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We study the behaviour of a geometrically exact 3D Cosserat continuum model for an asymptotically flat domain. Despite
the inherent nonlinearity, the Γ-limit of a corresponding canonically rescaled problem on a domain with constant thickness
can be explicitly calculated. This ”membrane” limit exhibits no bending contributions scaling with h3 (similar to classical
approaches) but features a transverse shear resistance scaling with h for strictly positive Cosserat couple modulus µc > 0. This
result is physically inacceptable for a zero-thickness ”membrane” limit model. Therefore it is suggested that the physically
consistent value of the Cosserat couple modulus µc is zero. In this case, however, the Γ-limit looses coercivity for the
midsurface deformation in H1,2(ω, R

3). For numerical purposes then, a transverse shear resistance can be reintroduced,
establishing coercivity.

1 The finite-strain 3D-Cosserat model in variational form

We consider a fully frame-indifferent finite-strain Cosserat [2] formulation on an asymptotically thin domain Ωh = ω ×
[−h

2 , h
2 ], where h > 0 is the characteristic thickness and ω ⊂ R

2 is the referential midsurface. The two-field Cosserat problem
will be introduced in a variational setting. The task is to find a pair (ϕ,R) : Ωh ⊂ R

3 �→ R
3 × SO(3, R) of deformation ϕ

and independent microrotation R minimizing the energy functional I ,

I(ϕ,R) =
∫

Ωh

W (U) + µLp
c‖DxR‖p dV �→ min . w.r.t. (ϕ,R), ϕ|Γh

= gd, R|Γh
free ,

W (U) = µ ‖ sym(U − 11)‖2 +
λ

2
tr

[
sym(U − 11)

]2
+ µc ‖ skew(U − 11)‖2 , (1.1)

U = R
T∇ϕ, non-symmetric Cosserat stretch tensor ,

DxR := (∇(R.e1)|∇(R.e2)|∇(R.e3)) , Γh = γ0 × [−h

2
,
h

2
] ,

with Dirichlet boundary condition of place for the deformation ϕ on a part of the lateral boundary Γh with γ0 : R �→ ∂ω ⊂ R
2

and everywhere Neumann conditions on the Cosserat rotations R. The parameters µ, λ > 0 are the classical Lamé constants
of isotropic elasticity, the additional parameter µc ≥ 0 is called the Cosserat couple modulus, whose value is controversial.
The parameter Lc > 0 (with dimension length) introduces an internal length which is characteristic for the material, e.g.
related to the grain size in a polycrystal. The internal length Lc > 0 is responsible for size effects in the sense that smaller
samples are relatively stiffer than larger samples.

In this setting, the variational problem (1.1) admits minimizers for any given thickness h > 0 and for all ∞ ≥ µc ≥ 0
(µc = ∞ formally implies a symmetry constraint). For more information and mathematical existence results concerning this
Cosserat bulk model we refer to [7, 6, 4, 9]. In the following, we are interested in characterizing the behaviour of minimizers
to (1.1) as h → 0.

2 The rescaled Cosserat model

In order to do so, it is customary to consider a corresponding rescaled problem, i.e. transforming the problem (1.1) on a
domain with constant thickness. This is achieved by letting Ω1 = ω × [− 1

2 , 1
2 ] and defining the rescaled deformations and

rotations by ϕ�(x, y, z) := ϕ(x, y, h z), R
�
(x, y, z) := R(x, y, h z). The rescaled variational problem reads then

I�(ϕ�, R
�
) = h

∫
Ω1

W (U
�

h) + µLp
c‖Dx

hR
�‖p dV �→ min . w.r.t. (ϕ�, R

�
), ϕ�

|Γ1
= g�

d, R
�

|Γ1
free ,

U
�

h := R
�,T ∇hϕ�, ∇hϕ� := (∂xϕ�|∂yϕ�| 1

h
∂zϕ

�) (= ∇ϕ) , (2.1)

Dx
hR

�
:= (∇h(R

�
.e1)|∇h(R

�
.e2)|∇h(R

�
.e3)) , Γ1 = γ0 × [−1

2
,
1
2
]
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and we consider the sequence of variational problems I�
h(ϕ�, R

�
) := 1

h I�(ϕ�, R
�
).

3 The Γ-limit Cosserat ”membrane” model

We define the metric space X = Lr(Ω1, R
3) × Lp(Ω1, SO(3, R)), r = p′ = 2p

p−2 , p > 3 and note the compact embeddings

H1,2(Ω1, R
3) ⊂ Lr(Ω1, R

3), W 1,p(Ω1, SO(3, R)) ⊂ Lp(Ω1, SO(3, R)). The following result has been obtained in [8]. The

Γ-limit [3, 1] to the sequence I�
h(ϕ�, R

�
) : X �→ R

+ is given by the variational problem (after de-scaling) for the midsurface
deformation m : ω ⊂ R

2 �→ R
3 and the independent microrotation of the plate R : ω ⊂ R

2 �→ SO(3, R):

I0(m,R) =
∫

ω

hW hom(∇m,R) + hµLc
p ‖Ks‖p dω �→ min . w.r.t. (m,R) ,

m|γ0
= gd(x, y, 0) simply supported , R|γ0

free ,

W hom(∇m,R) = µ ‖ sym((R1|R2)T∇m − 112)‖2︸ ︷︷ ︸
”intrinsic”shear-stretch energy

+µc ‖ skew((R1|R2)T∇m − 112)‖2︸ ︷︷ ︸
”intrinsic” first order drill energy

(3.1)

+ 2µ
µc

µ + µc

(
〈R3,mx〉2 + 〈R3,my〉2

)
︸ ︷︷ ︸

homogenized transverse shear energy

+
µλ

2µ + λ
tr

[
sym((R1|R2)T∇m − 112)

]2
︸ ︷︷ ︸

homogenized elongational stretch energy

,

Ks =
(
(∇(R.e1)|0), (∇(R.e2)|0), (∇(R.e3)|0)

)
reduced third order curvature tensor ,

where we set Ri = R.ei. Note that 2µ µc

µ+µc
= H(µ, µc), µλ

2µ+λ = 1/2H(µ, λ/2), where H denotes the harmonic mean. This
variational limit formulation looses coercivity for the midsurface deformation m ∈ H1,2(ω, R3) if µc = 0. However, this loss
of coercivity is not related to the missing drill-energy contribution but only due to the missing transverse shear term in that
case. The proof of this Γ-limit result is first obtained for µc > 0 (in which case equicoercivity for the sequence I�

h over X
greatly facilitates the task) and thereafter it is shown, that the result remains true also for µc = 0 where, however, one is faced
with an unusual loss of equicoercivity of this sequence. For dimensionally reduced Cosserat models based on a formal ansatz
we refer to [5] and rerefences therein.

4 A surprising consequence for the Cosserat couple modulus µc

The Γ-limit describes rigourously the limit of zero-thickness, hence a two-dimensional object. Such a ”membrane”-model
should neither have bending-resistance (scaling with h3) nor transverse shear resistance, since both effects can only be ex-
plained by some remaining small (but finite) thickness. The Γ-limit does not have a bending resistance. The resistance τ
against transverse shearing is, however, proportional to τ ∼ 2µ µc

µ+µc

(〈R3,mx〉 + 〈R3,my〉
)
. This strongly suggests that

µc ≡ 0 is the physically consistent value, thus providing us with an answer to the controversy about the value of µc. From
a practical point of view, for the computation of thin structures with a remaining finite thickness h > 0, one should use the
Cosserat Γ-limit model (3.1) with µc = 0 but augment the stretch energy expression W hom exclusively with some transverse
shear contribution. This will restore coercivity for m ∈ H1,2(ω, R3) and lead to stable computations.
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