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Abstract

In this paper we propose an anisotropic extension of the isotropic exponentiated Hencky en-
ergy, based on logarithmic strain invariants. Unlike other elastic formulations, the isotropic
exponentiated Hencky elastic energy has been derived solely on differential geometric grounds,
involving the geodesic distance of the deformation gradient F' to the group of rotations. We
formally extend this approach towards anisotropy by defining additional anisotropic logarith-
mic strain invariants with the help of suitable structural tensors and consider our findings for
biomechanical applications.
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1. Introduction

In this article we consider a novel Hencky-type hyperelasticity model, the exponen-
tial Hencky-logarithmic strain energy proposed by Neff et al. [42], Neff et al. [43] and
Neff and Ghiba [38]. Here, we focus on an extension to anisotropy in a coordinate
invariant setting. Therefore, we apply the concept of structural tensors and introduce
additional mixed invariants. The flexibility of the proposed formulation is demonstrated
by identifying the linearized fourth-order elasticity tensor with the well-known coordinate
dependent representations. Furthermore, we propose an anisotropic exponential Hencky
model suitable for the description of soft biological tissues. The performance of this
model is demonstrated by the analysis of a patient specific artery.

The modeling of anisotropic soft tissues in the framework of nonlinear elasticity has made
considerable progress in the last decades. From the mathematical side, the polyconvexity
condition introduced by John Ball in his seminal paper Ball [4] is a strong mathematical
requirement which implies Legendre-Hadamard ellipticity (rank-one convexity) at all
deformation gradients F'. In the early time after its introduction, polyconvexity was
exclusively used in the isotropic setting, it being unclear how to extend the framework to
anisotropy. In Hartmann and Neff [18] a large variety of isotropic strain energy functions
have been discussed. Two of the present authors have been able to solve one of Ball’s
major open problems, see Ball [5], namely the meaningful application of polyconvexity to
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anisotropic materials. In a series of papers, Schroder and Neff [50], Schroder et al. [52],
Balzani et al. [6], Schroder et al. [53], Ebbing et al. [13], the concept has been elaborated
in detail, with papers from other authors following in due course, see e.g. Itskov et al. [28],
Ehret and Itskov [14]. It is, however, clear that polyconvexity (or ellipticity) alone is not
sufficient to characterize physically reasonable material response: There exist polyconvex
strain energies with unacceptable non-monotone pressure-compression relation. Moreover,
the identification of material parameters in the above proposed anisotropic extensions
heavily relies on nonlinear optimization strategies after which the physical meaning of
the obtained parameters is doubtful: A completely different set of material parameters
may equally well fit the available experimental data. This already occurs for the isotropic
Ogden-model, see Ogden [45]. The situation for the anisotropic response can only be
worse in general. Therefore, the need is to construct strain-energy functions whose
possibly few parameters have a clear physical meaning and which are uniquely and
easily identified from experiments. At the same time the proposed strain energy should
be Legendre-Hadamard elliptic at least in that range of deformation which is typically
encountered in the applications. In this paper we numerically explore such a formulation
based on the well known logarithmic Hencky strain.

In 1928 Heinrich Hencky [19] proposed the after him named strain-energy function Wy for
finite isotropic elasticity. He replaced the small strain tensor € in classical linear isotropic
energy by the Hencky or logarithmic strain measure log U, with the right stretch ten-
sor U. For moderate deformations, this simple function Wy with the two classical Lamé
constants is useful for a wide class of materials, see Anand [1; 2] and Bruhns et al. [11].
However, Hencky’s energy function is not rank-one convex, i.e. it does not fulfill the well
known Legendre-Hadamard, or ellipticity, condition. Bruhns et al. [12] derived necessary
and sufficient conditions for ellipticity in terms of principal stretches and computed the
largest common ellipticity region. They showed, in the case of positive Lamé constants,
that Wy is elliptic whenever every principal stretch is in the range [0.21162..., 1.39561...].
Furthermore, Hencky’s strain-energy automatically satisfies the Baker-Ericksen inequal-
ity (Baker and Ericksen [3]) and Hill’s inequality (Hill [21; 22]), see Bruhns et al. [12],
Ghiba et al. [16].

1.1 The exponentiated Hencky energy

The exponentiated Hencky-logarithmic model was recently introduced by Neff et al. [42].
It is induced by the exponentiated Hencky strain energy

_H 2 L2 2 2
Woar(F) = - exp [k [devi log UJ]”] + - exp {k[tr(log U)| }

e exp [kz log

k

W + % exp [k’ (log det U)Q]

where > 0 is the (infinitesimal) shear modulus, x > 0 is the bulk modulus, k and
k are additional dimensionless material parameters, U = VFTF is the right stretch
tensor corresponding to the deformation gradient F', log denotes the principal matriz
logarithm on the set of positive definite symmetric matrices, dev, X = X — %trX 1 and
| X = VtrXTX are the deviatoric part and the Frobenius matriz norm of an n X n-
matrix X, respectively, and tr denotes the trace operator.
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The exponentiated Hencky energy is based on the so-called wolumetric and isochoric
logarithmic strain measures

wiso = ||dev, logU|| and  wy = [trlogU| = |logdet U],

which have recently been given a purely geometric characterization not shared by any
other set of isotropic invariants (Neff et al. [44]): consider the general linear group GL(n)
endowed with the canonical left-invariant Riemannian metric g, which for A € GL(n)
and X,Y € gl(n) = TaGL(n) = R™™ is given by Martin and Neff [33]

ga(X,Y)=(A'X, A7'Y)

where (X,Y) = Y7 X is the canonical inner product on the space of real n x n-matrices.
Then the logarithmic strain measures are the geodesic distance of the isochoric part
ﬁ and the volumetric part (det F)l/”l to 1 of the deformation gradient to the special
orthogonal group SO(n), respectively, see Neff et al. [44] (Theorem 3.7):

. F
Hdevn log UH = dlstgeod (W’ SO(n)) s
llog det F| = distgeoq ((det F)¥™ - 1,50(n)) . (1)

These two quantities are thereby identified as the “natural” measures of strain in any
deformation, an observation which strongly suggests that an idealized elastic strain energy
function may depend on these quantities alone.! An important example of such an energy
function is the classical quadratic Hencky energy

Wa(F) = u|[dev, log U ||? + g [tr(log U2
U kK
— ulflog —=1I| +%q 2 2
s | + 5 Gorarw g

which was introduced by Heinrich Hencky in 1929 (Hencky [20], Neff et al. [41]). While
the elasticity model induced by the Hencky energy is in very good agreement with
experimental observations for up to moderate strains for a large number of materials
Neff et al. [42], Anand [1], there are some major shortcomings of this model. For example,
the qualitative behavior of materials under very large deformations is not modeled accu-
rately, and since the energy function is neither polyconvex nor quasiconvex or rank-one
convex (Neff [37], Ghiba et al. [16]), no known methods are available to ensure the exis-
tence of energy minimizers for general boundary value problems. Moreover, the pressure-
compression relation is not monotone.

In order to alleviate some of these shortcomings, Neff et al. introduced the exponenti-
ated Hencky energy Wey in a series of articles Neff et al. [42; 43], Neff and Ghiba [38],
Ghiba et al. [17]. This energy function closely approximates the classical quadratic
Hencky energy for small deformations, but aims to provide a more accurate model
for large deformations as well as an improvement in terms of common constitutive re-
quirements; for example, Wy is polyconvex in the two-dimensional case Neff et al. [43],

I'Note that not every objective and isotropic energy function can be expressed in terms of the loga-
rithmic strain measures alone, see Neff et al. [44], whereas every such energy can be expressed in terms
of the logarithmic strain tensor logU.
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and in the three-dimensional case the rank-one convexity domain contains the ex-
tremely large set {F € GL"(3)| ||[devszlogU]|| < 6}. Moreover, the induced mapping
B +— o of the Finger tensor B = FF7T to the Cauchy stress tensor o is invertible
Neff and Mihai [39], Mihai and Neff [34; 35], Jog and Patil [30], as is the case for suitable
variants of the Neo-Hooke and Mooney-Rivlin energies for slightly compressible materials
like rubber.

The low number of additional material parameters in the exponentiated Hencky model also
suggests that a good material fitting could be possible even without extensive experimental
measurements. Additionally, the exponentiated Hencky energy allows for the modeling of

a zero apparent Poisson’s modulus v = ;E;;iﬁ) in the finite strain regime: if the additional

parameters k,l% are chosen such that & = %l%, then Weg can be written as

1 K ) 9 )
% (1+V exp[k:HdevnlogUH ] + exp[gk(logdetU) }) ,

E
2(1—2v)

39:+“# is Young’s modulus, and for v = 0 we obtain a model with zero lateral

contraction under finite strains Neff et al. [42].

where F =

A variant of the exponentiated Hencky energy has previously been applied to so-called
tire derived materials and was found to be in good agreement with experimental data, see
Montella et al. [36]. In particular, the highly nonlinear equation of state (EOS) relating
pressure to purely volumetric deformations has been captured extraordinarily well. The
extra appearing non-dimensional parameters k and k have an intuitive meaning: Larger
k, k lead to monotonically increased strain hardening. In principal these parameters can
be fitted independent of the shear and bulk modulus. Next, we extend the exponential
Hencky energy to the anisotropic case.

2. Theoretical framework

2.1 Kinematics

For a better overview, the continuum-mechanical kinematic and constitutive quantities
are listed in Table 1. Let B € R? be the body of interest in the reference placement,
parametrized in X, and let S be the body in the current placement, parametrized in
x. The boundary 0B of B is decomposed in 0B, and 0B; with 0B, U 0B; = 0B and
0B,NdB; = (). The nonlinear deformation map is given by & = ¢(X). As basic kinematical
quantities we define the deformation gradient, the right Cauchy-Green tensor, and the
Green-Lagrange strain tensor

1
F=Gradp(X), C=F"F=U? and B =_(C-1), (3)
respectively. Here, 1 denotes the second-order identity tensor. The Jacobian of the defor-
mation gradient has to satisfy J := det F' > 0. The deformation gradient may be split
into

F=RU=VR, (4)

where R € SO(3) denotes a pure rotation tensor and U and V are the right and left
stretch tensors, respectively. In order to fulfill the principle of material frame indifference
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Table 1: Kinematic and constitutive quantities.

Symbol Continuum mechanical description
u displacement vector

F =1+ Gradu deformation gradient

C=F"F right Cauchy-Green tensor
B=FF7" left Cauchy-Green tensor
E=L1(F'F-1) Green-St.Venant strain tensor
U=VFTF right stretch tensor

V =V FF7T left stretch tensor

log right Hencky strain tensor

logV left Hencky strain tensor

P generic elastic energy

Wy isotropic Hencky energy

Wen exponentiated Hencky energy

S =20cy(C) second Piola-Kirchoff stress tensor
T = Og v (log V) Kirchoff stress tensor (see Vallée [55])
o= (detF) 7 Cauchy stress tensor

a priori, we formulate the generic free energy function ¢ in terms of the right Cauchy-
Green tensor, i.e. ¢ = 1)(C). In spectral decomposition the right Cauchy-Green tensor C
and the left Cauchy-Green tensor B may be written as

3 3
C=> MNtoNt — B=> Nnfont (5)
k=1

where /)\\k denote the eigenvalues of C and B. The eigenvectors are expressed through IN*
and n* associated to C and B, respectively. Therefore, we obtain the tensor functions

3 — 3
U:@:Z\/;ka%N’“:ZAkN’“@N’“7 (6)
k;l _ k;l
V:\/E:Z\/)\»knkéénk :Z)\knk®nk, (7)
k=1 k=1

3 3
1 1 ~
logU = log(VC) = §logC$ Z§log)\ka®Nk = Zlog)\ka®Nk, (8)
k=1

k=1
1 D1 ~ Lo
logV:log(vB)zélogBiZ§log)\knk®nk iZbg)\knk@nk, 9)
k=1 k=1

where Ay denote the eigenvalues of U and V. The tensor logU is called Hencky strain
tensor.

The weak form of balance of momentum

Glu, Su) = / (Div(Ip(F)) + po(b — &), Su) AV (10)
B
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may be reformulated such that we obtain

o . .
Glu, ou) = [ (S,=6C)dV — | [ (F.ou)ydA+ [{polb—&),0u)dV | =0. (11)
'g/ ’ ) a‘Zt B‘/

J/

(;i:‘t C?e;t
Here, the body force in the reference configuration is denoted by f, du is the variation of

the displacement field and & the acceleration. For the solution scheme in a Finite Element
framework a Newton iteration is required. Therefore, the linearization

LinG(a,du, Au) = G(a, du) + AG(w, ou, Au) (12)

at w = u is required and will result in

. 1 1
LinG = G™ — G 4 / 1(6C: €, AC) AV + / (S, 5A5C) AV . (13)
B B

N\ J/
'

AG

2.2 Stress measures

Let alogUQZ(log U) be the stress measure work conjugate to logU = %log C, then the
transformation rule for the second Piola-Kirchhoff stress tensor S is given by
g 28¢(10g U) 28¢(10g U) OlogU  0y(logU) p
N oC T 9logU  oC — odlogU "
dlogU
oc

The fourth-order tensor Py can only be derived with the help of the spectral decomposition
and yields

(14)

3 3
Py=>» Y PujN*@N'@ N @ N
k=1 j=1

3 3
+2) > P (N* @ NY) @ (N* © N7 + N’ @ N*)

k=1 k#j (15)
~ A—l
Phkjj = Okj Ay
Lioghy—Llogh, N N
2 =" 2 =7 g,}\\k ,}2: £4j for)\k#)\j
k—Aj
Pk‘ 1 N 1 N -~ ~ -1 ~ ~
jkj . 5 log A\ —5 log A 1
im 2—=>*2 I —=: 05 (slog \i) = (2N, for A\, = A\,
Py A=A )\k<2 s ) ’
j

see also Ogden [46] and Simo [54]. The first part of Py is related to the derivative of the
eigenvalues of log U with respect to C, while the second part is related to dc(N* @ N*).
In the isotropic case the following relations regarding the Kirchoff stress

Cdlog V) _og(logU) o _dFU) .
T T log V - R Hlog U R =R—5—UR
7 +

oC 0B OF
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hold true. But if anisotropic behavior is considered only the relations

OU(C) pr _ D(F)

T =255 OF

F7 (17)

remain valid. For the derivation of the above mentioned relations the reader is referred
to the appendix. The expression Tyt = an#(U ) is also known as Biot-stress. For the
linearization of the weak form, we need the tangent moduli

2(logU) d(log U)
C=4——2""=—Py:ClL:P —— K 1
9CoC L T s U (18)
with )
0*Y(logU) 0Py 0?logU
H_ _“~7vor/ d K=2 =1 . 1
dlogUdlogU aC ~ T acoC (19)
The multiplicative volumetric isochoric decomposition of the deformation gradient
F=J"'"F and C=J7?%C (20)

was first proposed by Hans Richter [47], see also Flory [15]. In doing so we can express
the volumetric Hencky strain tensor with help of an additive split according to

1
logU = dev(logU) + 3 tr(logU)1, with tr(devlogU)=0. (21)

For the numerical treatment of an energy function ¢*(devlog U') we need the derivative

ddevlogU

1
=1X1—--1®1=1P 22
Olog U 3 s ’ (22)

where X denotes the Kronecker product of second-order tensors. Let G and H denote
two second-order tensors and g and h two first-order tensors, then the operator is defined
by (GXR H) : (g ® h) =(Gg) ® (Hh). Formulating a strain energy in devlog U, before
projecting the stress tensor and tangent moduli on C' we first need to project them on
the Hencky strain log U. Therefore, we define

oyY*(devloglU)  0¢*(devloglU) ddevlogU  0Y*(devlogU)

= : = P 2
dlogU ddevlogU dlog U ddevlogU ’ (23)
and for the linearization of the weak form it follows
0?¢*(devlog U) ~
H_ =P:CHl:P 24
dlogU0dlogU ’ (24)
with P (dev loa U
(EH — Q/} ( ev Og ) . (25)
ddevlogUddevlogU

The corresponding tensors are to be inserted in Eq. (14) and Eq. (18).
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2.3 Isotropic and anisotropic invariants
The principal isotropic invariants of the right Cauchy-Green tensor C' are given by

I =tr[C] = |F||*, I =tr[Cof C] = ||Cof F|* and
IS = det C = (det F)* = J*. (26)

Further, we introduce the basic invariants of the Hencky strain tensor log U

J =log(detU) = tr(logU), J3' = |logU]|]* = tr[(logU)? and
JI = tr{(log U)?), 1)

already used by Richter [47]. Let A, with ||A| = 1, be the preferred direction of the
transversely isotropic material, then the material symmetry group is defined by

G = {£1; Q(a, A) |0 < a < 21}, (28)

where Q(a, A) are all rotations along the A-axis. The structural tensor M whose invari-
ance group preserves the material symmetry group Gy; is given by the rank-one tensor

M=A%A, (29)

see Boehler [8] and Boehler [9] regarding the concept of structural tensors. Based on the
structural tensor we define the mixed invariants

' =((C',M), JE = (Cof C, M),

; . (30)

L' =(ogU)', M),  J3' = (log(Cof U), M),
where ¢ € N, ¢ > 0, denotes an exponent. Note that the cofactor Cof(logU) has no
physical meaning and that for U € Sym™(3), Cof U is also positive definite. Because of
that we instead consider the logarithmic cofactor function

~1/2

3
log(Cof U) =log [(detU)U Z log (det\/_> N* & N*

3
1
=> [log (detV'C) — élog)\k} N* @ N*

k=1

1 1 ~ 1 ~
:(§log)\2+ §log)\3)N1 ® N+ (élog)\l + élog)\g)N2 2 N?

1, ~ 1. =
- (5 log A\ + 5 log \) N? 0 N3

=tr(logU)1 — logU (31)

and finally we observe the following

JI = (log(Cof U), M) = tr(logU) (M, 1) —(log U, M) = JI — 11"
1

(32)
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3 Isotropic strain energy functions

3.1. Isotropic Hencky Energy

The isotropic Hencky energy was introduced in Hencky [20]. It measures the geodesic
distance of the deformation gradient to the special orthogonal group SO(n), as it was
discovered in Neff et al. [40]. The Hencky strain energy

K A
Wa(logU) = p|devlog U + 3 [tr(log U)J* = [ log U|[* + Str(log U)]*  (33)

can be reformulated in principal logarithmic strains

1. ~\? 1 ~\? 1 ~\?2
WH(logU):u[<§log/\1) +(§10g)\2) —i—<§log/\3>]
+ 2 L iog R+ Liog Ry + Ll0gh 2 (34)
5 |9 g A1 5 g A2 5 g A3

based on the eigenvalues A of C, where the Lamé parameters A and o as well as the bulk

modulus k are used. Note that x = 3’\—;2& and

_ 2 2 2

1 )\1 )\1 >\2
dev (logU)|> == | [logy /= | + [logy/= | + |logy/=
Idev (log U)[I” = 5 V3, ¥ s

2[/1 <N (1 <N L <

=3 <§ log )\1> + (glog Az) + <§10g )\3> ] (35)
21~ ~ 1. o~ &~ 1 o o
-3 [4_1 log A1 log As + 1 log A log Az + 1 log A2 log )\3} . (36)

The function Wy is not polyconvex, not quasiconvex, not coercive and not rank-one-
elliptic, even for every admissible deformation state, see Neff et al. [42]. However, it holds
that Wx(F) = Wg(F™'). The first and second derivative with respect to the Hencky
strain yield

oWy
DlosU ~ 2 dev (logU) + ktr(logU)1 , (37)
P*Wa
H_ =2u1P 1™ 1.
dlogUdlogU pETRLE (38)

In the reference configuration with C' = 1 the final material tangent in Voigt-notation
according to Eq. (18) simplifies to

K+3p k—2p K—2
gt e gh

K—3U K+3p K—3u
/{—g,u /f—g,u /{+i,u
*Wy 3 3 3

o O O

CVlco1 = 4- = 0 0 0
0CoC 0 0 0 0
0 0 0 0

>~

~
oOm oo oo
T OO0 oo O

~~

w

=)

N~—
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3.2. Exponentiated Hencky energy

The exponentiated Hencky energy
Wen = Hexp [k ||dev (log U)||*] + %exp [/; (trlog U)2] :

k
1
dev (5 log C)

was introduced and described in Neff et al. [42]. It is still volumetric-isochoric decoupled
and polyconvex in 2D if £ > % and k£ > %, cf. Neff et al. [43]. Rank-one convexity is not
preserved in 3D, see Neff et al. [42]. However, numerical calculations show that the ellip-
ticity domain contains the extremely large set {F € GL*(3)] ||devslogU]|| < 6}. In the
small strain regime for principal stretches A; € (0.7,1.4) it approximates the aforemen-
tioned isotropic Hencky energy quite well.

2

= %exp !k

e |1 Log @) Es L bs 1)
leXp »2Og y v 3’ ]

Reformulation in terms of the Lamé parameters p and A yields

1 ? A+2 /1 2
Wen = %exp [k ‘ dev <§log C) ] + %exp [k‘<1, 3 logC> ] : (41)
The derivatives with respect to the Hencky strain yield
oW,
Slog ‘l*] =2p exp [k ||dev (log U)|)] dev (logU) (42)
+ K exp [i@ (trlog U)2] (trlogU)1, (43)
H_ 0" Wen =4u e k||de 1loC’ 2 de 1loC’ ® de 1100
_810gU810gU_'uXp Vg8 Vg8 Vg8
1 2
+ 2/ exp !k dev (5 log C) ] P
. 1 2
+ K exp [k; <1,§logC> 1®1
’ - /1 2 1 2
+ 2Kk exp !k<1,§10g0> ] <1,§10gC> 1®1. (44)
In the reference configuration with C' = 1 and log U = 0 the above equation simplifies to
6)Qﬂ| =2ulPP+ k1wl (45)
5210gUC:1_ H e

and the final tangent according to Eq. (18) becomes
2

K+ap k—2p k—2p 0 0 0

Iﬁ—%}l, fﬁ—%u /@—%,u 0 0 0

y 92 W K—sp k=3 kK+30 0 0 0
C Iczlz4acac: 0 0 0 u 00 (46)

0 0 0 0 pu O

0 0 0 0 0 p

I
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which is identical to the elasticity tensor of Wy, provided in Eq. (39).

4. Anisotropic extension

4.1. Transverse isotropic Hencky and exponentiated Hencky models

In a first step we aim to investigate a strain energy function Wy(JH, ||deviog U||, 11", II¥)
which basically extends the classical Hencky-strain energy by the basic mixed invariants,
introduced in chapter 2.3:

Wi(logU) = iy ||deviog U||* + g [tr(logU)J* + a{log U, M) (trlog U)

+ 20— pr)(M, (log U)?) + 2 5(M, log U (47)

In a small strain framework, i.e. replacing logU by € = %(Gradu + Grad” u), the above
given energy function would refer to transversely isotropic linear elasticity. In an expo-
nential framework the exponentiated transversely isotropic strain-energy function

Wy(logU) = ’Z—T explki||dev log U ||] + 2ik2 explks (trlog U)?]

+ % explks(logU, M)(trlogU)] + %LLLk—;MT) explks(M, (logU)?)]

+ A exp[ks(M,log U)?] (48)
2k

will result in the same elasticity tensor C|c—1 at the identity, whereby k; > 0 are further
non-dimensional parameters. We also note that while the isotropic invariants have the
proposed differential geometric meaning, the novel exponential terms are formulated on
an ad hoc basis.

Due to the non-linearity of the above given equations we aim to identify the general
material parameters in the reference configuration with C =1 and logU = 0. In case of
transversely isotropic materials the elasticity tensor C may be formulated in terms of five
material parameters. If we choose the isotropic-plane to be spanned by the X; and X,
axis and the preferred direction to coincide with the coordinate axis X3, perpendicular to
the isotropic plane, and M = diag(0,0, 1) we may write

cy, ¢y, C}; 0 0 0
gé gé g% 0 0 0
vV _ 13 V13 V33 0 0 0
=10 o o iy -ch) 0 0 (49)
0 0 0 0 cy, O
0 0 0 0 0 Cy,

in Voigt-notation. In the reference configuration, the formulated transversely isotropic



The exponentiated Hencky energy: Anisotropic extension 12

strain energy functions W; and W5, both yield

A+2pr A A+ o 0 0 0

A A+ 2ur A a 0 0 0

o _ | Ao A+ A=2pur+2a4+4p+5 0 0 0
c=1 0 0 0 ur 0

0 0 0 0 u. O

0 0 0 0 0 u

where the conversion A = (3x —2ur)/3 was used. The components of the above presented
scheme are related to the classical components in Eq. (49) through

HL = CL
1
HT = §<CY1 - C}/z)
A=CY, : (50)

Y \%
a=Cj;—Cyy

B =CY, +CY, — 2CY; — 4CY,

in analogy to Schréder and Gross [49]. The anisotropic characteristic of the strain energy
function Wy in Eq. (47) will be outlined on a number of numerical examples, where
different material parameters according to Table 2 are used.

Set | A | pur | «a B o
Set 11000 | 175 | 10 | 10 | 1116.67
Set 2| 5.64 | 2.64 | 1.27 | 0.29 | 5.66
Set 3| 5.5 | 2.5 | 0.00 | 0.00 | 25
Set4 | 5.5 | 14 |40.75 | 0.00 14
Set 5| 5.5 | 2.5 | 0.00 | 1045| 25
Set 6 | 5.5 | 2.5 | 0.00 | 0.00 | 28.625

Table 2: Different parameter sets for the numerical examples.

Further, the sets 4, 5 and 6 are chosen such that only one term involving a struc-
tural tensor in Eq. (47) is active. Therefore, Set 4 is directly associated with the
term (logU, M)(trlogU), Set 5 with (logU, M) and Set 6 with ((logU)?, M) =
|dev(logU) M ||%. In contrast, Set 3 will serve as the isotropic reference case. In order
to obtain comparable results a similar level of distinct anisotropy is chosen for each set.
To achieve this, C3; is the same for all three sets regarding the reference configuration.
All parameter sets have been checked to be positive definite for CV|c—;. Note that in
case of Set 4 the parameter pr needed to be increased in order to guarantee the positive
definiteness of (DV|C:1. The corresponding matrices are listed below:

33.0 5.5 4625 0
5.5 335 4625 0
46.25 46.25 115 O
0 0 0 14
0 0 0 0 14
0 0 0 0 0 14

o O OO

Set 4 : CV|C:1 =

o O O oo
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105 55 55 0 0 0
55 105 55 0 0 0
. |55 55 115 0 0 0
Set 5: CY|g=1 = 0 0 0 25 0 0
0 0 0 0 25 0
0 0O 0 0 0 25

105 55 55 0 0 0

55 105 55 0 0 0

v |55 55 115 0 0 0

Set 6: C'|cz1 = 0 0 0 25 0 0

0 0 0 0 28625 0
0 0 0 0 0 28.625

The implementation in a finite element framework in this work was done according to the
formulation in Schréder et al. [51] and Loblein et al. [32].

Tension test: In a first example the transversely isotropic material behavior is to be
explained on the basis of a tensile test under plane strain conditions, see Fig. 1a). Material
parameter Set 1 was chosen and the preferred direction A, defined with help of the fiber
angle (¢, was varied. The computed displacements of the nodes 1, 2 and 3 over the fiber
angle are plotted in Fig. 1b).The displacements dy,,, oy, and d,, are symmetric concerning
Br = 90°, while the vertical displacements d,, and d,, are antisymmetric. Surprisingly, the
horizontal displacements don’t reach their maximum value for gy = 90°. The load pg has
been chosen such that large deformations are present.

€) @

x | ] 4 3 5
D> - - 3 /1: g /7’\\\\1\12\
> " ] T 9 NG
- > ﬁf —>| S 1 5VL
> [ i 0 — 5,
> I == =
—| 5
A 4 I _2 V3
" @ po =200 0 20 40 60 80 100120140160180
L} 10 ”l
a) b) /Bf

Figure 1: Example 1: a) Tension test with one preferred direction and varying fiber orien-
tation. b) Nodal displacements depending on the fiber orientations are plotted for parameter
Set 1.

Cooks Membrane: In a second example we consider the Cooks Membrane problem, as
depicted in Fig. 2a) which is dominated by non homogenous stress distributions. Again
the fiber direction is to be varied and the body will undergo large deformations during
loading. In Fig. 2b), the vertical displacements dy of the node at the top right are plotted
for different fiber angles. Parameter Set 2 was considered. The anisotropic effect due to
the different fiber orientation clearly becomes apparent.
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Figure 2: Example 2: a) Cooks Membrane with one preferred direction and varying fiber

orientation. b) Plot of the vertical displacement for different fiber orientations and parameter
Set 2.

Perforated Plate: Lastly, we want to consider three perforated plates, again under
consideration of plane strain conditions. The first two plates are squares and share the
same geometry. The first one is subject to uniaxial tensile loads, see Fig. 3a), while the
second one is subject to biaxial tensile displacements, see Fig. 4a). As a third example
we consider a circular disk, depicted in Fig. 5a), which is expanded on the inner ring, i.e.
we subject a radial displacement of 3.5. The corresponding boundary value problem is
depicted in Fig. 5a). All simulations are displacement driven, i.e. only boundary conditions
of Dirichlet type are present. Further all three bodies have one preferred direction A
with an angle of 45° to the horizontal axis. The deformed bodies for the parameter Sets
3, 4, 5 and 6 are plotted next to the boundary value problems in Fig. 3, Fig. 4 and
Fig. 5. The contour plots of the squares show the horizontal displacements u;. In order
to highlight the anisotropic characteristic of the circular disk, the circumferential stretch
A = \/ (C,N,® N,), where N, denotes the circumferential direction, is plotted for the
third plate. The black lines in each plot indicate the shape of the body in the undeformed
configuration.

The shape of the hole for parameter Set 4 and 6 very clearly orientate along the predefined
preferred direction and can be seen as a symmetry axis. This also becomes apparent from
the mesh distortions. For parameter Set 6 especially the volume increase is remarkable.
The results for parameter Set 5 reveal anisotropic material behavior, nevertheless the
material symmetry regarding the preferred direction is quite different compared to the
other parameter sets. In case of the isotropic material parameter Set 3, the symmetry axis
of the deformed bodies are identical to the horizontal and vertical axis. For the circular
disk, the deformed body remains fully rotationally symmetric, of course.



Schréder, von Hoegen, Neff 15

Uy
05
0.375
0.25
0125

-0.125
-0.25
-0.478
-0

Figure 3: Example 3a: a) Boundary conditions and b)-e) deformed bodies of a perforated
plate under uniaxial tension for parameter Set 3, 4, 5 and 6.
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Figure 4: Example 3b: a) Boundary conditions and b)-e) deformed bodies of a perforated
plate under biaxial tension for parameter Set 3, 4, 5 and 6.
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Figure 5: Example 3c: a) Boundary conditions and b)-e) deformed bodies of a circular
perforated plate for parameter Set 3, 4, 5 and 6.

4.2 Orthotropic Hencky and exponentiated Hencky models

Orthotropic material behavior is symmetric regarding three orthogonal planes. These
three planes are spanned by the three preferred directions A;, A and Az, which are unit
vectors. The material symmetry group is then defined by

go = {:l:]-y R17 R27 R3}7 (51)

where Ry, Ry and Ry are the reflections with respect to the planes spanned by (Asg, As),
(A, A3) and (A, As), respectively. The three preferred directions A;|i = 1,2, 3 are or-
thogonal and form the three structural tensors M; = A; ® A;|i = 1,2, 3, which satisfy the
orthogonality condition (M;, M;) = d;;. However, it is sufficient to formulate orthotropic
strain energies with two structural tensors M; and M, and additional isotropic principal
or main invariants. In the same manner as in the previous section we may formulate the
orthotropic energy function

Wi(logU) = ||deviog U||* + g [tr(log U)]?

+ ai(logU, M) (trlogU) + as(log U, M) (trlogU)
+ 2p1 (M, (log U)?) + 2p5( M, (log U )?)

1 1 1
+ 5/51 (M, logU)* + 5/52<M2, logU)? + 5/53<M1, logU)(M>,logU) (52)
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and the corresponding exponentiated version

K
Wy(logU) = kﬂl explki||deviog U|*] + o explky(trlog U)?|

n % explks{log U, M) (trlog U)] + % explka(log U, My) (trlog U)]
3 4

2 2
+ 7 explls (Ma, (10 U))] + 52 explls (M, (Iog U)?)]

51 2 62 2
+ 57 explhr (M, logU)| + = explks(My, log U)”]

2]{}7 2k78
+ %exp[k‘g(Ml,log U)(M,,logU)]. (53)

9

The orthotropic elasticity tensor CV has nine independent variables. Choosing the struc-
tural tensors M, = diag(1,0,0), M, = diag(0,1,0) we obtain the general form

C; €, €5 0 0 0
ng C%z C%g 0 0 0
Cy; Cy C 0o 0 0
\ 13 23 33
=10 o0 o Cy, 0 0 (54)
0 0 0 0 CY% O
0 0 0 0 0 Cg
The material tangent of both functions, W5 and W, both yield
20+ A+
2a15-4xtl+/51 Atar+as+f8s Aar 0 0 0
20+ M
CV| _ )\4‘0[14‘0[2‘}‘63 20(24‘4/1/2‘}‘62 )\‘f‘O&Q 0 0 0
c=1 Aoy A+ 2u+XA 0 0 0
0 0 0 1+ fho 0 0
0 0 0 0 [N 0
0 0 0 0 0 Wy + e

in the reference configuration, with A = (3x — 2u)/3 . Following the same scheme as in
the transversely isotropic case the parameter identification gives the following relations

p=Cl; + C3; — Cgg
:LLI:CXG_CL
U2:CX6_C¥5

A= Cl; +2(Cg — €}, — CY)
a; = C)y — CY; — 2(CYs — CY, — CX) . (55)
a2 = Cyy — Cyy — 2(Cgs — €y — C35)

B = CY, + CY; — 2CY; — 4CY;

By = €y, 4 Cyy — 2C3, — 4CY,

By = CYy — CYy — Cy3 + €3 + 2(C — €Y — CF))

A viscoelastic, orthotropic material model based on finite logarithmic strains has been
recently proposed by Latorre and Monténs [31].
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4.3 Adapting the transversely isotropic framework in logarithmic strain
space to biological soft tissues

Soft biological tissues as they occur in arterial walls have an anisotropic material be-

havior. In biomechanical applications we often assume that the material behaves nearly-

incompressible.

The widely used anisotropic strain energy introduced in Holzapfel et al. [26] is given by
2

M1 .
. — k C M)-1 —1 f (C.M)=|FA|*>1
o g e [k | €M) it (M) = paP =1
5!
0 if (C,M)=|FA|?<1,

with the material parameters p; and k. Recall from Eq. (30), that IS' = (C, M). The
exponential function incorporated in the latter equation captures the material stiffening
in the high strain domain, caused by the fiber elongation. The case distinction for the
quadratic fiber elongation (C, M) = ||F A|]? in Eq. (56) aims to prevent the fibers from
inducing stiffness under compression. For further use below it is possible to rewrite the
switching criterion for which the anisotropic fiber contribution is neglected, as

(C—1,M)=(C,M)-1<0. (57)

When using anisotropic logarithmic invariants it seems natural to use criteria to switch off
the compression regime which are themselves defined in terms of logarithmic invariants.
However, as will be shown in the following, the case distinction for different anisotropic
invariants (introduced in Eq. (30)) will lead to considerable differences.

Let us consider the right Cauchy-Green tensor

3
C’:ZS\ka®Nk, with

k=1
M=09, XN=135 MAN=05 and
1 0 0
N=|0o], MNy=[1], Ny=]|0],
0 0 1

represented in the spectral decomposition. The set of all possible preferred directions A
may be expressed with help of the spherical coordinates (r, ¢, 6) and

x =rsinfcos ¢,
y=rsinfsing,
Z=TCcoso. (58)

Here, r denotes the radius, ¢ € [—7, 7| the polar angle and 6 € [0, 7] the azimuthal angle.
Since ||A|| = 1, we choose r = 1 and consequently

sin # cos ¢
A = [ sinfsin¢
cos ¢
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Then the anisotropic invariants can be computed from

(C, M) = Ni cos® 0 + N cos® By + A cos? b and

- 1 ~\' 1 ~\' 1 ~
((logU)', M) = (élog /\1) cos® 0, + <§log /\2> cos? 0y + (ilog )\3) cos?fs, (59)

where

costh = (A, Ny) cosf = (A, Ny) cosfy = (A, N3) .

The invariants, depending on the fiber orientation A(x,y, z), are plotted in Fig. 6. While
the principal distributions are similar for different exponents of C'|, it appears that the
distributions are very different for even and odd exponents ¢ for the logarithmic invari-
ants, depending on logU. Please note that a change in the eigenvectors Ni| k = 1,2,3
would merely lead to a rotation of the plotted sphere around the eigenvector base. There-
fore, in this scheme the eigenvalues remain as the only predefined variables. As our main
goal is to exclude the compression state from the anisotropic material response to induce
any stiffening we consider the sign of the invariants ((logU)!, M) and (C*, M) — 1 as
the determining criterion. The corresponding distributions are plotted in Fig. 7 over the
azimuthal and polar angle, which are sufficient in order to uniquely define the fiber orien-
tation. In that sense the black area representing negative values labels the fiber directions
for which the fiber response will be switched off. On the other hand the red areas of
positive values covers the fiber directions for which the anisotropic strain energy function
is switched on. For the invariants depending on C' the area of positive values will in-
crease with the exponent ¢ and become more elliptic. The plots for sign((C, M) — 1) and
sign((logU, M)) are generally similar. However, with help of Eq. (59) it appears that

(C,M)—-1—(logC,M)=(C—-1,M) — (logC, M)
3
= Z(Xk —1- 1ogxk)(3052 0, >0
— Y —
k >0 >0

and therefore
(C,M)—1>(logC,M). (60)
Note that cos?#; is the same for each invariant, because the eigenvectors IN; for each

considered strain measure are the same. It immediately follows that

(C,M)—1] > —(logC,M) = (logU,M) for (C,M)>1. (61)

N =

That means there exists a transition zone, where (C', M)—1 > 0, but ((logU), M) < 0. In
other words, one may conclude that it is possible that the fiber direction may be stretched
and still the criterion ((logU), M) will switch off the anisotropic response. This effect
may be favorably used when it is assumed that initially crimped fibers don’t exhibit
significant stiffness until they are straightened out. However, whenever the fiber direction
is compressed, anisotropic material response is precluded for the discussed logarithmic
transversely isotropic strain measure based on the criterion (log U, M) < 0.

For ((logU)? M) and {(logU)* M) (and also any other even exponent) the invariants
will always have a positive sign, since both, the structural tensor M as well as (log U )?
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Figure 6: Contour plot of different transversely isotropic invariants for a specific choice of

eigenvalues and eigenvectors. The coordinates (z,y, z) define the preferred direction A.
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case distinction.



The exponentiated Hencky energy: Anisotropic extension 22

and (logU)* are positive semidefinite. Consequently, these invariants may not serve as a
switching criterion.

In the light of the previous considerations, we may formulate the generalized strain energy
functions

M1 i 2 ; i
. — cexp [k ((C*', M) —1 -1 if (C",M)>1
wtolc _Jon p 1(§ﬁ/_>/ ) ( ) (62)
\ L g
0 it (C',M) <1,
4 ( r
i 2“71 exp |k (log U, M) ((logU)', M)*| — 1 if (logU, M) >0
— 1 ~~ 7N ~" 4
O (Lo e
0 if (logU,M) <0,

(63)

in terms of the anisotropic invariants I4Ci|z' =1,2,3,4 and Ifi|i = 1,2,3,4, defined in
Eq. (30). In Eq. (63) the value of ¢ is to be chosen positive and close to zero, basically
approximating the Signum function. In that way, the case distinction criterion is somehow
separated from the anisotropic driving force.

The case distinctions in Eq. (62) and Eq. (63) may generally lead to discontinuous func-
tions. In order to avoid this it is evident that the stresses and the tangent must become
zero at each switch-point of the chosen criterion. Indeed one can show that

8Y/Jti '
agc —0 if (CLM)=1,

such that no jumps in the stresses at the switchover points are possible. Only wa of the
C
three strain energy classes misses continuity, since

athi '

ﬁ;&o it (CLM)=1,

621/)ti

. CGQCH’ —0 if (logU,M) =0, (65)

The material tangent of the function 1/13(1 at the point F' = 1 in the reference configuration
with a structural tensor M = diag(0,0, 1),

00 0 00O
00 0 000
, . 0 0 442 0 0O
ti C _ — =
C|C:1<'L/}0C<I4 1= 17 27 374)) - 00 0 0O 0 0 ’
00 0 0 00
00 0 000



Schréder, von Hoegen, Neff 23

is already different from 0 and therefore violates the continuity requirement. For the class
ng we find that C(F =1, M) = 0.

In order to study the anisotropic properties under compression we further introduce the
strain energy functions

. ~ -
ti H1 i 2 1
@ = —— M) -1 —1
Yo, = g5, | &P | M) ~1) [ (66)
L §" i}
ti H1 i 2
Vg, = T exp |ki{((logU)', M) | =1, , (67)
\ L Ifi i

neglecting any kind of case distinction. In the following we aim to investigate the perfor-
mance of the anisotropic invariants [ fi, I fi, see Eq. (30), respectively. The evolution of
the invariants, as well as the stress response of the transversely isotropic strain energy
functions ¢ (IC") and ¢t (1}"), are plotted for different loading scenarios. The examples
are evaluated such that the results are independent of any chosen isotropic strain energy
function, since only the anisotropic stress response will be plotted. The case distinction
for compression and tension included in the energy functions will be neglected, i.e. the
fibers are allowed to induce stresses under compression and the energy functions according
to Eq. (66) and Eq. (67) will be used. The parameters p; and ky are set to one and the
plotted evolution of the Cauchy stress

) 1 ad}ti
aniso — 2F _r
J oC

will be normalized by the occurring maximum stress at the final deformation state, to
allow for a better comparison.

FT (68)

This study is restricted to classical homogenous deformation states, i.e. uniaxial tension
and compression, simple shear and biaxial loading conditions. During uniaxial tension,
uniaxial compression and biaxial loading the angles 6, will remain constant and the body
is free of rotations, i.e. F' = U. Only during the shear test they will change with a change
in the deformation.

4.3.1 Uniaxial tension and compression The considered problem is depicted in
Fig. 8. In this case the fiber direction is aligned with the loading direction. The reference
configuration as well as the deformed configurations under tension and compression are
shown on the right. The component Fj; of the deformation gradient refers to the stretch
in fiber direction. Since the body is considered to be incompressible we find that Fsy =

F33 — 1/\/F11.

The results for the transversely anisotropic Hencky function ¢2}H are displayed in Fig. 9.
As already discussed in the previous section, in Fig. 9a) it becomes apparent that for
even exponents of i in I} the values of the invariant are also positive under compression,
i.e. the sign of the invariant is not the right choice to distinguish between tensile and
compressive stretches. Nevertheless, the stress response seems to be adequate from a
physical point of view for each of the considered invariants. For Ifl = (logU, M) we
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obtain a perfectly linear material behavior. Due to the logarithmic framework the stress
function is generally more sensitive to compression than to tension, see Fig. 9b). Note that
the stress function was normalized with the corresponding highest stress max(||oiis)]|
to allow for a better comparison. All stress-strain responses show the potential to exhibit
significant strain stiffening for both tension and compression. This is especially remarkable
for the compressive case. Hyun and Nakajima [27] for example found that porous copper
fabricated by unidirectional solidification behaves strongly anisotropic under compression
and exhibits considerable stiffening under large strains up to 80% due to the alignment
of the pores. Classical anisotropic material laws based on the invariant (C?, M) struggle
to reproduce this effect. The normalized stresses under compression according to Eq. (66)
are plotted in Fig. 10a). The plot reveals a strain softening behavior. Moreover, after a
certain point the stresses will begin to increase although the body is further compressed
which is strictly unphysical. Also classical polynomial laws of the form

i M1 i

o, = a-((C1 M)~ 1P (69)
suffer from this effect, see Fig. 10b). Here, 11 was set to one and k; to two. In addition the
domain of definition of the above energy is restricted to even values of £y in compression
which significantly limits the parameter fitting properties.

Figure 8: Uniaxial compression and tension test, where the preferred direction and the
loading are aligned. The body is assumed to be incompressible with Viet = Viension = Veomp-
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corresponding anisotropic stress response under uniaxial tension and compression for wté .
H

The stresses are normalized by the absolute value of the maximum arising compressive stress
at F° 11 = 0.5.

0
0.2
0.4
0.6
0.8

1

..

"~

0.5 0.6

0.7

Fll

o} /max([|of*|)

0
-0.2
-0.4

0.6 F

-0.8
-1

Figure 10: Normalized anisotropic stress response under uniaxial compression. In a) the
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4.3.2 Simple shear Next we investigate the behavior for simple shear, according to
Fig. 11. The shear direction will be aligned with the fiber direction and the amount of
shear u
v=—. 70
=7 (70)

is defined as the quotient of the displacements by the length. Note that in this example
the fibers are not elongated at all, i.e. [ fl = 1. The results for the transversely anisotropic
Hencky function are displayed in Fig. 12 and Fig. 13. Again the invariants of even and
odd powers take a different sign. The stress quantities which are not plotted in Fig. 13a)
are equal to zero. That means for even powers i, o371%° will be equal to zero.

ref.

sheared

Figure 11: Shear test, where the preferred direction and the shear direction are aligned.
Simple shear deformation is incompressible with Viet = Viheared-
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Figure 12: Evolution of the anisotropic Hencky-type invariants I, }fi fori=1,2,3,4 and b)
corresponding Cauchy stresses 013 under simple shear. The stresses are normalized by the
absolute value of the maximum arising shear stress at v = 1.5.
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Figure 13: Evolution of the Cauchy stresses a) o117 and b) o33 corresponding to the
anisotropic strain invariants plotted in Fig. 12a), under simple shear. Note that for ¢ = 2
and ¢ = 4, 011 is equal to zero.

4.3.3 Biaxial tension In this case the body is exposed to biaxial tensile displace-
ments, see Fig. 14. We consider two fiber families which are orientated symmetric regarding
the X-axis. Further, as indicated in the figure three different stretch ratios will be com-
pared. The stretch ratio is here defined as the quotient Fi;/Fy. For the three different
stretch ratios the evolution of the quotient g25is°/g31% ig plotted in Fig. 15, 16 and 17.
In each of the figures we find the results for the anisotropic invariants of C* on the left
hand side and the results for (logU)* on the right hand side. For the equi-biaxial test in
Fig. 15 the stress ratio is the same for each model, at each time. The stress ratio directly
follows from the fiber angle with respect to the x-axis to be o351 /g#is® = tan? 30 = 1/3.
This ratio remains exactly the same for the other stretch ratios only if [ fl is used, which
seems to be unreasonable. Regarding the invariants of C' we see that the starting point
at nearly zero deformation is always defined by o35 /giise = 1/3 which is different for
the Hencky-type strain measures. Further, the change in the stress ratio with increasing
deformation is less pronounced in the case that Hencky strains are used. This behavior can
be explained, when taking a look on Eq. (59). Since the angles ;|1 = 1,2, 3 are constant
only the logarithmic stretches are of interest. Due to the logarithmic function the slope is
decreasing when the stretch is increasing, i.e. for higher strains the slope is smaller than
for lower strains which is also reflected by the shown stress ratios. Generally the slope of
the stress ratios seem to have the opposite sign, regarding the basic strain measure. But
all stresses appear to have the same sign, independent of the stress measure.

The stress ratios of the I fl model can be exactly reproduced by the computation of the

fiber angle
(FA, e,) )
IFA| llex]| /]

where e, denotes the direction of the X-axis. Then o35° /g% is equal to tan®(Bact)-

Bact = arccos ( (71)



The exponentiated Hencky energy: Anisotropic extension 28

Figure 14: Biaxial tension test with two fiber families. The body is assumed to be incom-
pressible with F33 = 1/(F11F22)
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Figure 15: Evolution of the stress ratio for the equi-biaxial test with the stretch ratio
1.7 : 1.7 for a) the invariants I$" and b) the Hencky-type invariants I}l with the exponent

i=1,2,3,4.
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Figure 16: Evolution of the stress ratio for the biaxial test with the stretch ratio 1.7 : 1.35 for
a) the invariants I fl and b) the Hencky-type invariants I fl with the exponent ¢ = 1,2, 3, 4.
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Figure 17: Evolution of the stress ratio for the biaxial test with the stretch ratio 1.35 : 1.7 for
a) the invariants I$" and b) the Hencky-type invariants I} with the exponent i = 1,2,3, 4.

4.3.4 Biaxial-tension-compression In order to complete the study of classical me-
chanical loading scenarios we consider a biaxial combined tension and compression test,
assuming incompressibility. The problem is depicted in Fig. 18 and the fiber arrangement
is identical to the previous example in section 4.3.3. While the stretches A\, and ), are
displacement driven, the principal stretch results form the incompressibility condition

Asdghs = 1.

The fiber invariants, see Fig. 19, are identical for both fiber families and the evolution
is comparable to the uniaxial case. In Fig. 20, again the evolution of the stress ratio is
plotted, for both invariant sets. They appear to be quite different. For I the stress ratio
is approaching zero for infinite strains. For [ }1{1. we obtain a constant line as it was already
the case in the biaxial tension test. If ¢ in [ fl is an even number 0y becomes negative,
thus the stress ratio becomes negative.

ref.

AN
1.7:0.765

Figure 18: Biaxial combined compression and tension test, where the preferred direc-
tion and the loading are aligned. The body is assumed to be incompressible with F33 =
1/(F11F22) and F33 = FQQ.



Figure 19: Evolution of the anisotropic invariants a) IS and b) I&' for the exponent

i =1,2,3,4 under biaxial-tension-compression.
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Figure 20: Evolution of the stress ratio for the biaxial-tension-compression test for a) the
invariants Ifl and b) the Hencky-type invariants I fl with the exponent 7 = 1,2, 3,4.

5. Parameter adjustment

5.1. Parameter identification in soft biological tissues

In the following the proposed transversely isotropic Hencky models are adjusted to the
test data provided in Holzapfel et al. [26]. Arterial stripes were excised for two material
layers, as indicated in Fig. 21a). Therefore, we introduce the orthonormal coordinate
system depending on the circumferential direction IV, the axial direction N, and the
radial direction IN,.. For each of the layers the tissue was stretched in either circumferential
(see Fig. 21b)) or axial (see Fig. 21c)) direction.

In an incompressible uniaxial tension tests with two fiber families orientated in the N, —
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N, plane, we may write the tensors

A 0 0 M0 0
F=U=| o » 0 |, Cc=]l0 X o0 and
0 0 L 0 0 33
m 1A2
Hog(h) 0 0
logU = 0 slog(As) 0
0 0 L

Because of the incompressibility we have tr(logU) = log(det U) = 0 and the second part
of Wy and W,y becomes automatically zero. Moreover, the structural tensors are

 —cs 0 @ cs 0
My =|-cs s* 0 and Mg = |cs s* 0 (72)
0 0 0 0 0 0

with ¢ = cosf; and s = sinf3y and therefore we have

i

1t = (Jiouh) ) (cosi? + (Jion(R) ) sin?  and
15" = Rieos ) + Ryl i)

The angle 5 denotes the angle between each fiber and the local circumferential direction,
while the angle between both fibers follows to 26;. The second Piola-Kirchoff stresses in
this case may be written as
0 o
Su=220 ol g, 200 9P g0 OV
8)\1 1 0 2 2 Ao 1>\2

The Lagrange multiplier p is introduced in order to enforce the incompressibility and can
directly be calculated with help of the requirement that S must be equal to zero. The
stretch A;; is known from the experiments and the remaining unknown Ay is iterated
with help of Newton’s method, making use of the requirement that also S33 must be equal
to zero:

~ ~ ~ A\
Sgg(AQ) ; 0 = /\72H_1 = /\g - M s with L1H833(/\n) GSL() . (73)
LinSss(A3) oD

The parameter fitting was performed with help of a Sequential Quadratic Programming
(SQP) algorithm for nonlinear numerical constrained optimization problems. The gradient
needed for the optimization procedure is calculated based on a finite difference scheme in
conjunction with the above described Newton iteration. The objective function

fObj(a) :: Z 1 Z <UeXp(,\;n)a;(aZZ§)\2, Ol)) (74)

n
e=1 mp—q

is utilized as the optimization criterion. Here ney, and n,,, denote the number of exper-
iments to be fitted and the number of specific measuring points to be evaluated. The
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Figure 21: a) Excised tissue samples and b) uniaxial tension test in circumferential and c)
in axial direction.

predefined amount of stretch associated to each measuring point ¢ is labeled with /):2
The simulated Cauchy stresses o™ and the error f°® are dependent on the chosen ma-
terial parameter set contained in the field . The experimental data was taken from
Holzapfel [25].

The values of the shear modulus p for the isotropic response will be directly estimated
from the experiments as the average of the circumferential and axial stiffness. This is
possible since the initial stiffness of all adjusted strain energies will be independent of the
anisotropic response. Due to the assumed incompressibility it is impossible to estimate
the bulk modulus . From the numerical point of view the bulk modulus may act like a
penalty constraint to enforce quasi incompressibility in more complex computations.

5.2 Media

The results of the parameter adjustment of the Media are given in Table 3 for 8 different
models and the corresponding stress-strain curves are plotted in Fig. 22. These models
result from the combination of the two isotropic strain energy functions in Eq. (33) and
Eq. (40) and the proposed transversely isotropic functions in Eq. (63). The exponent &
for the switchover criterion is set to 0.1 for all functions. The fiber angle 3¢ between
the fiber direction and the circumferential direction was part of the optimization, while
the parameters x and k were excluded from the optimization, due to the above assumed
quasi-incompressibility. The isotropic shear modulus was directly estimated from the ex-
periments and was also not optimized.

Apparently, model 1 and 5 fail to accurately fit the experimental data which is evident in
the large values of the objective function f°®. When considering the exponentiated Hencky
energy Wey instead of the classical isotropic energy Wy the fit quality is substantially
improved for models 2 and 6. Nevertheless, one has to admit that the associated fiber angle
becomes unsatisfactory small, which does not seem to be reasonable. The small fiber angle
is also accompanied by the effect that the isotropic material response in this case is highly
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nonlinear. The functions which are based on invariants with even exponents generally
seem to perform better, independent of the chosen isotropic strain energy function. In
Holzapfel [25], a mean angle of 37.5° was reported. The optimized fiber angles of model 3,
4, 7 and 8 are of this order of magnitude. When W,y is used the error generally becomes
slightly smaller, since one additional parameter is available.

Y in - pinkPa | kin- | gy inkPa | kjin- | Bein® | fo
1| W + Zz 1 wti (If(l)) 31.16 - 0.0001 948.81 25.36 | 0.426
2| Wen + Za 1¢ ( 4(a)) 31.16 10.54 0.50 107.94 0.73 | 0.071
3| Wy + Z ( f(j)) 31.16 - 1204.86 1599.53 | 41.24 | 0.046
41 Wen + za 11/1 ( 4(a)) 31.16 3.38 726.09 1848.66 | 40.68 | 0.044
51 Wy + Za 1¢ ( 4(@)) 31.16 - 11677.63 3112.51 | 0.0001 | 0.386
6 | Wen + Za 1@[} ( 4(a)) 31.16 10.54 | 5033.61 17685.18 | 28.74 | 0.071
7T Wix+ Za 11/) ( 4(a)) 31.16 - 591428.36 | 51778.23 | 38.49 | 0.100
8 | Wen + Za 11/ ( 4(a)) 31.16 7.56 | 232287.68 | 174224.46 | 36.86 | 0.052
Table 3: Adjusted parameter sets of the Media.
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Figure 22: Adjusted stress-strain curves for the media for model 1-8.
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5.3 Adventitia

Since the tension test of the Adventitia in circumferential direction reveals a more or less
linear stress-strain relation, it is sufficient to test only four models in this case without
distinction in the isotropic response. The optimized parameters are shown in Table 4
and the corresponding stress-strain curves are given in Fig. 23. Please note that in this
case the constraint By < 60° was added to the optimization procedure, which is in the
range of experimentally obtained mean angles, see Holzapfel [25]. Otherwise, the fiber
angle would always converge to 90°, due to the more or less linear stress-strain relation
of the circumferential direction. Again, only model 4 and 8 are able to reproduce the
experimental curves.

Y in - pinkPa | kin- | gy in kPa | kpin- | Bgin® | fo
2| Wen + Za 12/ ( f ) 15.90 0.45 0.0001 1211.24 | 60.00 | 0.088
4| Weg + Za 1@Z) ( f(a)) 15.90 0.43 2.24 1295.77 | 60.00 | 0.025
6| Wen + Za ld) ( 4(a)) 15.90 0.48 77.06 16443.47 | 60.00 | 0.080
8| Wen + Za ld) ( 4(a)) 15.90 0.43 5380.32 | 56653.51 | 60.00 | 0.022
Table 4: Adjusted parameter sets of the Adventitia.
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Figure 23: Evolution of the stress ratio induced by different anisotropic measures under
biaxial-tension-compression.
5.4 Artery

In this section the calibrated transversely isotropic model is applied to three-dimensional
simulations of coronary patient-specific arterial walls. An arterial geometry is recon-
structed based on two sequenced two-dimensional wvirtual histology (VH) intravascular
ultrasound (IVUS) images. For a detailed description of the three-dimensional recon-
struction the reader is referred to Balzani et al. [7].

The considered artery consists of two layers, see Fig. 24. The outer layer is the Adventitia,
the inner layer the Media. This artery was loaded in a finite element simulation with an
inner pressure of 16 kPa. An augmented Lagrange strategy was applied to enforce quasi-
incompressibility with an allowed tolerance of 1% in change of volume.
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In a first simulation model 4, based on L{{Q, was used with the estimated parame-

ters from the adjustment, see Table 3 and Table 4. These results are to be compared
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6 Open problems

While the ellipticity domain of the isotropic exponentiated Hencky energy is reasonably
well understood (it being an extremely large cone in stretch space) the same is not clear
for the anisotropic logarithmic energy terms. The difficulty which has to be faced is due
to the analytical difficulties in treating derivatives of the logarithmic stretch tensor; we
need to calculate for example 0% (exp(logU, M)?).(€ ® n,&€ ® n) which is manageable
along the lines of the presented algorithmic treatment in this paper; but it remains to
identify a suitable ellipticity region. The experience with the isotropic exponentiated
Hencky energy suggests, however, that the ellipticity domain largely contains the physical
range of arteries, i.e. principal stretches in a suitable A\, € [1/2,2]. Therefore, our model
proposal is elliptic in the physiological range of arteries and this is all that must be
required on mathematical grounds.

Since our extension of the exponentiated Hencky energy towards anisotropy is done on an
ad hoc basis, it remains to study whether the differential-geometric program presented
in Neff et al. [44] may be extended to the anisotropic case. Of course, major technical
difficulties have to be solved. The benefit, however, cannot be overemphasized: there
would result finite strain anisotropic energies having a clear physical meaning. We will
pursue this issue in the future.
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A Appendix
A.1 Notes on the Hencky tensor
The Hencky strain tensor is defined through
1
logU = 3 log C (75)
and
tr(logU) = log(detU) . (76)
The symmetric right Cauchy-Green tensor C' in spectral decomposition is given by
3 3
=Y MNF@NF=Y"\P' with P¥=N'gN* (77)
k= —
and for the Hencky strain we obtain
1 1
_ 5\ k k _ 5\ ; _ Nk k
logU = l; 5 log(M) V" @ N* = k; 5l0s(W)P, with Po=N'@N".  (78)
The first derivative of log U with respect to C' can be computed as
OIOg > 8 log )\k 1 )
— 1 g A
Z Yoc
3 ~
91 log \p ON 1 P,
- Z P.® & % 1 )\k OB
p oN, 0C ocC
3
1~ O 1.~ 0P
= NP0 =+ —log A —— 79
2. 3M TRE R0 T8 Ge (79)
Considering that
N _ p L OB Z?’: P.X P!+ PR P/ (80)
A~ — Lk an A~ =~ = )
oC oC T e — A
see for instance Jog [29], we find that
dlogU 5 1~ L %(mng) — %(long)
:Z§Ak PooP+) Y - (P,RP;+ PR P,). (81)
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The second derivative for the linearization is given by

~ 3546
2logU o OIN! OP; TT OP;
scic ~ 2P Pee g + 5! (%@“’k) + P8 e
Lo PP 0P DIN
+5loeM)5556 T 96 © oe
3546

~_ 1~ 0P, T 0P,
22—5%23@ #RE P g [(d_C on) 4R d_C]

1 0P, 1~ 0P,
- s 2
2(1og>\k)6080—|— =\ 90 ® Py, (82)

where

12\ T
PP, o~ 1 OP\ T oP;
=) — Pl = P —2
0CIC ~ 243, %, ( J ®(ac> +( ’“®ac>

k#j
ap\ P\ T oPN\ T
r (0B OB
+<Pk®(ac> ) +(Pj<z<>ac>
1
(PR P,+ PRP)® (P, — P) . (83)

)

The exponent and the logarithm of an arbitrary symmetric tensor may also be be expressed
with help of a Taylor expansion of the form

o0

1
exp(e Z E and (84)

8
}—tH

log(e) =
k=1

where the latter is convergent in a neighborhood of 1.

A.2. Conjugate stress tensors

The following considerations are adapted from Ogden [46].

The constitutive equation for the stresses are derived form the (isothermal) entropy in-
equality _ _
Y—(P.F) >0, (86)

From the latter we deduce the constitutive relation P = 0. Let the generalized La-
grangean strain measures

slogU m =0
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and Eulerian strain measures

L(vm_—-1 0
Ko = )oom f (88)
logV’ m =10

be given, we aim to find the corresponding constitutive equations. The so called stress
power may be written as

<P7F> = <T7D> = <S7E> = <6E("L)'L/)7E.(m)> = <3K(m)w7K(m)>v (89)

where D = (L + L") and L = grad@. Considering that E = : (FTF + FTF>, we
obtain the relations
P=FS=71F"T. (90)

The pairs in Eq. (89) are said to be work conjugate. By making use of the fact that
R"R = —R"R, we may rewrite E = } (UU +UU > and we are able to reformulate

<S7% (UU+UU) ) = <%(SU+US),U>, (91)
Tiot

such that we directly obtain the Biot stress Tgio, = Optp” (U), work conjugate to U from
the entropy inequality. With U = RV R we are able to relate E™ and K™ and the
corresponding time derivatives as follows:

E™ =R'TK™R and E™ =R'K™R+E™R'R- RTRE™ . (92)
Regarding the generalized stress-power it follows
(om0, B™) = (R(Ogon ) BT, K™) 4+ ([(0pon ) E™ — E™ (O )] . RTR) (93)

Only if E™ gt = 0gemVE™), ie. Ogmt is coaxial with E(™)| it immediately
follows that the constitutive law results in

oy
TR R(9pem ) R" (94)
and the stress power is expressed through (K R(dgwm¢)RT), which is identical to

Eq. (89).
The case that dgm) ¢ is coaxial with E™) implies that also Jgwm and U are coaxial.
Under this assumption one may show that

Oty = ToigU " = U " Vi, (95)
and it follows that
Opm ) = TaiU ™™ and  dpo¥) = Oigut) = TpitU = R'TR, (96)
for isotropic materials. Inserting the latter result in Eq. (94) we obtain the relation
0y (logV')
=2 9o /. 97
T OlogV’ (97)

Regarding the conjugate stress to logU the reader is also referred to Hill [22; 23] and
Hoger [24].



