropic curvature

,

where the parameters and the elastic stress are analogous to the standard Mindlin-Eringen micromorphic
model. The model is well-posed in the statical and dynamical case even for zero Cosserat couple modulus
µc = 0, see [13, 30]. In that case, it is non-redundant in the sense of [38]. Well-posedness results for the

7The dislocation tensor is defined as αij = − (CurlP )ij = −Pih,kεjkh, where ε is the Levi-Civita tensor.
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statical and dynamical cases have been provided in [31] making decisive use of recently established new
coercive inequalities, generalizing Korn’s inequality to incompatible tensor fields [5, 6, 34–36].

Strict positive definiteness of the potential energy is equivalent to the following simple relations for the
introduced parameters [31]:

µe > 0, µc > 0, 2µe + 3λe > 0, µmicro > 0, 2µmicro + 3λmicro > 0, Lc > 0. (2)

As for the kinetic energy, we consider that it takes the following (simplified) form

J =
ρ

2
‖u,t‖2 +

η

2
‖P,t‖2 ,︸ ︷︷ ︸

simplified micro− inertia

(3)

where ρ > 0 is the value of the averaged macroscopic mass density of the considered material, while η > 0 is
its micro-inertia density.

For very large sample sizes, a scaling argument shows easily that the relative characteristic length scale
Lc of the micromorphic model must vanish. Therefore, we have a way of comparing a classical first gradient
formulation with the relaxed micromorphic model and to offer an a priori relation between the microscopic
parameters λe, λmicro, µe, µmicro on the one side and the resulting macroscopic parameters λmacro, µmacro on
the other side [4, 26,29]. We have

(2µmacro + 3λmacro) =
(2µe + 3λe) (2µmicro + 3λmicro)

(2µe + 3λe) + (2µmicro + 3λmicro)
, µmacro =

µe µmicro

µe + µmicro
, (4)

where µmacro, λmacro are the moduli obtained for Lc → 0.
For future use we define the elastic bulk modulus κe, the microscopic bulk modulus κmicro and the

macroscopic bulk modulus κmacro, respectively:

κe =
2µe + 3λe

3
, κmicro =

2µmicro + 3λmicro

3
, κmacro =

2µmacro + 3λmacro

3
. (5)

In terms of these moduli, strict positive-definiteness of the energy is equivalent to:

µe > 0, µc > 0, κe > 0, µmicro > 0, κmicro > 0, Lc > 0. (6)

If strict positive-definiteness (6) holds we can write the macroscopic consistency conditions as:

κmacro =
κe κmicro

κe + κmicro
, µmacro =

µe µmicro

µe + µmicro
, (7)

and, again under condition (6)

κe =
κmicro κmacro

κmicro − κmacro
, κmicro =

κe κmacro

κe − κmacro
, µe =

µmicro µmacro

µmicro − µmacro
, µmicro =

µe µmacro

µe − µmacro
. (8)

Here, strict positivity (6) implies that:

κe + κmicro > 0, µe + µmicro > 0, κe > κmacro, κmicro > κmacro, µe >µmacro, (9)
µmicro > µmacro.

Since it is useful in what follows we explicitly remark that:

2µe + λe =
4

3
µe +

2µe + 3λe
3

=
4

3
µe + κe =

4µe + 3κe
3

, 2µmicro + λmicro =
4µmicro + 3κmicro

3
. (10)

With these relationship, it is easy to show how µe > 0 and κe > 0 imply 2µe + λe > 0. Moreover, as shown
in the appendix (equations (91) and (92)), we note here that if only µe + µmicro > 0 and κe + κmicro > 0,
then the macroscopic parameters are less or equal than respective microscopic parameters, namely:

κe ≥ κmacro, κmicro ≥ κmacro µe ≥ µmacro, µmicro ≥ µmacro, (11)

and moreover the following inequalities are satisfied:

2µe + λe ≥ 2µmacro + λmacro, 2µmicro + λmicro ≥ 2µmacro + λmacro,
4µmacro + 3κe

3
≥ 2µmacro + λmacro.

(12)

Note that the Cosserat couple modulus µc [27] does not appear in the introduced scale between micro and
macro.
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2.2 Dynamic formulation
The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary action. The
dynamical equilibrium equations are:

ρ u,tt = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

ηP,tt = − µe L2
c Curl CurlP + 2µe sym (∇u − P ) + 2µc skew (∇u − P ) (13)

+ λe tr (∇u − P )1− [2µmicro symP + λmicro tr (P )1] .

Sufficiently far from a source, dynamic wave solutions may be treated as planar waves. Therefore, we now
want to study harmonic solutions traveling in an infinite domain for the differential system (13). To do so,
we define:

PS :=
1

3
tr (P ) , P[ij] := ( skewP )ij =

1

2
(Pij − Pji) , (14)

PD := P11 − PS , P(ij) := ( symP )ij =
1

2
(Pij + Pji) ,

PV := P22 − P33

and we introduce the unknown vectors

v1 =
(
u1, P

D, PS
)

vτ =
(
uτ , P(1τ), P[1τ ]

)
, τ = 2, 3, v4 =

(
P(23), P[23], P

V
)
. (15)

We suppose that the space dependence of all introduced kinematic fields are limited to a direction defined
by a unit vector ξ̃ ∈ R3, which is the direction of propagation of the wave. Hence, we look for solutions of
(13) in the form:

v1 = β ei(k〈ξ̃, x〉R3−ωt)︸ ︷︷ ︸
longitudinal

, vτ = γ τei(k〈ξ̃, x〉R3−ωt)︸ ︷︷ ︸
transversal

, τ = 2, 3, v4 = γ 4ei(k〈ξ̃, x〉R3−ωt)︸ ︷︷ ︸
uncoupled

. (16)

Since our formulation is isotropic, we can, without loss of generality, specify the direction ξ̃ = e1. Then
X = 〈e1, x〉 = x1, and we obtain that the space dependence of all introduced kinematic fields are limited to
the component X which is the direction of propagation of the wave8. This means that we look for solutions
in the form:

v1 = β ei(kX−ωt)︸ ︷︷ ︸
longitudinal

, vτ = γ τei(kX−ωt)︸ ︷︷ ︸
transversal

, τ = 2, 3, v4 = γ 4ei(kX−ωt)︸ ︷︷ ︸
uncoupled

, (17)

where β = (β1, β2, β3)T ∈ C3, γτ = (γτ1 , γ
τ
2 , γ

τ
3 )T ∈ C3 and γ4 = (γ41 , γ

4
2 , γ

4
3)T ∈ C3 are the unknown

amplitudes of the considered waves9, k is the wavenumber and ω is the wave-frequency. Replacing these
expressions in equations (13), it is possible to express the system (see [19,20]) as:

A1 · β = 0, Aτ · γτ = 0, τ = 2, 3, A4 · γ4 = 0, (18)
8In an isotropic model it is clear that there is no direction dependence. More specifically, let us consider an arbitrary direction

ξ̃ ∈ R3. Now we consider an orthogonal spatial coordinate change Qe1 = ξ̃ with Q ∈ SO(3). In the rotated variables, the
ensuing system of pde’s (13) is form-invariant, see [25].

9Here, we understand that having found the (in general, complex) solutions of (17) only the real or imaginary parts separately
constitute actual wave solutions which can be observed in reality.
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with

A1(ω, k) =


−ω2 + c2p k

2 i k 2µe/ρ i k (2µe + 3λe) /ρ

−i k 4
3 µe/η −ω2 + 1

3k
2c2m + ω2

s − 2
3 k

2c2m

− 1
3 i k (2µe + 3λe) /η − 1

3 k
2 c2m −ω2 + 2

3 k
2 c2m + ω2

p

 , (19)

A2(ω, k) = A3(ω, k) =


−ω2 + k2c2s i k 2µe/ρ −i k η

ρω
2
r ,

− i k µe/η, −ω2 +
c2m
2 k

2 + ω2
s

c2m
2 k

2

i
2 ω

2
r k

c2m
2 k

2 −ω2 +
c2m
2 k

2 + ω2
r

 , (20)

A4(ω, k) =


−ω2 + c2m k

2 + ω2
s 0 0

0 −ω2 + c2m k
2 + ω2

r 0

0 0 −ω2 + c2m k
2 + ω2

s

 . (21)

Here, we have defined:

cm =

√
µe L2

c

η
, cs =

√
µe + µc

ρ
, cp =

√
2µe + λe

ρ
,

ωs =

√
2 (µe + µmicro)

η
, ωp =

√
(2µe + 3λe) + (2µmicro + 3λmicro)

η
, ωr =

√
2µc
η
,

ωl =

√
2µmicro + λmicro

η
, ωt =

√
µmicro

η
.

Let us next define the diagonal matrix:

diag1 =

 √ρ 0 0

0 i
√
6η
2 0

0 0 i
√

3η

 . (22)

Considering γ = diag1 · β and the matrix A1(ω, k) = diag1 ·A1(ω, k) · diag−11 , it is possible to formulate the
problem (18) equivalently as10:

A1 · γ =


−ω2 + c2p k

2 2
√
6

3 k µe/
√
ρη

√
3
3 k (2µe + 3λe) /

√
ρη

2
√
6

3 k µe/
√
ρη −ω2 + 1

3k
2c2m + ω2

s −
√
2
3 k2c2m

√
3
3 k (2µe + 3λe) /

√
ρη −

√
2
3 k2 c2m −ω2 + 2

3 k
2 c2m + ω2

p


 γ1

γ2
γ3

 = 0. (23)

10It is possible to face the problem in two more equivalent ways. The first one is to consider from the start that the amplitudes
of the micro-distortion field are multiplied by the imaginary unit i, i.e. β = (β1, i β2, i β3)T ∈ C3, as done in [23, p. 24, eq. 8.6].

Doing so, we obtaining a real matrix that can be symmetrized with diag1 =

 √
ρ 0 0

0
√
6η
2

0
0 0

√
3η

. On the other hand, it is

also possible to consider from the beginning β = (
√
ρβ1, i

√
6η
2

β2, i
√
3η β3)T ∈ C3 obtaining directly a real symmetric matrix.
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Analogously considering

diag2 =

 √ρ 0 0
0 i

√
2η 0

0 0 i
√

2η

 , (24)

it is possible to obtain A2(ω, k) = A3(ω, k) = diag2 ·A2(ω, k) · diag−12

A2(ω, k) = A3(ω, k) =


−ω2 + k2c2s k

√
2µe/

√
ρη −k

√
2µc/

√
ρη,

k
√

2µe/
√
ρη, −ω2 +

c2m
2 k

2 + ω2
s

c2m
2 k

2

−k
√

2µc/
√
ρη

c2m
2 k

2 −ω2 +
c2m
2 k

2 + ω2
r

 . (25)

In order to have non-trivial solutions of the algebraic systems (18), one must impose that

detA1(ω, k) = 0, detA2(ω, k) = detA3(ω, k) = 0, detA4(ω, k) = 0, (26)

the solution of which allow us to determine the so-called dispersion relations ω = ω (k) for the longitudinal
and transverse waves in the relaxed micromorphic continuum, see Figure 111.

(a) detA4(ω, k) = 0 (b) detA1(ω, k) = 0 (c) detA2(ω, k) = 0

Figure 1: Dispersion relations ω = ω(k) [18] for the relaxed micromorphic model with non-vanishing
Cosserat couple modulus µc > 0. Uncoupled waves (a), longitudinal waves (b) and transverse waves (c).
TRO: transverse rotational optic, TSO: transverse shear optic, TCVO: transverse constant-volume optic,
LA: longitudinal acoustic, LO1-LO2: 1st and 2nd longitudinal optic, TA: transverse acoustic, TO1-TO2: 1st

and 2nd transverse optic.

For solutions ω = ω(k) of (26) we define the

phase velocity: v =
ω

k
, group velocity:

dω(k)

dk
. (27)

Real wave numbers k ∈ R correspond to propagating waves, while complex values of k are associated with
waves whose amplitude either grows or decays along the coordinate X. In linear elasticity, phase velocity
and group velocity coincide since there is no dispersion and both are real, see section 3.

Since in this paper we are only interested in real k, the wave velocity (phase velocity) is real if and only if ω
is real.

11The formal limit η → +∞ shows no dispersion at all giving two pseudo-acoustic linear curves, longitudinal and transverse
with slopes cp =

√
(2µe + λe)/ρ and cs =

√
(µe + µc)/ρ, respectively.
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Since ω2 appears on the diagonal only, the problem (26) can be analogously expressed as an eigenvalue-
problem:

det
(
B1(k)− ω2 1

)
= 0, det

(
B2(k)− ω2 1

)
= 0, (28)

det
(
B3(k)− ω2 1

)
= 0, det

(
B4(k)− ω2 1

)
= 0,

where

B1(k) =


c2p k

2 2
√
6

3 k µe/
√
ρη

√
3
3 k (2µe + 3λe) /

√
ρη

2
√
6

3 k µe/
√
ρη 1

3k
2c2m + ω2

s −
√
2
3 k2c2m

√
3
3 k (2µe + 3λe) /

√
ρη −

√
2
3 k2 c2m + 2

3 k
2 c2m + ω2

p

 , (29)

B2(k) = B3(k) =


k2c2s k

√
2µe/

√
ρη −k

√
2µc/

√
ρη,

k
√

2µe/
√
ρη,

c2m
2 k

2 + ω2
s

c2m
2 k

2

−k
√

2µc/
√
ρη

c2m
2 k

2 c2m
2 k

2 + ω2
r

 , (30)

B4(k) =


c2m k

2 + ω2
s 0 0

0 c2m k
2 + ω2

r 0

0 0 c2m k
2 + ω2

s

 . (31)

Note that B1(k), B2(k), B3(k) and B4(k) are real symmetric matrices and therefore the resulting eigenvalues
ω2 are real. Obtaining real wave velocities is tantamount to having ω2 ≥ 0 for all solutions of (28).

2.3 Necessary and sufficient conditions for real wave propagation
We will show next that all the eigenvalues ω2 of B1(k), B2(k) and B3(k) are real and positive for every k 6= 0
and non-negative for k = 0 provided certain conditions on the material coefficients are satisfied. Sylvester’s
criterion states that a Hermitian matrix M is positive-definite if and only if the leading principal minors are
positive [14]. For the matrix B1 the three principal minors are:

(B1)11 =
2µe + λe

ρ
, (32)

(Cof (B1))33 =
k2

3ηρ

[
6(2µe + λe)µmicro + 6µe κe + (2µe + λe)µe L

2
ck

2
]

(33)

=
k2

3ηρ

[
2 (4µmacro + 3κe) (µe + µmicro) + (2µe + λe)µe L

2
ck

2
]
,

det (B1) =
k2

η2ρ

[
6κe κmicro (µe + µmicro) + 8µeµmicro(κe + κmicro) + (2µe + λe)(2µmicro + λmicro)µe L

2
c k

2

]
(34)

=
k2

η2ρ

[
6 (κe + κmicro)

(
µe + µmicro

)(
2µmacro + λmacro

)
+
(
2µe + λe

)(
2µmicro + λmicro

)
µe L

2
c k

2
]
.

The three principal minors of B1 are clearly positive for k 6= 0 if12:

µe > 0, µmicro > 0, κe + κmicro > 0, 2µmacro + λmacro > 0, (35)
4µmacro + 3κe > 0, 2µe + λe > 0, 2µmicro + λmicro > 0.

12We note here that 4µmacro+3κe > 0 ⇐⇒ 2µe+λe >
4
3
(µe−µmacro) ⇐⇒ 2µmacro+λmacro > κmacro−κe. Furthermore,

if µe + µmicro > 0 and κe + κmicro > 0, we have 3 (2µe + λe) ≥ 4µmacro + 3κe ≥ 3 (2µmacro + λmacro), see Appendix.
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Similarly, for the matrix B2 the three principal minors are:

(B2)11 =
µe + µc

ρ
, (36)

(Cof (B2))33 =
k2

2ηρ

[
4 (µe µc + µmicro(µe + µc) + (µe + µc)µe L

2
ck

2
]
. (37)

det (B2) =
k2

η2ρ

[
4µmicro µc µe + (µe + µc)µmicro µe L

2
ck

2
]
. (38)

For the matrix B2(k) = B3(k), considering positive η, ρ and separating terms in the brackets by looking at
large and small values of k, we can state necessary and sufficient conditions for strict positive-definiteness
of B2(k) at arbitrary k 6= 0:

µe > 0, µmicro > 0, µc ≥ 0. (39)

Since B4(k) is diagonal, it easy to show that positive definiteness is tantamount to the set of necessary and
sufficient conditions for k 6= 0:

µe > 0, µe + µmicro > 0, µc ≥ 0. (40)

On the other hand, considering the case k = 0, we obtain that the matrices reduce to:

B1(0) =

 0 0 0
0 ω2

s 0
0 0 ω2

p

 , B2(0) = B3(0) =

 0 0 0
0 ω2

s 0
0 0 ω2

r

 , B4(0) =

 ω2
s 0 0

0 ω2
r 0

0 0 ω2
s

 . (41)

Since the matrices are diagonal for k = 0, it easy to show that positive semi-definiteness is tantamount to
the set of necessary and sufficient conditions :

µe ≥ 0, µe + µmicro ≥ 0, µc ≥ 0, κe + κmicro ≥ 0. (42)

Hence, we can state a simple sufficient condition for real wave velocities for all real k:

µe > 0, µmicro > 0, κe + κmicro > 0, 2µmacro + λmacro > 0, (43)
4µmacro + 3κe > 0, 2µe + λe > 0, 2µmicro + λmicro > 0.

In order to see a set of global necessary conditions for positivity at arbitrary k 6= 0 we consider first large
and small values of k 6= 0 separately. For k → +∞ we must have:

2µe + λe > 0, (2µe + λe)µe L
2
c > 0, (2µe + λe)(2µmicro + λmicro)µe L

2
c > 0, (44)

or analogously:

2µe + λe > 0, µe L
2
c > 0, 2µmicro + λmicro > 0, (45)

while for k → 0 we must have:

2µe + λe > 0, (4µmacro + 3κe)(µe + µmicro) > 0, (κe + κmicro)(µe + µmicro)(2µmacro + λmacro) > 0.
(46)

Since from (39) we have necessarily µe > 0, µmicro > 0, and from (42) we get κe +κmicro ≥ 0 and considering
together the two limits for k we obtain the necessary condition:

2µe + λe > 0, 2µmicro + λmicro > 0, 4µmacro + 3κe > 0, κe + κmicro > 0, (47)
µe > 0, µmicro > 0, µc ≥ 0, 2µmacro + λmacro > 0.

Inspection shows that (47) is our proposed sufficient condition (35). From µe > 0 and µmicro > 0, it follows
that µmacro > 0. Therefore condition (47) is necessary and sufficient. We have shown our main proposition:
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Proposition (real wave velocities). The dynamic relaxed micromorphic model (eq. (13)) admits real planar
waves if and only if

µc ≥ 0, µe > 0, 2µe + λe > 0, (48)
µmicro > 0, 2µmicro + λmicro > 0,

(µmacro > 0), 2µmacro + λmacro > 0,

κe + κmicro > 0, 4µmacro + 3κe > 0. �

In (48) the requirement µmacro > 0 is redundant, since it is already assumed that µe, µmicro > 0. It is clear
that positive definiteness of the elastic energy (2) implies (48). We remark that, as shown in the appendix
7.1, the set of inequalities (48) is already implied by:

µe > 0, µmicro > 0, µc ≥ 0, κe + κmicro > 0, 2µmacro + λmacro > 0. (49)

Letting finally µmicro → +∞ and κmicro → +∞ (or µmicro → +∞ and λmicro > const.) generates the limit
condition for real wave velocities (µe → µmacro)

µmacro > 0, µc ≥ 0, 2µmacro + λmacro > 0. (50)

which coincides, up to µc, with the strong ellipticity condition in isotropic linear elasticity, see section 3, and
it coincides fully with the condition for real wave velocities in micropolar elasticity, see section 4. A condition
similar to (50) can be found in [23, eq. 8.14 p. 26] where Mindlin requires that µmacro > 0, 2µmacro+λmacro >
013 (in our notation) which are obtained from the requirement of positive group velocity at k = 0

dωacoustic, long(0)

dk
> 0,

dωacoustic, trans(0)

dk
> 0. (51)

Let us emphasize that our method is not easily generalized to two immediate extensions. First, one could
be interested in the isotropic relaxed micromorphic model with weighted inertia contributions and weighted
curvatures [9]. Second, one could be interested in the anisotropic setting [4]. In both cases the block-structure
of the problem will be lost and one has to deal with the full 12×12 case, see equation (112) in the Appendix.
Nonetheless, we expect positive-definiteness to always imply real wave propagation.

In [9] we show that the tangents of the acoustic branches in k = 0 in the dispersion curves are

cl =
dωacoustic, long(0)

dk
=

√
2µmacro + λmacro

ρ
, ct =

dωacoustic, trans(0)

dk
=

√
µmacro

ρ
. (52)

The tangents coincide with the classical linear elastic response if the latter has Lamé constants µmacro and
λmacro, as it is shown in Figure 2.

3 A comparison: classical isotropic linear elasticity
For classical linear elasticity with isotropic energy and kinetic energy:

W (∇u ) = µmacro ‖ sym (∇u )‖2 +
λmacro

2
(tr (∇u ))

2
, J =

ρ

2
‖u,t‖2 . (53)

The positive definiteness of the energy is equivalent to:

µmacro > 0, 2µmacro + 3λmacro > 0. (54)

It is easy to see that our homogenization formula (4) implies (54) under condition of positive definiteness of
the relaxed micromorphic model.

13Mindlin explains that such parameters “are less than those that would be calculated from the strain-stiffnesses [of the unit
cell]. This phenomenon is due to the compliance of the unit cell and has been found in a theory of crystal lattices by Gazis and
Wallis [12]”.

9



(a) (b)

Figure 2: Dispersion relations ω = ω(k) for the longitudinal acoustic wave LA, and the transverse acoustic
TA in the relaxed micromorphic model (a) and in a classical Cauchy medium (b).

The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary action. The
dynamical equilibrium equations are:

ρ u,tt = Div [2µmacro sym (∇u ) + λmacro tr (∇u )1] . (55)

As before, in our study of wave propagation in micromorphic media we limit ourselves to the case of plane
waves traveling in an infinite domain. We suppose that the space dependence of all introduced kinematic
fields are limited to a direction defined by a unit vector ξ̃ ∈ R3 which is the direction of propagation of the
wave. Therefore, we look for solutions of (55) in the form:

u(x, t) = û ei(k〈ξ̃, x〉R3−ω t) , û ∈ C3 , ‖ξ̃‖2 = 1 . (56)

Since our formulation is isotropic, we can, without loss of generality, specify the direction ξ̃ = e1. Then
X = 〈e1, x〉 = x1, and we obtain:

u(x, t) = û ei(kX−ω t) , û ∈ C3 . (57)

With this ansatz it is possible to write (55) as:

A5(e1, ω, k) û = 0 ⇐⇒ (B(e1, k)− ω2 1) û = 0 , (58)

where:

A5(e1, ω, k) =

( 2µmacro+λmacro

ρ k2 − ω2 0 0

0 µmacro

ρ k2 − ω2 0

0 0 µmacro

ρ k2 − ω2

)
, (59)

B(e1, k) =
k2

ρ

( 2µmacro + λmacro 0 0
0 µmacro 0
0 0 µmacro

)
. (60)

Here, we observe that A5(e1, ω, k) is already diagonal and real. Requesting real wave velocities means
ω2 ≥ 0. For k 6= 0, this leads to the classical so-called strong ellipticity condition:

µmacro > 0, 2µmacro + λmacro > 0, (61)

which is implied by positive definiteness of the energy (54).
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In classical (linear or nonlinear) elasticity, the condition of real wave propagation (61) is equivalent to
strong ellipticity and rank-one convexity. Indeed, rank-one convexity amounts to set (ξ = kξ̃ with
‖ξ‖2 = 1):

d2

dt2

∣∣∣∣
t=0

W (∇u + t û ⊗ ξ) ≥ 0 ⇐⇒ 〈C (û ⊗ ξ) , û ⊗ ξ〉 ≥ 0, (62)

where C is the fourth-order elasticity tensor. Condition (62) reads then:

0 ≤ 2µmacro ‖ sym (û ⊗ ξ)‖2 + λmacro (tr (û ⊗ ξ))2 = µmacro ‖û‖2‖ξ‖2 + (µmacro + λmacro)〈û, ξ〉2.

We may express (63) given ξ ∈ R3 as a quadratic form in û ∈ R3, which results in:

µmacro ‖û‖2‖ξ‖2 + (µmacro + λmacro)〈û, ξ〉2 = 〈D(ξ)û, û〉, (63)

where the components of the symmetric and real 3× 3 matrix D(ξ) read

D(ξ) =

( (2µmacro + λmacro)ξ21 + µmacro(ξ22 + ξ23) (λmacro + µmacro)ξ1 ξ2
(λmacro + µmacro)ξ1 ξ2 (2µmacro + λmacro)ξ22 + µmacro(ξ21 + ξ23)
(λmacro + µmacro)ξ1 ξ3 (λmacro + µmacro)ξ1ξ2

(64)

(λmacro + µmacro)ξ1 ξ3
(λmacro + µmacro)ξ2 ξ3

2µmacro + λmacro)ξ23 + µmacro(ξ21 + ξ22)

)
.

The three principal invariants are independent of the direction ξ due to isotropy and are given by:

tr (D(ξ)) = ‖ξ‖2(4µmacro + λmacro) = k2(4µmacro + λmacro),

tr (Cof D(ξ)) = ‖ξ‖4µmacro(5µmacro + 2λmacro) = k4µmacro(5µmacro + 2λmacro), (65)

det(D(ξ)) = ‖ξ‖6µ2
macro(2, µmacro + λmacro) = k6µ2

macro(2µmacro + λmacro).

Since D(ξ) is real and symmetric, its eigenvalues are real. The eigenvalues of the matrix D(ξ) are
k2(2µmacro + λmacro), k2µmacro and k2µmacro such that positivity at k 6= 0 is satisfied if and only if14:

µmacro > 0, 2µmacro + λmacro > 0, (66)

which are the usual strong ellipticity conditions. We note here that the latter calculations also show that
B(e1) = 1

ρ k
2D(e1). Alternatively, one may directly form the so-called acoustic tensor B(ξ) ∈ R3×3 by

B(ξ).û := [C.(û⊗ ξ)].ξ, ∀û ∈ R3, (67)

in indices we have (B(ξ))ij = Cikjlûkûl 6= C.(ξ ⊗ ξ). With (67) we obtain15:

〈û, B(ξ).û〉R3 = 〈[C.(û⊗ ξ)]︸ ︷︷ ︸
=:B̂∈R3×3

ξ, û〉R3 = 〈B̂ ξ, û〉R3 = 〈B̂ (ξ ⊗ û),1〉R3×3 = 〈B̂, (ξ ⊗ û)T 〉R3×3 (68)

= 〈B̂, û⊗ ξ〉R3×3 = 〈C (û⊗ ξ), û⊗ ξ〉R3×3 ,

and we see that strong ellipticity 〈C (û ⊗ ξ), û ⊗ ξ〉R3×3 > 0 is equivalent to the positive definiteness of the
acoustic tensor B(ξ).

14The eigenvalues of D(ξ) are independent of the propagation direction ξ ∈ R3 which makes sense for the isotropic formulation
at hand.

15[C(û⊗ ξ)](û⊗ ξ) 6= C[(û⊗ ξ)(û⊗ ξ)].
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4 A further comparison: the Cosserat model
In the isotropic hyperelastic case the elastic energy density and the kinetic energy of the Cosserat model
read:

W = µmacro ‖ sym (∇u )‖2 + µc ‖ skew (∇u −A)‖2 +
λmacro

2
(tr (∇u ))

2
+
µmacroL

2
c

2
‖CurlA‖2, (69)

J =
ρ

2
‖u,t‖2 +

η

2
‖A,t‖2 ,

where A ∈ so(3), can be expressed as a function of a ∈ R3 as:

A = anti(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (70)

Here, we assume for clarity a uni-constant curvature expression in terms of only ‖CurlA‖2. Strict positive
definiteness of the potential energy is equivalent to the following simple relations for the introduced parameters

2µmacro + 3λmacro > 0, µmacro > 0, µc > 0, Lc > 0. (71)

The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary action. The
dynamical equilibrium equations are:

ρ u,tt = Div [2µmacro sym (∇u −A) + 2µc skew (∇u −A) + λmacro tr (∇u −A)1] ,

ηA,tt = − µmacroL
2
c Curl CurlA+ 2µc skew (∇u −A) ,

see also [16, 17, 32, 33] for formulations in terms of axial vectors. Considering plane and stationary waves of
amplitudes û and â, it is possible to express this system as:

A6(ω, k) ·
(
û1 â1

)T
= 0, A7(ω, k) ·

(
û2 −â3

)T
= 0, A7(ω, k) ·

(
û3 â2

)T
= 0, (72)

where

A6(ω, k) =

(
k2(2µmacro + λmacro))/ρ− ω2 0

0 (2µmacroL
2
ck

2 + 2µc)/η − ω2

)
, (73)

A7(ω, k) =

(
k2(µmacro + µc)/ρ− ω2 −2ikµc/ρ

ikµc/η (k2µmacroL
2
c + 4µc)/(2η)− ω2

)
. (74)

As done in the case of the relaxed micromorphic model, it is possible to express equivalently the problem
with A6(ω, k) and the following symmetric matrix:

A7(k) = diag7 ·A7(ω, k) · diag−17 =

(
k2(µmacro + µc)/ρ− ω2

√
2kµc/

√
ρη√

2kµc/
√
ρη (k2µmacroL

2
c + 4µc)/(2η)− ω2

)
, (75)

where

diag7 =

( √
ρ 0

0 i
√

2η

)
. (76)

Since ω2 appears only on the diagonal, the problem can be analogously expressed as the following eigenvalue-
problems:

det
(
B6(k)− ω2 1

)
= 0, det

(
B7(k)− ω2 1

)
= 0, (77)

where

B6(k) =

(
k2(2µmacro + λmacro))/ρ 0

0 (2µmacroL
2
ck

2 + 2µc)/η
2

)
, (78)

B7(k) =

(
k2(µmacro + µc)/ρ

√
2kµc/

√
ρη√

2kµc/
√
ρη (k2µmacroL

2
c + 4µc)/(2η)

)
, (79)
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are the blocks of the acoustic tensor B

B(k) =

 B6 0 0
0 B7 0
0 0 B7

 . (80)

The eigenvalues of the matrix B6(k) are simply the elements of the diagonal, therefore we have:

ωacoustic, long(k) = k

√
2µmacro + λmacro

ρ
, ωoptic, long(k) =

√
2µmacroL2

ck
2 + 2µc

η
, (81)

while for B7(k) it is possible to find:

ωacoustic, trans(k) =

√
a(k)−

√
a(k)2 − b2k2, ωoptic, trans(k) =

√
a(k) +

√
a(k)2 − b2k2, (82)

where we have set:

a(k) =
4µc + µmacroL

2
ck

2

η
+ 2

µmacro + µc
ρ

k2, b2 = 8
µmacro(4µc + k2L2

c(µmacro + µc))

ρ η
. (83)

The acoustic branches are those curves ω = ω(k) as solutions of (76) that satisfy ω(0) = 0. We note here
that the acoustic branches of the longitudinal and transverse dispersion curves have as tangent in k = 016

cl =
dωacoustic, long(0)

dk
=

√
2µmacro + λmacro

ρ
, ct =

dωacoustic, trans(0)

dk
=

√
µmacro

ρ
, (84)

respectively. Moreover, the longitudinal acoustic branch is non-dispersive, i.e. a straight line with slope
(84)1. The matrix B6(k) is positive-definite for arbitrary k 6= 0 if:

2µmacro + λmacro > 0, µmacro > 0, µc ≥ 0, (85)

Using the Sylvester criterion, B7(k) is positive-definite if and only if the principal minors are positive, namely:

(B7)11 = k2
(µmacro + µc)

ρ
> 0, (86)

det(B7) =
k2

2ηρ
(4µmacro µc + k2µmacroL

2
c(µmacro + µc)) > 0,

from which we obtain the condition:

µmacro + µc > 0, µmacro > 0, µc ≥ 0. (87)

Considering these two sets of conditions, it is possible to state a necessary and sufficient condition for the
positive definiteness of B6(k) and B7(k) and therefore of the acoustic tensor B(k):

2µmacro + λmacro > 0, µmacro > 0, µc ≥ 0. (88)

which are implied by the positive-definiteness of the energy (71). Eringen [11, p.150] also obtains correctly
(85) and (87) (in his notation µc = κ/2, µmacro = µEringen + κ/2).

In [2, 10] strong ellipticity for the Cosserat-micropolar model is defined and investigated. In this respect
we note that ellipticity is connected to acceleration waves while our investigation concerns real wave velocities
for planar waves. Similarly to [28] it is established in [2, 10] that strong ellipticity for the micropolar model
holds if and only if (the uni-constant curvature case in our notation):

2µmacro + λmacro > 0, µmacro + µc > 0. (89)

We conclude that for micropolar material models, (and therefore also for micromorphic materials) strong
ellipticity (89) is too weak to ensure real planar waves since it is implied by, but does not imply (88). This
fact seems not to have been well appreciated before.

16To obtain the slopes in 0 it is possible to search for a solution of the type ω = a k and then evaluate the limit for a → 0,
see [9] for a thorough explanation in the relaxed micromorphic case.
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7 Appendix
7.1 Inequality relations between material parameters
The formulas in section 2.1 are based on the harmonic mean of two numbers κe and κmicro (or µe and µmicro). If the two
numbers are positive, it is easy to see that:

κmacro ≤ min(κe, κmicro). (90)

Here, we show that the same conclusion still holds if we merely assume that κe + κmicro > 0. This allows for either κe < 0 or
κmicro < 0. Therefore, considering that κe + κmicro > 0, even if the energy is not strictly positive, it is possible to derive that:

κmacro =
κmicro κe

κe + κmicro
=
κmicro κe + κ2e − κ2e

κe + κmicro
= κe

κmicro + κe

κe + κmicro
−

κ2e
κe + κmicro

= κe−
κ2e

κe + κmicro︸ ︷︷ ︸
≤0

≤ κe, (91)

κmacro =
κmicro κe

κe + κmicro
=
κmicro κe + κ2micro − κ

2
micro

κe + κmicro
= κmicro

κmicro + κe

κe + κmicro
−

κ2micro

κe + κmicro
= κmicro−

κ2micro

κe + κmicro︸ ︷︷ ︸
≤0

≤ κmicro.

15



Considering similarly µe + µmicro > 0, it is possible to obtain:

µmacro =
µmicro µe

µe + µmicro
=
µmicro µe + µ2e − µ2e

µe + µmicro
= µe

µmicro + µe

µe + µmicro
−

µ2e
µe + µmicro

= µe−
µ2e

µe + µmicro︸ ︷︷ ︸
≤0

≤ µe, (92)

µmacro =
µmicro µe

µe + µmicro
=
µmicro µe + µ2micro − µ

2
micro

µe + µmicro
= µmicro

µmicro + µe

µe + µmicro
−

µ2micro

µe + µmicro
= µmicro−

µ2micro

µe + µmicro︸ ︷︷ ︸
≤0

≤ µmicro.

Therefore, if µe + µmicro > 0 and κe + κmicro > 0, the macroscopic parameters are less or equal than respective microscopic
parameters, namely:

κe ≥ κmacro, κmicro ≥ κmacro µe ≥ µmacro, µmicro ≥ µmacro, (93)

and it is possible to show that:

2µe + λe =
1

3
(4µe + 3κe) ≥

1

3
(4µmacro + 3κmacro) = 2µmacro + λmacro > 0,

2µmicro + λmicro =
1

3
(4µmicro + 3κmicro) ≥

1

3
(4µmacro + 3κmacro) = 2µmacro + λmacro > 0, (94)

(2µe + λe) + (2µmicro + λmicro) ≥ 2 (2µmacro + λmacro) > 0,

4µmacro + 3κe ≥ 4µmacro + 3κmacro = 3 (2µmacro + λmacro) > 0.

Therefore, the set of inequalities (48) is implied from the smaller set:

µe > 0, µmicro > 0, µc ≥ 0, κe + κmicro > 0, 2µmacro + λmacro > 0. (95)

We note here that 3 (2µe + λe) ≥ 4µmacro + 3κe ≥ 3 (2µmacro + λmacro) because:

3 (2µe + λe) = 4µe + 3κe ≥ 4µmacro + 3κe ≥ 4µmacro + 3κmacro = 3 (2µmacro + λmacro). (96)

7.2 The 12× 12 acoustic tensor for arbitrary direction
We suppose that the space dependence of all introduced kinematic fields are limited to a direction defined by a unit vector ξ
which is the direction of propagation of the wave. Therefore, we look for solutions of:

ρ u,tt =Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

ηP,tt = − µe L2
c CurlCurlP + 2µe sym (∇u − P ) + 2µc skew (∇u − P ) (97)

+ λe tr (∇u − P )1 − [2µmicro symP + λmicro tr (P )1] ,

in the form:

u(x, t) = û ei(k〈ξ, x〉R3−ω t)︸ ︷︷ ︸
s(x,t)∈R/C scalar

, û ∈ C3 , ‖ξ‖2 = 1 , (98)

P (x, t) = P̂ ei(k〈ξ, x〉R3−ω t)︸ ︷︷ ︸
s(x,t)∈R/C scalar

, P̂ ∈ C3×3 .

We start by remarking that considering A,B ∈ R3×3 we have that:

Curl(A ·B) = LB(∇A) +A · Curl(B), (99)

therefore we obtain:

Curlx(P̂ · s(x, t)) = Curl(P̂ · s(x, t) · 1) = P̂ · Curl(s(x, t)1), (100)

where:

Curl(s(x, t)1) =

 0 ∂3s(x, t) ∂2s(x, t)
−∂3s(x, t) 0 ∂1s(x, t)
∂2s(x, t) −∂1s(x, t) 0

 ∈ so(3). (101)

The derivatives of s(x, t) can be evaluated considering:

∇xs(x, t) =

 ∂1s(x, t)
∂2s(x, t)
∂3s(x, t)

 = ei(k〈ξ, x〉R3−ω t)

 i k ξ1
i k ξ2
i k ξ3

 = ei(k〈ξ, x〉R3−ω t) i k ξ = i k ξ s(x, t). (102)

It can be noticed that:

Curl(s(x, t)1) = anti(∇s(x, t)) = ei(k〈ξ, x〉R3−ω t) i k anti(ξ) = s(x, t) i k anti(ξ). (103)
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Therefore, it is possible to evaluate the CurlCurlP as:

CurlCurl(P̂ s(x, t)) = Curl(P̂ · anti(ξ)︸ ︷︷ ︸
∈so(3)

i k s(x, t)) = i k Curl([P̂ · anti(ξ)] · 1s(x, t)) = i k P̂ · anti(ξ) Curl(1s(x, t)) (104)

= i k i k P̂ · anti(ξ) · anti(ξ) s(x, t) = −k2 P̂ · anti(ξ) · anti(ξ) ei(k〈ξ, x〉R3−ω t).

On the other hand, the second derivative of P with respect to time is:

P,tt = ∂2t (P̂ e
i(k〈ξ, x〉R3−ω t)) = −ω2P̂ ei(k〈ξ, x〉R3−ω t)) = −ω2P̂ s(x, t). (105)

Analogously for u it is possible to evaluate the gradient and the derivatives with respect to time as:

∇xu = i k s(x, t)û⊗ ξ, u,tt = −ω2 û s(x, t). (106)

The sym, skew and tr of ∇u − P can then be expressed as:

sym (∇u − P ) = sym (i k û⊗ ξ − P̂ ) s(x, t) = (i k sym (û⊗ ξ)− sym P̂ ) s(x, t),

skew(∇u − P ) = skew(i k û⊗ ξ − P̂ ) s(x, t) = (i k skew(û⊗ ξ)− skewP̂ ) s(x, t), (107)

tr (∇u − P ) = tr (i k û⊗ ξ − P̂ ) s(x, t) = (i k 〈û, ξ〉 − tr P̂ ) s(x, t).

Therefore, we have:

Div sym (∇u − P ) = Div
[
(i k sym (û⊗ ξ)− sym P̂ ) s(x, t)

]
= (i k sym (û⊗ ξ)− sym P̂ ) · ∇x s(x, t)

= (i k sym (û⊗ ξ)− sym P̂ ) · (i k ξ s(x, t)) = −(k2 sym (û⊗ ξ) · ξ + i k sym P̂ · ξ) s(x, t),

Div skew(∇u − P ) = Div
[
(i k skew(û⊗ ξ)− skewP̂ ) s(x, t)

]
= (i k skew(û⊗ ξ)− skewP̂ ) · ∇x s(x, t) (108)

= (i k skew(û⊗ ξ)− skewP̂ ) · (i k ξ s(x, t)) = −(k2 skew(û⊗ ξ) · ξ + i k skewP̂ · ξ) s(x, t),

Div( tr (∇u − P ) 1) = Div
[(

(i k 〈û, ξ〉 − tr P̂ ) 1
)
s(x, t)

]
= (i k 〈û, ξ〉 − tr P̂ )1 · ∇x s(x, t)

= (i k 〈û, ξ〉 − tr P̂ )1 · (i k ξ s(x, t)) = −(k2 〈û, ξ〉+ i k tr P̂ )ξ s(x, t).

Here, we have used the relationship:

Div[B s(x, t)] = Div[B]︸ ︷︷ ︸
=0

s(x, t) +B · ∇xs(x, t), (109)

where B ∈ R3×3 and s(x, t) is a scalar. With all the formulas obtained it is possible to write (97) simplifying s(x, t) everywhere
as:

−ρω2 û =−
[
2µe (k

2 sym (û⊗ ξ) · ξ + i k sym P̂ · ξ)) + 2µc (k
2 skew(û⊗ ξ) · ξ + i k skewP̂ · ξ)

+ λe(k
2 〈û, ξ〉+ i k tr P̂ ) ξ

]
,

−η ω2P̂ =µe L
2
ck

2 P̂ anti(ξ) · anti(ξ) + 2µe (i k sym (û⊗ ξ)− sym P̂ ) + 2µc (i k skew(û⊗ ξ)− skewP̂ ) (110)

+ λe(i k 〈û, ξ〉 − tr P̂ )1−
[
2µmicro sym P̂ + λmicro tr (P̂ )1

]
,

or analogously:

−ρω2 û+ k2(2µe sym (û⊗ ξ) · ξ + 2µc skew(û⊗ ξ) · ξ + λe 〈û, ξ〉 ξ)

+i k (2µe sym P̂ · ξ + 2µc skewP̂ · ξ + λe tr P̂ ξ) = 0,

−η ω2P̂ − µe L2
ck

2 P̂ anti(ξ) · anti(ξ) + 2(µe + µmicro) sym P̂ + 2µc skewP̂ + (λe + λmicro) tr (P̂ )1 (111)
− 2µe i k sym (û⊗ ξ)− 2µc i k skew(û⊗ ξ)− λei k 〈û, ξ〉1 = 0.

At given ξ ∈ R3, this is a linear system in (û, P̂ ) ∈ C12 which can be written in 12× 12 matrix format as:



Ã(ξ, ω, k)





û1
û2
û3
P̂11

P̂12

P̂13

P̂21

P̂22

P̂23

P̂31

P̂32

P̂33



= 0,



B̃(ξ, k)− ω2 1





û1
û2
û3
P̂11

P̂12

P̂13

P̂21

P̂22

P̂23

P̂31

P̂32

P̂33



=



0
0
0
0
0
0
0
0
0
0
0
0



. (112)
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Here, B̃(ξ, k) is the 12× 12 acoustic tensor. The columns of Ã are:

Ãi1 =



ρω2 − k2(λe + 2µe)ξ21 − k2(µc + µe)(ξ22 + ξ23)
−k2(λe − µc + µe)ξ1ξ2
−k2(λe − µc + µe)ξ1ξ3

ik(λe + 2µe)ξ1
ik(µc + µe)ξ2
ik(µc + µe)ξ3
−ik(µc − µe)ξ2

ikλeξ1
0

−ik(µc − µe)ξ3
0

ikλeξ1



, Ãi2 =



−k2(λe − µc + µe)ξ1ξ2
ρω2 − k2(λe + 2µe)ξ22 − k2(µc + µe)(ξ21 + ξ23)

−k2(λe − µc + µe)ξ2ξ3
ikλeξ2

−ik(µc − µe)ξ1
0

ik(µc + µe)ξ1
ik(λe + 2µe)ξ2
ik(µc + µe)ξ3

0
−ik(µc − µe)ξ3

ikλeξ2



,

Ãi3 =



−k2(λe − µc + µe)ξ1ξ3
−k2(λe − µc + µe)ξ2ξ3

ρω2 − k2(λe + 2µe)ξ23 − k2(µc + µe)(ξ21 + ξ22)
ikλeξ3

0
−ik(µc − µe)ξ1

0
ikλeξ3

−ik(µc − µe)ξ2
ik(µc + µe)ξ1
ik(µc + µe)ξ2
ik(λe + 2µe)ξ3



, Ãi4 =



−ik(λe + 2µe)ξ1
−ikλeξ2
−ikλeξ3

η ω2 − (2(µe + µmicro) + λe + λmicro)− k2µe L2
c(ξ

2
2 + ξ33)

k2µe L2
cξ1ξ2

k2µe L2
cξ1ξ3

0
−(λe + λmicro)

0
0
0

−(λe + λmicro)



,

Ãi5 =



−ik(µc + µe)ξ2
ik(µc − µe)ξ1

0
k2µe L2

cξ1ξ2
η ω2 − (µc + µe + µmicro)− k2µe L2

c(ξ
2
1 + ξ23)

k2µe L2
cξ1ξ2

0
0
0
0
0


, Ãi6 =



−ik(µc + µe)ξ3
0

ik(µc − µe)ξ1
k2µe L2

cξ1ξ3
k2µe L2

cξ2ξ3
η ω2 − (µc + µe + µmicro)− k2µe L2

c(ξ
2
1 + ξ22)

0
0
0

µc − µe − µmicro

0
0



,

Ãi7 =



ik(µc − µe)ξ2
−ik(µc + µe)ξ1

0
0

µc − µe − µmicro

0
η ω2 − (µc + µe + µmicro)− k2µe L2

c(ξ
2
2 + ξ23)

k2µe L2
cξ1ξ2

k2µe L2
cξ1ξ3

0
0
0



, Ãi8 =



−ikλeξ1
−ik(2µe + λe)ξ2
−ikλeξ3

−λe − λmicro

0
0

k2µe L2
cξ1ξ2

η ω2 − (µc + µe + µmicro)− k2µe L2
c(ξ

2
1 + ξ23)

k2µe L2
cξ2ξ3

0
0

−λe − λmicro



,

Ãi9 =



0
−ik(µc + µe)ξ3
ik(µc + µe)ξ2

0
0
0

k2µe L2
cξ1ξ3

k2µe L2
cξ2ξ3

η ω2 − (µc + µe + µmicro)− k2µe L2
c(ξ

2
1 + ξ22)

0
µc − µe − µmicro

0



, Ãi10 =



ik(µc − µe)ξ3
0

−ik(µc + µe)ξ1
0
0

µc − µe − µmicro

0
0
0

η ω2 − (µc + µe + µmicro)− k2µe L2
c(ξ

2
2 + ξ23)

k2µe L2
cξ1ξ2

k2µe L2
cξ1ξ3



,
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Ãi11 =



0
ik(µc − µe)ξ3
−ik(µc + µe)ξ2

0
0
0
0
0

µc − µe − µmicro

k2µe L2
cξ1ξ2

η ω2 − (µc + µe + µmicro)− k2µe L2
c(ξ

2
1 + ξ23)

k2µe L2
cξ2ξ3



, Ãi12 =



−ikλeξ1
−ikλeξ2

−ik(λe + 2µe)ξ3
−λe − λmicro

0
0
0

−λe − λmicro

0
k2µe L2

cξ1ξ3
k2µe L2

cξ2ξ3
η ω2 − (µc + µe + µmicro)− k2µe L2

c(ξ
2
1 + ξ22)



.

It is clear that even with the aid of up-to-date computer algebra systems, it is practically impossible to determine positive-
definiteness of the 12× 12 acoustic tensor B̃ in dependence of the given material parameters. In the main body of our paper we
succeed by choosing immediately the propagation direction ξ = e1 and by considering a set of new variables (14). This allows
us to obtain a certain pre-factorization of B̃(e1, k) in 3 × 3 blocks. Since the formulation is isotropic, choosing ξ = e1 is no
restriction, as argued before.
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