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Abstract
Modeling of repulsive forces is essential to the under-
standing of certain bio-physical processes, especially
for the motion of DNA molecules. These kinds of phe-
nomena seem to be driven by some sort of “energy”
which especially prevents the molecules from strongly
bending and forming self-intersections.
Inspired by a physical toy model, numerous function-
als have been defined during the past twenty-five years
that aim at modeling self-avoidance. The general idea
is to produce “detangled” curves having particularly
large distances between distant strands.
In this survey we present several families of these so-
called knot energies. It turns out that they are quite sim-
ilar from an analytical viewpoint. We focus on prov-
ing self-avoidance and existence of minimizers in every
knot class. For a suitable subfamily of these energies
we show how to prove that these minimizers are even
infinitely differentiable.
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1. Introduction

Self-repelling forces play an important rôle in nature, e.g. for the behaviour of protein foldings [19] and the motion ofknotted DNA structures in electrophoresis gels [12]. For instance, in order to access the information stored in the DNA,specific topological and geometrical transformations have to be applied by the corresponding enzymes. Therefore, thetopological shape of DNA molecules has an important impact in this process [28]. In fact, one is led to speculate thatthese kinds of phenomena are driven by some “energy” [20] which is of course difficult to determine. Especially, suchan energy should prevent the molecule from strongly bending and forming self-intersections.Inspired by a physical toy model, several functionals appeared in the literature during the past twenty-five years thataim at modeling self-avoidance. The original idea tracing back to Fukuhara [15] was to consider the deformation of athin fibre charged with electrons lying in a viscous liquid. Assuming that this fibre is infinitesimally thin, it may beregarded as a curve
γ : [0, 1]→ Rn

where, in general, n = 3. We will restrict to closed curves, so the points 0 and 1 can be identified and the preimagebecomes the quotient space R/Z, i.e., the curve is a 1-periodic mapping R→ Rn. Heuristically, the electrostatic energyacts as a repulsive potential, so the interaction of two given points γ(u) and γ(v ) can be written as
1

|γ(u)− γ(v )|α
for some α > 0 which has to be chosen in an appropriate way. If we are not in an equilibrium, the electrostatic energyis turned into kinetic energy which will result in some deformation of the curve. As the electrons lead to self-avoidance,we expect the curve to “detangle”, resulting in a shape having particular large distances between different strands.In this spirit, the basic idea in constructing self-repelling forces is to penalize distant points of the curve having a smallEuclidean distance. We particularly aim at maintaining the knot type or, synonymously, knot class, which defines anequivalence relation among all embedded closed curves. Roughly speaking, two given knots belong to the same knotclass if one can continuously be deformed into the other without self-intersections or pulling-tight of small knotted arcsas indicated in Figure 1. A precise definition can be found, e.g., in [10].The motivation to restrict to closed curves is mainly due to convenience. In this case the topological shape of a closedembedded curve is essentially determined by its knot type while there is no satisfactory notion of “knottedness” of opencurves. Of course, one could adopt the definition of “knot type contained in a ball” [14], but this leads to several technicaldifficulties which we would like to avoid here.
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However, there are in fact bacteria whose genome is a single closed duplex DNA circle [28], so we are even now not toofar away from “real world” problems. Of course, we are still on the level of an idealized situation that lacks a concretebiophysical model. Nevertheless, we hope for future applications of the theory presented in this survey.Since we consider closed curves, we may extend their parametrizations to periodic functions—which is quite convenientfor applying tools of harmonic analysis. Though our proofs seem to rely to a large extent on this setting, with someadditional techniques a similar analysis of the energies in question should be possible for open curves.In this text, we will provide a short outline of knot energies proposed by several authors and prove existence andregularity for a large class of knot energies. We start by giving a widely adopted definition of knot energies [24, 27].
Definition 1 (Knot functionals, knot energies and strong knot energies).By C 1(R/Z,Rn) we denote the class of all continuously differentiable functions R/Z → Rn. A knot functional is amapping C 1(R/Z,Rn) → [0,∞]. A knot functional KE : C 1(R/Z,Rn) → [0,∞] is said to be a knot energy if it isself-repulsive, i.e., if for any sequence (γk )k∈N ⊂ C 1 uniform (in C 0) convergence to a non-injective curve γ∞ ∈ C 1implies KE(γk )→∞ as k → ∞. (1)
If there are, for given E, L > 0, only finitely many knot types having a representative with KE ≤ E and length = L thenKE is a strong knot energy.
Note that being self-repulsive is stronger than assuming that the functional is infinite on all non-injective curves.By minimizing a knot energy one hopes to find curves having a particularly nice shape that, as indicated above, couldpresumably characterize a steady state in some biophysical model or help to determine the knot type.In a broader sense, a knot energy can be seen as some sort of “measure” for the “entangledness” of a given curve. It isnatural to ask to what extent a knot energy also measures smoothness and curvature.To this end it is crucial to answer the following questions:
• Is the functional under consideration in fact a knot energy?
• Are there minimizers in every knot class?
• How smooth are those (local) minimizers?

In the next section we will present some examples of knot functional families and discuss for which parameters they areself-repulsive and non-singular. We will be able to give an affirmative answer to the first two questions raised above(Theorems 4 and 9). As to the third one, we will show that, for a certain sub-family, any stationary point is C∞, i.e.,infinitely differentiable (Theorem 10).
2. A parade of knot energies

In this section we present some families of knot functionals. Although they stem from different geometric concepts, theyturn out to be quite similar from an analyst’s viewpoint. This fact will become apparent in the subsequent section wherewe present an axiomatic form which covers all of the knot energies discussed in this section. We will use this abstractsetting for simultaneously proving self-avoidance and existence of minimizers within any knot class.Here we intend to motivate for which parameter range of the respective families we expect to find proper knot energies.
2.1. O’Hara’s energies

Adapting Fukuhara’s idea, O’Hara [22, 23] defined the family of knot functionals
O’H(α,p)(γ) := ∫∫(R/Z)2

( 1
|γ(u)− γ(v )|α − 1

Dγ (u, v )α
)p
|γ ′(u)| |γ ′(v )| du dv. (2)
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Here α, p > 0, and γ ∈ C 0,1(R/Z,Rn). The quantity Dγ (u, v ) measures the intrinsic distance between γ(u) and γ(v ) onthe curve γ.As |γ(u)− γ(v )| ≤ Dγ (u, v ), the integrand is non-negative, so the integral takes a value in [0,∞]. The first term penalizespairs of points (γ(u), γ(v )) having a small Euclidean distance by taking the latter to a negative power in order to producea singularity. As neighboring points γ(u), γ(u + ε) naturally have a small Euclidean distance, we have to add somesort of regularization: substracting the intrinsic distance Dγ (u, v ) taken to the same negative power as the Euclideandistance, the singularities stemming from neighboring points are cancelled while those for distant points are essentiallyunaffected. Finally we average over the p-th power of this term over all pairs of points by integrating. The factors
|γ ′(u)| |γ ′(v )| guarantee invariance under reparametrization.Now we have to determine the parameters α, p > 0 for which this procedure works. We first remark O’H(α,p)(rγ) =
r2−αpO’H(α,p)(γ) for r > 0, i.e., O’H(α,p) is positively homogeneous of degree 2 − αp. Therefore, in case αp > 2 theintegral blows up as the curve shrinks down.There is an immediate heuristics why we should stick to that range. Choose a finite-energy smooth curve that containsa straight line segment. Insert a small knotted arc in that line segment producing a smooth curve. Shrinking down thatknotted arc component while leaving unchanged the rest of the curve would produce a sequence of knotted arcs leavingthe knot class at the limit, the so-called pulling-tight effect, see Figure 1. However, (1) does not apply for αp ≤ 2.
Definition 2 (Preventing pulling-tight).A knot functional is said to prevent pulling-tight if pulling-tight of a small knotted arc as in Figure 1 implies (1).
A formal definition is provided in O’Hara’s monography [24].From the argument sketched above we infer that a knot functional being positively homogeneous of non-negative degreeit very unlikely to prevent pulling-tight.However, self-avoidance as in the definition of knot energies does not imply the prevention of pulling-tight. A coun-terexample is already the first geometric knot energy O’H(2,1) which was shown by O’Hara to be self-repulsive. But dueto its invariance under the Möbius group [14] it cannot prevent a curve from being pulled tight.In order to be self-repulsive, two perpendicular line segments must produce an energy blow-up as they approach eachother. We will show that this is not the case for αp < 2. To this end consider a curve γδ containing the two strands
γ1(u) := (u, 0, 0) and γ2(u) = (0, u, δ) for δ > 0, u ∈ [−1, 1]. In order to compute the respective energy values, we switchto polar coordinates, u = r cosφ, v = r sinφ, which gives1

O’H(α,p)(γδ ) ∼ ∫∫[−1,1]2
( 1
|γ1(u)− γ2(v )|α − 1

D(γ1(u), γ2(v ))α
)p dv du

≤
∫∫

[−1,1]2
dv du(u2 + v2 + δ2)αp

≤
∫ √2

0
∫ 2π

0
r dφ dr(r2 + δ2)(αp)/2

≤ C
∫ √2

0
r dr(r + δ)αp

≤ C
∫ √2

0 (r + δ)1−αp
αp < 2
≤ C

((√2 + δ
)2−αp

− δ2−αp) .
1 By writing A ∼ B we mean that A essentially behaves like B up to lower-order terms.
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The last term stays bounded as δ ↘ 0 if αp < 2.On the other hand, not every functional O’H(α,p) with αp ≥ 2 leads to a suitable knot energy. In fact, for γ beingparameterized by arc-length, i.e., |γ ′| = 1 almost everywhere, we deduce as in [4] using 1 − 〈a, b〉Rn = 12 |a − b|2 for
a, b ∈ Rn, |a| = |b| = 1, as well as Dγ (u+ w, u) = |w|

O’H(α,1)(γ) = ∫∫(R/Z)2
( 1
|γ(u+ w)− γ(u)|α − 1

Dγ (u+ w, u)α
) dw du

= ∫∫(R/Z)2
(

|w|
|γ(u+ w)− γ(u)|

)
︸ ︷︷ ︸

≥1

α 1
|w|α

(1− |γ(u+ w)− γ(u)|α
|w|α

) dw du
≥ c

∫∫
(R/Z)2

1
|w|α

(1− |γ(u+ w)− γ(u)|2
|w|2

) dw du
≥ c

∫∫
(R/Z)2

1
|w|α

(1− ∫∫[0,1]2 〈γ ′(u+ θ1w), γ ′(u+ θ2w)〉Rn dθ1 dθ2
) dw du

≥ c̃
∫∫

(R/Z)2
1
|w|α

(∫∫
[0,1]2 |γ ′(u+ θ1w)− γ ′(u+ θ2w)|2 dθ1 dθ2

) dw du
≥ c̃

∫
R/Z

∫ 1/2
−1/2

1
|w|α

(∫∫
[0,1]2 |γ ′(u+ (θ1 − θ2)w)− γ ′(u)|2 dθ1 dθ2

) dw du
≥ c̃

∫∫
[0,1]2

∫
R/Z

∫ 1/2
−1/2

1
|w|α |γ

′(u+ (θ1 − θ2)w)− γ ′(u)|2 dw du dθ1 dθ2
≥ c̃

∫ 1
1−ε
∫ ε

0
∫
R/Z

∫ 1/2
−1/2

1
|w|α |γ

′(u+ (θ1 − θ2)w)− γ ′(u)|2 dw du dθ1 dθ2
≥ c̃

∫ 1
1−ε
∫ ε

0
∫
R/Z

∫ (θ1−θ2)/2
−(θ1−θ2)/2

(θ1 − θ2)α−1
|w̃|α |γ ′(u+ w̃)− γ ′(u)|2 dw̃ du dθ1 dθ2

≥ c̃
∫ 1

1−ε
∫ ε

0 (θ1 − θ2)α−1 dθ1 dθ2︸ ︷︷ ︸
∈(0,∞)

∫
R/Z

∫ 1/2−ε
−1/2+ε

|γ ′(u+ w̃)− γ ′(u)|2
|w̃|α dw̃ du,

where ε ∈ (0, 12 ). More generally, one can show
O’H(α,p)(γ) ≥ c ∫

R/Z

∫ ε

−ε

|γ ′(u+ w)− γ ′(u)|2p
|w|αp dw du for ε � 1,

see [4] for details. As for closed curves γ ′ cannot be constant, the right-hand side must be positive. Applying thefollowing result which is proven in Brezis [9, Prop. 2], we then get that, in case
(α − 2)p ≥ 1, (3)

the right hand side must be infinite for any closed curve!
Proposition 3 (Highly singular potentials).
Assume Ω is a connected open set in RN and f : Ω→ R is a measurable function with

∫∫
Ω×Ω
|f (x)− f (y)|p
|x − y|N+p dx dy < ∞ for some p ∈ [1,∞) (4)

then f is constant.
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Fig 2. The range of O’Hara’s energies (left); the range of abstract energies (right). On the left-hand side we depict the situation of O’Hara’s
energies O’H(α,p). Below the green curve, the respective functionals are not self-repulsive, thus no knot energies. On and above the red line
the functionals are so singular that they only take the value infinity. The yellow area between the two curves marks the sub-critical range
for which we prove self-repulsiveness and existence of minimizers in every knot class. The darker yellow line α ∈ (2, 3), p = 1 denotes
the non-degenerate sub-critical range where local minimizers are C∞. Any functional O’H(α,p) corresponds to the abstract functional KE(s,ρ)
where s = α2 − 12p +1 and ρ = 2p. The respective parameter ranges are shown on the right-hand side. The energy increase does not follow
from the axioms (K1), (K2), (K3), but applies for the examples discussed in this section.

An alternative way to see O’H(α,p) ≡ ∞ for (3) is provided by Abrams, Cantarella et al. [1]. They prove that O’H(α,p) is(for closed curves) always globally minimized by the (round) circle. It is easy to see that it is assigned to infinite energyin case (3).In light of these facts it is reasonable to restrict oneself to the sub-critical range

αp > 2, (α − 2)p < 1. (5)
The respective parameter ranges discussed in this subsection are visualized in Figure 2 (left).
2.2. Tangent-point energies

Another important family of knot energies is the (generalized) tangent-point energy family
TP(p,q)(γ) = ∫∫(R/Z)2

∣∣∣P⊥γ′(u) (γ(u)− γ(v ))∣∣∣q
|γ(u)− γ(v )|p |γ ′(u)| |γ ′(v )| du dv (6)

where γ ∈ C 0,1(R/Z,Rn) and
Pγ′(u)a := 〈a, γ ′(u)

|γ ′(u)|
〉

γ ′(u)
|γ ′(u)| , P⊥γ′(u)a := a − Pγ′(u)a for a ∈ Rn (7)

denote the projection onto the tangential and normal part along γ respectively. In case p = 2q the factor ∣∣∣P⊥γ′ (u)(γ(u)−γ(v ))∣∣∣q
|γ(u)−γ(v )|pin (6) is just the q-th power of the reciprocal of the diameter of the circle being tangent to γ(u) and passing through γ(v ).Proceeding as for O’Hara’s energies, we will show that the functionals are not self-repulsive if p < q+2 while they aresingular for p ≥ 2q+ 1. Therefore we will restrict our attention to the sub-critical range

p ∈ (q+ 2, 2q+ 1). (8)
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Fig 3. The ranges of the tangent-point energies (left) and the integral Menger curvature (right). Above the green line, the functionals are not self-
repulsive; below the red line, they are highly singular. The yellow area marks the sub-critical range, the dark yellow line the non-degenerate
sub-critical range, cf. Fig. 2. The blue line indicates the “classical” energy functionals investigated by Strzelecki et al. [26, 27]. The functionalsTP(p,q) and intM(p,q) correspond to KE(s,ρ) where s = p−1

q or s = 3p−2
q − 1 respectively and ρ = q, see [6, 8] for details.

This range is sketched in Figure 3. The lower bound q + 2 is due to the fact that as before for a curve γδ containingthe strands γ1(u) := (u, 0, 0) and γ2(u) = (0, u, δ) for δ > 0, u ∈ [−1, 1], one gets
TP(p,q)(γδ ) ∼ 2 ∫∫[−1,1]2

(
v2 + δ2)q/2(u2 + v2 + δ2)p/2 du dv

≤ 2 ∫ √2
0
∫ 2π

0
(
r2 sin2 φ + δ2)q/2(r2 + δ2)p/2 r dφ dr

≤ 4π ∫ √2
0
(
r2 + δ2) q−p2 r dr.

(9)

The integral on the right-hand side is bounded for δ ↘ 0 if p < q+ 2.Using techniques from [3] we justify the upper bound 2q+ 1 as follows. Let us again assume that γ is parametrized byarc-length. By continuity we may choose some δ > 0 depending on γ such that
|γ ′(u)− γ ′(v )| ≤ 12√2 for all u ∈ R/Z, |u − v| ≤ δ. (10)

This leads to
∣∣P⊥γ′(v ) (γ(u)− γ(v ))− P⊥γ′(u) (γ(u)− γ(v ))∣∣2= |〈γ(u)− γ(v ), γ ′(v )〉 γ ′(v )− 〈γ(u)− γ(v ), γ ′(u)〉 γ ′(u)|2= |〈γ(u)− γ(v ), γ ′(v )〉|2 + |〈γ(u)− γ(v ), γ ′(u)〉|2
− 2 〈γ(u)− γ(v ), γ ′(u)〉 〈γ(u)− γ(v ), γ ′(v )〉 〈γ ′(u), γ ′(v )〉= |〈γ(u)− γ(v ), γ ′(v )〉 − 〈γ(u)− γ(v ), γ ′(u)〉|2+ 〈γ(u)− γ(v ), γ ′(u)〉 〈γ(u)− γ(v ), γ ′(v )〉 |γ ′(u)− γ ′(v )|2
≥ |γ ′(u)− γ ′(v )|2 |u − v|2 ∫ 1

0 〈γ ′(u+ θ1(v − u)), γ ′(u)〉︸ ︷︷ ︸=1− 12 |γ′(u+θ1(v−u))−γ′(u)|2≥ 34
dθ1

∫ 1
0 〈γ ′(u+ θ2(v − u)), γ ′(v )〉︸ ︷︷ ︸

≥ 34
dθ2
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≥ 916 |u − v|2 |γ ′(u)− γ ′(v )|2
which in turn allows to estimate using |γ(u)− γ(v )| ≤ |u − v|

TP(p,q)(γ) = ∫∫(R/Z)2
∣∣∣P⊥γ′(u) (γ(u)− γ(v ))∣∣∣q
|γ(u)− γ(v )|p du dv

= 12
∫∫

(R/Z)2
∣∣∣P⊥γ′(v ) (γ(u)− γ(v ))∣∣∣q + ∣∣∣P⊥γ′(u) (γ(u)− γ(v ))∣∣∣q

|γ(u)− γ(v )|p du dv
≥ c̃q

∫∫
(R/Z)2

∣∣∣P⊥γ′(v ) (γ(u)− γ(v ))− P⊥γ′(u) (γ(u)− γ(v ))∣∣∣q
|γ(u)− γ(v )|p du dv

≥ cp,q
∫∫
|u−v|≤δ

|u − v|q |γ ′(u)− γ ′(v )|q
|γ(u)− γ(v )|p du dv

≥ cp,q
∫∫
|u−v|≤δ

|γ ′(u)− γ ′(v )|q
|u − v|p−q

du dv.
Applying Proposition 3, we again get that for p > 2q+ 1 the energy is only finite for pieces of one straight line.
2.3. Integral Menger curvature

Instead of the circle passing through one point and being tangent to another we can also consider the circumcircle, i.e.the circle passing through three distinct points x, y, z ∈ Rn. The circumcircle radius is given by
R (x, y, z) := |y − z| |y − x| |z − x|2 |(y − x) ∧ (z − x)| = |y − z|2 sin^ (y − x, z − x) , x, y, z ∈ Rn. (11)

Decoupling powers in the nominator and denominator we arrive at
R (p,q)(x, y, z) := (|y − z| |y − x| |z − x|)p

|(y − x) ∧ (z − x)|q = |y − z|p |y − x|p−q |z − x|p−qsin^ (y − x, z − x)q
which is the integrand of the generalized integral Menger curvature functionals [8]

intM(p,q)(γ) := ∫∫∫(R/Z)3
|γ ′(u)| |γ ′(u+ v )| |γ ′(u+ w)|
R (p,q)(γ(u), γ(u+ v ), γ(u+ w)) dw dv du, p, q > 0. (12)

Due to the three dimensional integration domain the situation is a little bit more involved. In order to exclude thecase p < 23q + 1 we again look at a curve γδ containing the strands γ1(u) := (u, 0, 0) and γ2(u) = (0, u, δ) for δ > 0,
u ∈ [−1, 1]. Applying spherical coordinates u = r cosθ , v = r sinθ cosφ, w = r sinθ sinφ, leads us to

intM(p,q)(γδ ) ∼ C ∫∫∫[−1,1]3
(
δ2 + u2)q/2

|v − w|p−q (δ2 + u2 + v2)p/2 (δ2 + u2 + w2)p/2 dw dv du
≤ C

∫∫∫
[−1,1]3

(
δ2 + u2)(q−p)/2

|v − w|p−q (δ2 + u2 + v2 + w2)p/2 dw dv du
≤ C

∫ √3
0
∫ π

0
(
δ2 + r2 cos2 θ)(q−p)/2 r2 sinθ
rp−q sinp−q θ (δ2 + r2)p/2 dθ dr ∫ 2π

0
dφ

|cosφ − sinφ|p−q︸ ︷︷ ︸
≤C

8
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≤ C
∫ √3

0


∫

[0, π4 ]∪[ 3π4 ,π]
(
δ2 + r2)(q−p)/2 dθ

rp−q−2 sinp−q−1 θ︸ ︷︷ ︸
≥1

(δ2 + r2)p/2 + ∫ 3π4
π4

(
δ2 + r2 cos2 θ)(q−p)/2 r sinθ
rp−q−1 sinp−q θ (δ2 + r2)p/2 dθ

 dr
≤ C

∫ √3
0
((δ + r)−3p+2q+2 + r−p+q+1 (δ + r)−p ∫ r

0
(
δ2 + σ 2)(q−p)/2 dσ) dr

≤ C
(1− δ−3p+2q+3) .

Proceeding in a similar way as for the tangent-point energies, we infer the restriction p < q+ 23 to exclude the highlysingular range, see [5, 8].
2.4. Ropelength

In this subsection we briefly mention a special case which is related to the integral Menger curvature family. In fact, itcorresponds to the limit case p = q → ∞.Taking the infimum of (11) over all points of the curve γ, we obtain a notion of thickness. This particular definition whichgoes back to Gonzalez and Maddocks [17] has the advantage over other definitions not to require any initial regularityof the curve.It is elementary to see that ropelength, i.e. the quotient of length over thickness, is a knot energy. Ropelength minimizersare referred to as ideal knots. As taking infima is a non-smooth operation, one cannot proceed by the techniques presentedin this text.The existence of ideal knots has been proven in [18], [13], and [16]; they have at least a Lipschitz continuous tangent (ifparametrized by arc-length). For further information we refer to [11] and references therein.
3. Existence of minimizers

In this section we discuss the existence of minimizers in any knot class. There is almost nothing known about the shapeof those minimizers up to the fact that circles are unique minimizers among all closed curves for O’Hara’s energies [1].In order not to prove the existence result for minimizers of O’Hara’s energies, tangent point energies and integral Mengercurvature separately, we gather all the properties of these energies we need in one abstract framework:
For k ∈ N, k > 1, we let f (s,ρ) : C 1(R/Z,Rn)× (R/Z)k → [0,∞] be a measurable non-negative function anddefine the energy of a curve γ by

KE(s,ρ)(γ) := ∥∥f (s,ρ)(γ; · · · )∥∥L1((R/Z)k ) = ∫ · · · ∫
(R/Z)k

f (s,ρ)(γ;u1, . . . , uk ) du1 · · · duk .
We assume that f (s,ρ) and KE(s,ρ) satisfy the following properties for arbitrary γ ∈ C 1(R/Z,Rn).
(K1) We have f (s,ρ)(rγ + x; · · · ) = r−(s−1−1/ρ)f (s,ρ)(γ; · · · ) for all r > 0 and x ∈ Rn. Furthermore, KE(s,ρ)(γ)is invariant under reparametrization of γ.(K2) If f (s,ρ)(γ; · · · ) vanishes on U1× · · ·×Uk where Uj ⊂ R/Z, j = 1, . . . , k , then the image of γ restrictedto ⋃k

j=1 Uj is collinear, i.e., lies on a straight line.(K3) For any C > 0 there is some C ′ = C ′(C ) > 0 such that KE(s,ρ)(γ) ≤ C implies ∥∥γ ′∥∥C0,s−1−1/ρ ≤ C ′ forany arc-length parametrized curve γ.
It is not difficult to see that O’H(α,p), TP(p,q), and intM(p,q) satisfy (K1) and (K2) for appropriatly chosen s and ρ. However,in order to prove (K3) one can either use an approach based on fractional Sobolev spaces and Morrey’s embbedingtheorem, see [6–8], or use a sophisticated scaling argument as shown in [21], [26], and [27].
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Theorem 4 (Prototype knot energies in the sub-critical range).
Let (s, ρ) belong to the sub-critical range, i.e.,

s ∈ (1 + 1
ρ , 2), ρ ∈ (1,∞). (13)

The prototype functional KE(s,ρ) : C 1(R/Z,Rn)→ [0,∞] given by

KE(s,ρ)(γ) := ∥∥f (s,ρ)(γ; · · · )∥∥L1((R/Z)k ) = ∫ · · · ∫
(R/Z)k

f (s,ρ)(γ;u1, . . . , uk ) du1 · · · duk
is a strong knot energy that prevents pulling-tight.

Proof. Pulling-tight produces a singularity of the tangent which is excluded by (K3). Strong self-repulsiveness isproven in Proposition 8.
Note that KE(s,ρ)(γ) might be infinite although γ ∈ C 1,s−1−1/ρ is an embedded arc-length parametrized curve. However,in all the cases discussed here, the energy values are finite for sufficiently regular embedded curves, for example curveshaving a Lipschitz continuous tangent.We start with a rigorous proof of bi-Lipschitz continuity providing a bi-Lipschitz constant depending only on the energy,not on the curve itself.
Proposition 5 (Uniform bi-Lipschitz estimate).
For every M < ∞ and (13) there is a constant C (M) < ∞ such that any embedded curve γ ∈ C 1(R/Z,Rn) parametrized
by arc-length with KE(s,ρ)(γ) ≤ M (14)
satisfies the bi-Lipschitz estimate

|u − v| ≤ C (M) |γ(u)− γ(v )| for all u, v ∈ R/Z.

We will give an easy proof that essentially boils down to combining the regularity from (K3) with a scaling argument.The following lemma will be one of the essential parts in the proof. We define for two arc-length parametrized curves
γi : Ii → R, i = 1, 2, I1, I2 open intervals,

KE(s,ρ)(γ1, γ2) := ∫ · · · ∫
Ik1
f (s,ρ)(γ;u1, . . . , uk ) du1 · · · duk +

+ ∫ · · · ∫
Ik2
f (s,ρ)(γ;u1, . . . , uk ) du1 · · · duk +

+ ∫ · · · ∫
I1×Ik−12

f (s,ρ)(γ;u1, . . . , uk ) du1 · · · duk
in order to state
Lemma 6.
Let α ∈ (0, 1). For µ > 0 let Mµ denote the set of all pairs (γ1, γ2) of embedded arc-length parametrized curves
γi ∈ C 1([− 12 , 12 ],Rn) satisfying

• |γ1(0)− γ2(0)| = 1,

• γ ′1(0) ⊥ (γ1(0)− γ2(0)) ⊥ γ ′2(0),
10
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γ′
1(0)

γ1(0)

γ2(0)
γ′

2(0)

Fig 4. The situation in Lemma 6. Note that γ1 and γ2 are always disjoint.

•
∥∥γ ′i∥∥C0,α ≤ µ, i = 1, 2.

Then there is some c = c(α, µ) > 0 with

KE(s,ρ)(γ1, γ2) ≥ c for all (γ1, γ2) ∈ Mµ.

Proof. We will show that KE(s,ρ)(·, ·) attains its minimum c on Mµ . From this we immediately infer c > 0 for,otherwise, KE(s,ρ)(γ1, γ2) = 0 implies by (K2) that both γ1 and γ2 are part of one single straight line. This contradictsthe fact that Mµ does not contain straight lines by the first two properties.Let (γ(n)1 , γ(n)2 ) be a minimizing sequence in Mµ , i.e., we have
lim
n→∞

KE(s,ρ)(γ(n)1 , γ(n)2 ) = inf
Mµ

KE(s,ρ)(·, ·).
Subtracting γ1(0) from both curves, i.e., setting

γ̃(n)
i (τ) := γ(n)

i (τ)− γ1(0), i = 1, 2,
and using the Arzelà-Ascoli theorem (due to the third property), we may pass to a subsequence

γ̃(n)
i → γ̃i in C 1.

Furthermore, (γ̃1, γ̃2) ∈ Mµ since Mµ is closed under convergence in C 1. Since, by Fatou’s lemma, the functional KE(s,ρ)is lower semi-continuous with respect to C 1 convergence, we obtain
inf
Mµ

KE(s,ρ)(·, ·) ≤ KE(s,ρ)(γ̃1, γ̃2) ≤ lim
n→∞

KE(s,ρ)(γ̃(n)1 , γ̃(n)2 ) (K1)= lim
n→∞

KE(s,ρ)(γ(n)1 , γ(n)2 ) = inf
Mµ

KE(s,ρ)(·, ·).

Let us use this lemma to give the
Proof of Propsition 5. Applying (K3) to (14) we obtain

∥∥γ ′∥∥C0,α ≤ C ′(M)
11
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for α = s − 1− 1
ρ > 0. As an immediate consequence there is a δ = δ(α, C ′) > 0 such that

|u − v| ≤ 2|γ(u)− γ(v )|
for all u, v ∈ R/Z with |u − v| ≤ δ. Let now

S := inf { |γ(u)− γ(v )| ∣∣∣u, v ∈ R/Z, |u − v| ≥ δ
}
≤ 12 .

We will complete the proof by estimating S from below. Using the compactness of {u, v ∈ R/Z, |u − v| ≥ δ}, there are
s, t ∈ R/Z with |s − t| ≥ δ and

|γ(s)− γ(t)| = S.

In case |s − t| = δ we infer 2S = 2|γ(s)− γ(t)| ≥ δ
and hence

|u − v| ≤ 12 ≤ S
δ ≤

|γ(u)− γ(v )|
δ(α, C ′)for all u, v ∈ R/Z with |u − v| ≥ δ . This proves the proposition in this case. If, on the other hand, |s − t| > δ then theminimality of |γ(s)− γ(t)| implies

γ ′(s) ⊥ (γ(s)− γ(t)) ⊥ γ ′(t).
We let for τ ∈ [− 12 , 12 ]

γ1(τ) := 1
S γ(s+ Sτ) and γ2(τ) := 1

S γ(t + Sτ).
Since ∥∥γ ′i∥∥C0,α ≤ ∥∥γ ′∥∥C0,α (

≤ C ′(M))
we may apply Lemma 6 which gives KE(s,ρ)(γ1, γ2) ≥ c(α, C ′) > 0.
Together with KE(s,ρ)(γ1, γ2) = Ss−1−1/ρKE(s,ρ)(Sγ1, Sγ2) ≤ Ss−1−1/ρKE(s,ρ)(γ),
where we used (K1) twice, this leads to

S ≥
(
c(α, C ′)KE(s,ρ)(γ)

) 1
s−1−1/ρ

≥
(
c(α, C ′)
M

) 1
s−1−1/ρ

.

Hence,
|u − v| ≤ 12 ≤ |γ(u)− γ(v )|2S ≤ C (M) |γ(u)− γ(v )|

for all u, v ∈ R/Z with |u − v| ≥ δ .
We are now in the position to prove the following mighty
Theorem 7 (Compactness).
For each M < ∞ and (13) the set

AM := {γ ∈ C 1(R/Z,Rn) ∣∣ γ embedded, |γ ′| ≡ 1,KE(s,ρ)(γ) ≤ M}
is sequentially compact in C 1 up to translations.

12
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Proof. By (K3) there are C ′ = C ′(M) < ∞ and α > 0 such that
∥∥γ ′∥∥C0,α ≤ C ′

for all γ ∈ AM and hence ∥∥γ̃∥∥C1,α ≤ C ′ + 1
where γ̃(u) := γ(u)− γ(0). Furthermore, from Proposition 5 we infer the bi-Lipschitz estimate

|u − v| ≤ C (M)|γ(u)− γ(v )|
for all γ ∈ AM , u, v ∈ R/Z. Considering a sequence (γn)n∈N ⊂ AM we obtain

∥∥γ̃n∥∥C1,α ≤ C ′ + 1 for any n ∈ N

and hence, after passing to suitable subsequence,
γ̃n → γ0 in C 1.

Since γn was parametrized by arc-length, γ0 is still parametrized by arc-length and still
|u − v| ≤ C (M)|γ0(u)− γ0(v )|

for all u, v ∈ R/Z. So, especially, γ0 is embedded. From lower semi-continuity with respect to C 1 convergence we infer
KE(s,ρ)(γ0) ≤ lim inf

n→∞
KE(s,ρ)(γn) ≤ M.

So γ0 ∈ AM .
Let us conclude this section by deriving two simple corollaries of this sequential compactness and the lower semi-continuity of the energies with respect to C 1-convergence.The first one states that, on the sub-critical range (13), the prototype energies KE(s,ρ) are in fact knot energies as definedin the introduction. The second one, already announced in the introduction, ensures that there exist minimizers of theenergies within every knot class—which are then smooth by Theorem 10.
Proposition 8 (KE(s,ρ) is a strong knot energy).
Let (13) hold.

• If (γk )k∈N ⊂ C 1 is a sequence uniformly converging (in C 0) to a non-injective curve γ∞ ∈ C 1 then KE(s,ρ)(γk )→∞.

• For given E, L > 0 there are only finitely many knot types having a representative with KE(s,ρ) ≤ E and length = L.

Proof. The first statement immediately follows from the bi-Lipschitz estimate in Proposition 5.To show the second statement, let us assume that it was wrong, i.e., that there are curves (γk )k∈N of length L, allbelonging to different knot classes, with energy less than E . Of course we can assume L = 1. By Theorem 7, aftersuitable translations and passing to a subsequence, there is some γ0 ∈ AM with γn → γ0 in C 1. As the intersection ofevery knot class with C 1 is an open set in C 1 [2, Cor. 1.5] (see [25] for an explicit construction), this implies that almostall γk belong to the same knot class as γ0, which is a contradiction.
13
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Theorem 9 (Existence of minimizers in knot classes).
In the sub-critical case (13) there is a minimizer of KE(s,ρ) in any knot class K.

Proof. Let (γk )k∈N ∈ C 1, |γ ′k | ≡ 1, be a minimal sequence of embedded curves for KE(s,ρ) in a given knot class K, i.e.,let lim
k→∞

KE(s,ρ)(γk ) = inf
C1∩K KE(s,ρ).

After passing to a subsequence and suitable translations, we hence obtain by Theorem 7 an embedded arc-lengthparametrized γ0 ∈ C 1 with γk → γ0 in C 1. Again by [2, 25] the curve γ0 belongs to the same knot class as the elementsof the minimal sequence (γk )k∈N. The lower semi-continuity of KE(s,ρ) furthermore implies that
inf
C1∩K KE(s,ρ) ≤ KE(s,ρ)(γ0) ≤ lim

n→∞
KE(s,ρ)(γn) = inf

C1∩K KE(s,ρ).
Hence, γ0 is the minimizer we have been searching for.
By the same reasoning one derives the existence of a global minimizer of KE(s,ρ).
4. Regularity of stationary points

The aim of this section is to outline the proof of
Theorem 10 (Regularity of local minimizers).
Any local minimizer of O’H(α,1), α ∈ (2, 3), TP(p,2), p ∈ (4, 5), and intM(p,2), p ∈ ( 73 , 83 ), is C∞-smooth.

The parameter ranges in the above statement are referred to as the non-degenerate sub-critical case which is depictedas yellow line in Figures 2 and 3. For the abstract energies KE(·,·) this is equivalent to
s ∈ ( 32 , 2), ρ = 2. (15)

In contrast to the previous section, we do not provide an axiomatic approach as this would demand quite a lot ofadditional requirements. Therefore, mainly due to convenience, our analysis presented below reflects the case whereKE(·,·) stands for either O’H(·,·), TP(·,·), or intM(·,·). However, our argument can be adopted for similar problems.
Recall that O’H(α,p) corresponds to KE( α2 − 12p+1,2p), TP(p,q) to KE( p−1

q ,q
), intM(p,q) to KE( 3p−2

q −1,q).We now sketch the strategy of proof for C∞-smoothness of local KE(s,2)-minimizers in the non-degenerate sub-criticalcase (15). All details are to be found in [6–8].The first task is to compute the first variation
δKE(s,2)(γ;h) := lim

τ→0 KE(s,2)(γ + τh)− KE(s,2)(γ)
τ . (16)

Any local minimizer γ of KE(s,2) is a stationary point, i.e., it satisfies the Euler-Lagrange equation

δKE(s,2)(γ;h) + λ 〈γ ′, h′〉L2 = 0 for all h ∈ C∞(R/Z,Rn) (17)
where λ ∈ R is a Lagrange parameter stemming from the side condition (fixed length) and the L2-scalar product is definedin (20) below. We will prove Theorem 10 by exploiting this identity in the following way: a suitable decompositionallows to concentrate the highest-order term on the left-hand side of the equation while the right-hand side turns outto be a lower-order term. By a so-called bootstrapping argument we inductively deduce that the curve γ is more and

14
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more regular. Consequently, the statement in Theorem 10 holds even for stationary points. In the sequel we sketch themain steps being prerequired for its proof.Computing the first variation demands a quite subtle argument for O’Hara’s energies O’H(α,p) while it is rather straight-forward for TP(p,q) and intM(p,q).In order to start a bootstrapping process, we decompose δKE(s,2) into the sum of a bilinear elliptic term Q(s) and aremainder term R (s) of lower order, i.e.,
δKE(s,2)(γ;h) = Q(s)(γ;h) + R (s)(γ;h). (18)

The general idea how to construct Q(s) is just to “linearize” the integrand of δKE(s,2), e.g. by replacing negative powersof |γ(u)− γ(v )| by the corresponding ones of |u − v|.We will briefly illustrate this idea by exemplifying it for O’H(2,α), α ∈ (2, 3). The first variation at an arc-lengthparametrized (sufficiently smooth) embedded curve is given by
δO’H(2,α)(γ;h) = lim

ε↘0
∫∫

u,v∈R/Z
|u−v|≥ε

((α − 2) 〈γ ′(u), h′(u)〉
|u − v|α + 2 〈γ ′(u), h′(u)〉

|γ(u)− γ(v )|α − α 〈γ(u)− γ(v ), h(u)− h(v )〉
|γ(u)− γ(v )|α+2

)du dv.
Linearizing as indicated above leads to

Q( α+12 )(γ;h) = α lim
ε↘0

∫∫
u,v∈R/Z
|u−v|≥ε

(
〈γ ′(u), h′(u)〉
|u − v|α − 〈γ(u)− γ(v ), h(u)− h(v )〉

|u − v|α+2
)du dv. (19)

The remainder is then obtained by computing the difference according to (18)
R ( α+12 )(γ;h) = 2 ∫∫

u,v∈R/Z

〈γ ′(u), h′(u)〉( 1
|γ(u)− γ(v )|α − 1

|w|α
) du dv

− α
∫∫

u,v∈R/Z

〈γ(u)− γ(v ), h(u)− h(v )〉( 1
|γ(u)− γ(v )|α+2 − 1

|w|α+2
) du dv,

where the limits ε ↘ 0 may be omitted, see [7] for details.Here it becomes apparent that the setting ρ = 2 corresponds to the Hilbert case which is characterized by the existenceof a scalar product
〈f , g〉L2 := ∫ 1

0 〈f (u), g(u)〉Cn du for f , g ∈ L2(R/Z,Cn). (20)
This enables us to apply the theory of Fourier series. Recall that we may express a function f by its Fourier series

∑
k∈Z

f̂e2πikx

where f̂k := ∫ 10 f (x)e−2πikx dx is the k-th Fourier coefficient. A function f belongs to L2(R/Z,Rn) if and only if thesequence of its Fourier coefficients belongs to `2, i.e., they are square summable,
∑
k∈Z

∣∣∣f̂k ∣∣∣2 < ∞.
15
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In this case f (x) = ∑
k∈Z f̂e2πikx for almost every x ∈ R/Z. On the level of Fourier coefficients regularity is expressedby multiplication of powers of k , more precisely, f̂ ′ = 2πikf̂ and f̂ ′′ = −4π2k2 f̂ . Therefore, in order to prove f ∈ C∞,we have to show (

|k|σ f̂ k
)
k∈N
∈ `2 for arbitrarily large σ > 0.

To this end we need an initial amount of regularity, namely
(
|k|s γ̂k

)
k∈N ∈ `

2. (21)
In fact, this is not an additional requirement as, for the energy families presented in this text, any finite-energy curve inarc-length parametrization satisfies the latter claim already. This can be seen by the computations used to exclude thehighly singular range and the fact that (21) is equivalent to ∫∫(R/Z)2 |γ(u)−γ(v )|2

|u−v|1+2s du dv < ∞.
Now we have to investigate the regularity properties of both Q(s) and R (s). Using Parseval’s theorem we obtain

Q(s)(f ;g) =∑
k∈Z

ρk
〈
f̂k , ĝk

〉
Cd

where ρk = c |k|2s + o
(
|k|2s) as |k| ↗ ∞ (22)

and c > 0. Here o(|k|2s) denotes a quantity with o(|k|2s)
|k|2s → 0 as |k| ↗ ∞.

To see this for the example O’H(α,2), just insert the basis functions φk (t) := e2πikt , k ∈ Z, into (19) which gives, for basisvectors e` ∈ Rn, ` = 1, . . . , n,
Q( α+12 )(φke` ;φk ′e` ′ ) = δk,k ′δ`,` ′cα |k|α+1 +O(k)

where δ·,· denotes the Kronecker symbol, cα is a positive constant, and O(k)
|k| ≤ C as |k| ↗ ∞.The next crucial step is to show that all terms belonging to R (s) have the same structure, so one can treat themsimultaneously. Since the exact form of a multilinear mapping (Rn)N → R will not matter in our analysis, let usintroduce the “f notation” which represents any sort of these operators, e. g., 〈(a ⊗ b) c, d〉 = a f b f c f d for

a, b, c, d ∈ Rn. Now the term R (s)(γ, h) is a (finite) sum of expressions of type
∫
R/Z

∫ 1/2
−1/2

∫
· · ·
∫

[0,1]K g(s)(u,w) f h′(u+ σKw) dθ1 · · · dθK dw du
where

g(s)(u,w) := G(s) (∣∣∣∣4γw
∣∣∣∣) |γ ′(u+ σ1w)− γ ′(u+ σ2w)|2

|w|2s−1
(
K−1
æ

i=3 γ
′(u+ σiw)) ,

G(s) is some analytic function defined on [c,∞), and σi ∈ {0, θi} for all i = 1, . . . , K .From this we can state the regularity of the remainder term as follows: if
(
|k|s+σ γ̂k)k∈N ∈ `2 for some σ ≥ 0 (23)

then for any ε > 0 there is some g = gε : R/Z→ Rn with
R (s)(γ;h) =∑

k∈Z

〈
ĝk , ĥk

〉
Cn

and (
|k|σ−ε−3/2 ĝk

)
k∈N
∈ `2. (24)

By (22) and (24) we are able to proceed to the
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Proof of Theorem 10. Rewriting (17) using (18), we arrive at
Q(s)(γ;h) + λ 〈γ ′, h′〉L2 + R (s)(γ;h) = 0 (25)

for any h ∈ C∞(R/Z). Since first variation of the length functional satisfies
〈γ ′, h′〉L2 =∑

k∈Z

|2πk|2 〈γ̂k , ĥk〉
Cd
,

we deduce using (22) that there is a c > 0 with
Q(s)(γ, h) + λ 〈γ ′, h′〉L2 =∑

k∈Z

ρ̃k
〈
γ̂k , ĥk

〉
Cd

where ρ̃k = c |k|2s + o
(
|k|2s) as |k| ↗ ∞. (26)

Assuming (23) we infer
Q(s)(γ;h) + λ 〈γ ′, h′〉L2 +∑

k∈Z

〈
ĝk , ĥk

〉
Cn

= 0 (27)
from applying (24) to (25). Equation (26) implies

∑
k∈Z

〈
ρ̃k γ̂k + ĝk , ĥk

〉
Cn

= 0.
Testing this identity with the basis functions ĥj = δj,k we obtain ρ̃k γ̂k + ĝk = 0 for all k ∈ Z. Applying (24) yields

(
ρ̃k |k|σ−ε−3/2 γ̂k)

k∈Z
∈ `2.

Recalling that ρ̃k |k|−2s converges to a positive constant as |k| ↗ ∞, we are led to
(
|k|2s+σ−ε−3/2 γ̂k)

k∈Z
∈ `2.

Choosing ε := s2 − 34 > 0, this reads (
|k|s+σ+ε γ̂k)k∈Z ∈ `2. (28)

Consequently, compared to the initial assumption (23), we gain a positive regularity amount ε that does not dependon σ . So, starting with (21), we arrive at γ ∈ C∞ by iterating (23)–(28).
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