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The Armstrong-Frederick Plasticity model with Cosserat effects
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We propose an extension of equations formulated by Armstrong and Frederick which includes micropolar effects. We study
existence of solutions to the quasistatic Armstrong-Frederick model with Cosserat effects which is still of non-monotone type.
It was shown that the limit in the Yosida approximation process satisfies the energy inequality. The limit functions have a
better regularity than it could be found in the literature, where the original Armstrong-Frederick model was studied.
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1 Formulation of the problem

The original Armstrong-Frederick model describes the inelastic deformation process in metals. It is a modification of Melan-
Prager model, which is well know in the literature and it can be treated as an approximation of the Prandtl-Reuss model. The
modification is to add a nonlinear correction term to the equations for the beckstress. New term entails the L∞- boundedness
of the backstress. This new property is required in many applications, hence the Armstrong-Frederick model is very often
used in practice. Unfortunately there is a drawback: This model is of non-monotone type and not of gradient type and the
mathematical analysis is very difficult.

Here, we want to extension of equations proposed by P.J. Armstrong and C.O. Frederick in the article [1] to include
micropolar effects. From the mechanical results for Cosserat plasticity in the papers [3] and [4] we conclude that we deal
with the following initial-boundary value problem: we are looking for the displacement field u : Ω × [0, T ] → R3, the
microrotation matrix A : Ω × [0, T ] → so(3) (so(3) is the set of skew-symmetric 3 × 3 matrices) and the vector of internal
variables z = (εp, b) : Ω× [0, T ]→ S3

dev × S3
dev (εp describes the inelastic part of deformation, b is the so-called backstress

tensor and the space S3
dev denotes the set of symmetric 3× 3 - matrices with vanishing trace) satisfying the following system

of equations

divxT = −f ,
T = 2µ(ε(u)− εp) + 2µc(skew(∇xu)−A) + λtr(ε(u)− εp)11 ,

−lc ∆xaxl (A) = µc axl (skew(∇xu)−A) ,

εpt ∈ ∂IK(b)

(
TE

)
, (1.1)

TE = 2µ(ε(u)− εp) + λtr(ε(u)− εp)11,

bt = c εpt − d |ε
p
t |b ,

where ε(u) = sym(∇xu) denotes the symmetric part of the gradient of the displacement. The above equations are studied for
x ∈ Ω ⊂ R3 and t ∈ [0, T ], where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω and t denotes the time.
The set of admissible stresses K(b(x, t)) is defined in the form K(b) = {TE ∈ S3 : |dev (TE) − b| ≤ σy}, where
dev (TE) = TE − 1

3 tr(TE) · 11, σy is a material parameter (the yield limit) and 11 denotes the identity matrix. The function
IK(b) is the indicator function of the set K(b) and ∂IK(b) is the subgradient of the convex, proper, lower semicontinous
function IK(b). f : Ω× [0, T ]→ R3 is a given function describing density of the applied body forces. µ, λ are positive Lamé
constants, µc > 0 is the Cosserat couple modulus and lc > 0 is a material parameter describing a length scale of the model
due to the Cosserat effects. c, d > 0 are material constants. The operator "skew" denotes the skew-symmetric part of a 3× 3
tensor. The operator axl : so(3)→ R3 is the identification of the skew-symmetric matrix with vectors in R3.
The system (1.1) is considered with Dirichlet boundary conditions for the displacement and the microrotation:

u(x, t) = gD(x, t), A(x, t) = AD(x, t) for x ∈ ∂Ω and t ≥ 0 (1.2)

Finally, we consider the system (1.1) with the following initial conditions

εp(x, 0) = εp,0(x), b(x, 0) = b0(x). (1.3)
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2 Main result

Let us consider convex set (the construction of this set appears in [2] and it will be used as set of test functions further on)

K∗ = {(dev (TE),−1

c
b) ∈ S3

dev × S3
dev : |dev (TE)− b|+ d

2c
|b|2 ≤ σy}.

the construction of this set appears in
Definition 2.1 (solution concept− energy inequality)

Fix T > 0. Suppose that the given data satisfy some natural regularity, which are specified in [5]. We say that a vector
(u, T,A, εp, b) ∈ L∞(0, T ;H1(Ω;R3) × L2(Ω;S3) × H2(Ω; so(3)) × L2(Ω;S3

dev) × L∞(Ω;S3
dev)) solves the problem

(1.1)-(1.3) if

(ut, Tt, At, ε
p
t , bt) ∈ L2(0, T ;H1(Ω;R3)× L2(Ω;R9)×H2(Ω; so(3))× (L2(Ω;S3

dev))2),

the equations (1.1)1 and (1.1)3 are satisfied pointwise almost everywhere on Ω × (0, T ) and for all test functions (T̂E , b̂) ∈
L2(0, T ;L2(Ω;S3)× L2(Ω;S3

dev)) such that

(dev (T̂E), b̂) ∈ K∗, div T̂E ∈ L2(0, T ;L2(Ω,R3))

the inequality

1

2

∫
Ω

C−1TE(x, t)TE(x, t)dx+ µc

∫
Ω

|skew(∇xu(x, t))−A(x, t)|2dx

+ 2lc

∫
Ω

|∇axl(A(x, t))|2dx+
1

2c

∫
Ω

|b(x, t)|2dx ≤ 1

2

∫
Ω

C−1T 0
E(x)T 0

E(x)dx

+ µc

∫
Ω

|skew(∇xu(x, 0))−A(x, 0)|2dx+
1

2c

∫
Ω

|b(x, 0)|2dx+ 2lc

∫
Ω

|∇axl(A(x, 0))|2dx

+

∫ t

0

∫
Ω

ut(x, τ)f(x, τ)dxdτ +

∫ t

0

∫
Ω

ut(x, τ)divT̂E(x, τ)dxdτ (2.4)

+

∫ t

0

∫
∂Ω

gD,t(x, τ)(T (x, τ)− T̂E(x, τ)) · n(x)dSdτ +

∫ t

0

∫
Ω

C−1TE,t(x, τ)T̂E(x, τ)dxdτ

+
1

c

∫ t

0

∫
Ω

bt(x, τ)b̂(x, τ)dxdτ + 4lc

∫ t

0

∫
∂Ω

∇axl(A(x, τ)) · n axl(AD,t(x, τ))dSdτ

holds for all t ∈ (0, T ), where T 0
E ∈ L2(Ω;S3) and (u(0), A(0)) ∈ H1(Ω;R3) × H2(Ω; so(3)) are unique solution of the

problem (1.1)1− (1.1)3 at the time equals zero and C−1 : S3 → S3 is a positive definite operator such that C−1TE = ε−εp.
Theorem 2.2 (Main result)

Let us assume that the given data and initial data satisfy some natural regularity, which are specified in [5]. Then there exists
a global in time solution (in the sense of Definition 2.1) of the system (1.1) with boundary condition (1.2) and initial condition
(1.3).

The proof of Theorem 2.2 is divided into two parts. First, we use the Yosida Approximation to the maximal monotone part
of the inelastic constitutive equation. Next, we pass to the limit to obtain a solution in the sense of Definition 2.1. The details
can be found in the article [5].
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